
HAL Id: hal-02878566
https://centralesupelec.hal.science/hal-02878566v1

Submitted on 23 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Design of Wireless Networks for Broadband
Access with Minimum Power Consumption

Daniel Verenzuela, Emil Bjornson, Sanguinetti Luca

To cite this version:
Daniel Verenzuela, Emil Bjornson, Sanguinetti Luca. Optimal Design of Wireless Networks for Broad-
band Access with Minimum Power Consumption. IEEE International Conference on Communications,
May 2016, Kuala Lumpur, Malaysia. �10.1109/ICC.2016.7511353�. �hal-02878566�

https://centralesupelec.hal.science/hal-02878566v1
https://hal.archives-ouvertes.fr


Optimal Design of Wireless Networks for Broadband

Access with Minimum Power Consumption

Daniel Verenzuela∗, Emil Björnson∗, Luca Sanguinetti†‡
∗Department of Electrical Engineering, Linköping University, Linköping, Sweden.
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Abstract—The continuous rise in wireless data traffic brings
forth an increase in power consumption and static users constitute
a large fraction of these traffic demands. This work focuses on
designing cellular networks to deliver a given data rate per area
and user, while minimizing the power consumption. In particular
we are interested in optimizing the transmission power, density of
access points (APs), number of AP antennas and number of users
served in each cell. To this end, we consider a network model
based on stochastic geometry and a detailed power consumption
model to derive closed form expressions and obtain insights on the
interplay of the aforementioned design parameters. The results
show that, in contrast with previous works on optimal network
design for energy efficiency, having exceedingly high AP density
does not bring the most benefits in terms of power savings. Instead
the AP density should be chosen according to the area data
rate that we want to deliver. In addition numerical results show
that the minimum power consumption is obtained in the Massive
MIMO regime with many antennas and users per AP.

I. INTRODUCTION

In the evolution of mobile networks the rise of data traffic
continues to be a dominant trend [1] that in turn increases the
power consumption of communication networks [2]. There are
growing environmental and economic concerns about how the
traffic growth can be sustained and the answer seems to be in
technological developments to reduce the power consumption
[3]. The challenges for new generation technologies involve
a growth of 1000× in area throughput without increasing the
power consumption [4], [5]. Therefore increasing the energy
efficiency (EE), defined as the ratio between data throughput
and energy consumption, has been the focus of much research
over the past decade [6].

In general, there are two different approaches for improving
EE, namely, small-cell networks [7], [8] and large-scale or
massive multiple-input multiple-output (MIMO) systems [9]–
[12]. Both technologies can improve the area throughput and
reduce the radiated power, but at the cost of deploying more
hardware infrastructure. Hence, the overall EE of the network
can only be improved if these benefits and costs are properly
balanced. A first attempt in this direction was taken in [13],
[14] where the authors developed an EE maximization frame-
work that provides valuable insights on the interplay among
the different network parameters. Among others, these include
transmission power, density of access points (APs), number
of transmit antennas per AP, and number of user equipments
(UEs) simultaneously served by each AP. The analysis showed
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that reducing the cell size is undoubtedly the way towards high
EE. However, the benefits saturate after a certain point and
further improvements can only be obtained through a massive
MIMO configuration.

While it is good to have a fundamental understanding of
how to design energy-efficient networks, pure EE optimization
can lead to solutions with low data throughput or high power
consumption. A more practical problem formulation is to de-
sign a network that can provide a certain service performance
with minimal power consumption. In this context, the work [8]
minimizes the power consumption for different AP sleeping
techniques in heterogeneous networks. In [15], a comparison
between micro and macro cells with distributed and co-located
antennas is done in terms of energy consumption. The paper
[16] studies the optimal AP density to minimize the area
power consumption. Although these works provide interesting
insights, a comprehensive analytical network optimization for
minimum power consumption is not available in the literature.

In this work we develop a framework that allows to
understand how a cellular network designed for minimum
power consumption should look like. In a wireless network
the spatial distribution of APs is highly irregular and the cell
geometry plays a key role when determining the performance.
Stochastic geometry is a promising tool to derive tractable
analytical results and to model the random properties of
practical network deployments [17]. Therefore, we consider
the downlink of a network with zero-forcing (ZF) precoding
in which the locations of APs are distributed according to
a homogeneous Poisson point process (PPP). Furthermore,
we adopt the detailed power consumption model developed
in [12]. All this is then used to formulate an optimization
problem aimed at minimizing the area power consumption
(APC) subject to constraints on the individual average data
rate (R) of UEs and the area data rate (AR). The optimization
is carried out with respect to the AP density, number of AP
antennas, number of UEs served per AP and transmission
power.

The results show that, in contrast to previous works that
optimize the EE, increasing the density of APs indefinitely
does not always bring benefits in terms of power savings. In
fact, the optimal approach is to select the AP density based
on the AR that should be delivered. We derive closed form
expressions showing the interplay of main design parameters
that provide important insights on how a network with mini-
mum power consumption should be designed. The numerical
results show that a massive MIMO configuration with many
antennas and UEs per cell is optimal and significantly reduces
the density of APs needed to satisfy a given AR requirement



Figure 1. Example of the spatial distribution of APs according to a
homogeneous PPP Ψλ with M = 4 antennas per AP and K = 3 UEs
uniformly distributed within each Voronoi cell.

in comparison to a system with a single UE per cell.

II. NETWORK MODEL

Given that the traffic generated by low mobility indoor UEs
(e.g., video streaming) constitutes a vast portion of the power
consumption in cellular networks we focus on delivering their
service as efficient as possible. Following [14], we consider
the downlink of a network operating over a bandwidth BW in
which all APs are active and randomly distributed according
to a homogeneous PPP Ψλ with intensity λ [APs/km2]. Each
AP is equipped with M antennas and serves K ≤ M single-
antenna UEs uniformly distributed within the Voronoi cells
(see Figure 1). The UEs are assumed to be static and equipped
with transceivers affected by hardware impairments [11].

The stationarity of UEs implies that the coherence time
is large enough so that the overhead introduced by channel
estimation can be neglected. Moreover the effects of hardware
impairments in the UEs are considered to be dominant over the
channel estimation errors and in turn these are also neglected
[11]. We concentrate our analysis on a typical UE with the arbi-
trary index k connected to AP 0 ∈ Ψλ. Such a UE statistically
represents any UE in the network by means of the translation
invariance property of PPPs. We denote by hi,k ∈ C

N the
channel vector, at an arbitrary subcarrier, between AP i ∈ Ψλ

and the typical UE k and assume that

hi,k ∼ CN (0, ω−1d−α
i,k IM ) (1)

where α > 2 is the path loss exponent, di,k [km] denotes
the distance between AP i and UE k and ω determines the
average propagation loss (including wall penetrations) at a
reference distance of 1 km. We assume ZF precoding and
denoteWi = [wi,1 ...wi,K ] ∈ CM×K as the precoding matrix
of AP i with wi,k being the normalized precoding vector
associated to UE k and given by
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Hi
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whereHi = [hi,1 ...hi,K ] ∈ CM×K is the channel gain matrix
between AP i and its associated K UEs, ek denotes the kth
column of the identity matrix and the notation ‖ · ‖ stands for
the Euclidean norm. Notice that for Wi to exist the matrix
H

H
i Hi needs to be invertible. This is why we need to enforce

the condition M ≥ K .

Let si ∼ CN (0, IK) be the vector collecting the normal-
ized data symbols sent by AP i to its associated K UEs and
call ρ > 0 the average transmission power per UE over the
complete bandwidth BW .1 Then, the signal received at the
typical UE k is written as

yk=
√
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where nk ∼ CN (0, σ2

BW
) with σ2 being the noise power over

the bandwidth BW . The impact of hardware impairments is
modeled based on [11] as a reduction of the received signal
energy of 1− ǫ2 and an additive distortion noise given by

rk ∼ CN
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where 0 < ǫ < 1 is a parameter related to the error vector
magnitude (EVM). The EVM is used to measure the quality of
the transceiver defined as the ratio between average distortion
magnitude and signal magnitude, which yields ǫ√

1−ǫ2
≈ ǫ in

our notation. We only consider hardware impairments at the
UEs since these are expected to dominate in the future [11].

Lemma 1. A lower bound on the average achievable rate per
user [bit/s/user] in the network with ZF processing is given by

R = Bw log2



1 +
(1− ǫ2)(M −K)

2K
(α−2) + ǫ2(M −K) + Γ(α/2+1)

(πλ)α/2
ωσ2

ρ





(5)
where M ≥ K + 1 and Γ(·) is the gamma function.

Proof: The proof can be found in [14, Prop. 1].

Notice thatM = K is not supported by this lemma because
of the bounding technique used for deriving the lower bound
on the capacity. The rate expression in (5) is used in the next
section to define our metrics and cost functions in closed form.

III. PROBLEM FORMULATION

The goal of this work is to find the network parameters
that minimize the APC [Watt/km2] while providing a certain
data rate per UE as well as a given average data rate per km2.
The latter is denoted as AR [bit/s/km2] and is defined by

AR = λK R. (6)

The APC comprises all the power consumed at the APs and
UEs by the transmitted signals, circuit dissipation, transceiver
signal processing, backhaul signaling and overhead, such as
site cooling. The APC is defined as in [12] and given by

APC = λ

(

Kρ

η
+ C0 + C1K +D0M +D1MK

)

+AAR

(7)
where η ∈ (0, 1] is the efficiency of the power amplifier and
C0 > 0 represents the fixed power consumption at each AP,
independent of the load or number of antennas. In addition,
the term C1 > 0 accounts for the power consumed by all

1For tractability we consider equal power allocation and leave the imple-
mentation of power control for future work.



circuit components at each UE whereas D0 > 0 is related to
the power consumption of all circuit components at each AP
antenna. The power required for signal processing is given by
D1MK > 0 where the complexity of MK operations, for
example, comes from computing the product Wisi. The term
A > 0 accounts for the load dependent power consumption
(e.g., coding, decoding, backhaul). The forthcoming analysis
holds for any positive values of the above parameters, however
some examples are given in Table I. More details on the above
power consumption model can be found in [12].

Denote by γ the target data rate per UE and by ξ the
required area data rate. Thus, the optimization problem is
mathematically formulated as:

minimize APC(ρ, λ, M, K)
ρ, λ ∈R+

M,K∈Z+

subject to R ≥ γ and AR ≥ ξ

(8)

where R+ and Z+ denote the set of all strictly positive real
and integer numbers respectively. Notice that from Lemma 1 it
follows that limM→∞ R = BW log2(1/ǫ

2). This implies that
(8) is feasible if and only if 0 < γ < BW log2(1/ǫ

2).

IV. MINIMIZING THE APC

In the following section we solve the optimization problem
(8) analytically using the R expression from Lemma 1 while
providing closed form expressions of all optimization variables
that show the interplay of the main parameters in the system.

A. Optimal Transmission Power per UE

We begin by deriving the optimal transmission power per
UE ρ while the other variables in (8) are kept constant.

Lemma 2. Assume M , K and λ are given. If the problem (8)
is feasible and

M

K
>

2 (2γ − 1)

(1− ǫ22γ) (α− 2)
+ 1 (9)

then the optimal ρ is given by

ρ∗ =

(2γ−1)
(1−ǫ22γ)

ωσ2Γ(α/2+1)

(πλ)α/2

M −K − (2γ−1)
(1−ǫ22γ)

2K
(α−2)

. (10)

Proof: The result easily follows by observing that APC
and R are both monotonically increasing functions of ρ.
Therefore, the optimal ρ∗ is given by the lowest value of ρ for
which the data rate constraint per UE is satisfied with equality,
i.e., R(ρ∗) = γ. Solving the equality with respect to ρ∗ yields
the result. Notice that the condition (9) is required to ensure
that ρ∗ > 0 and is obtained by setting the denominator of ρ∗

greater than zero.

We can see that ρ∗ is a decreasing function of λ and M
while it increases with K . Observe that the same ρ-value was
obtained in [14, Th. 2] for the problem of EE maximization.

By substituting ρ∗ into (7) the problem (8) reduces to:

minimize
λ∈R+

M,K∈Z+

bλ−(α
2 −1) + dλ (11)

subject to
M

K
>

2 (2γ − 1)

(1− ǫ22γ) (α− 2)
+ 1 (12)

λK ≥
ξ

γ
(13)

where

b = ωσ2Γ(α/2+1)

ηπα/2
(

(M
K −1)

(

1−ǫ22γ

2γ−1

)

− 2
(α−2)

) ,

d = C0 + C1K +D0M +D1MK +AK γ.
(14)

The inequality (13) comes from the definition of the AR in
(6) and the fact that R(ρ∗) = γ. For later convenience, from
the condition in (12) we define

cmin =
2 (2γ − 1)

(1− ǫ22γ) (α− 2)
+ 1 (15)

as the limiting ratio between M and K such that ρ∗ > 0.
Notice that cmin is an increasing function of γ, meaning that a
larger number of AP antennas is needed if the rate constraint
per UE grows.

B. Optimal AP Density

Now we find the optimal λ in (11) when M and K are
given.

Theorem 1. Suppose that M and K are fixed at some arbitrary
values for which (11) is feasible, then the optimal λ is

λ∗ = max

{

λ̂,
ξ

γK

}

(16)

with

λ̂=

(

b

d

(α

2
− 1
)

)

2

α
. (17)

Proof: The result easily follows by observing that the
objective function f = bλ−(α/2−1) + dλ in (11) is convex
for α > 2 and that limλ→0 f = ∞ and limλ→∞ f = ∞.
Therefore, there exists a value of λ for which ∂f/∂λ = 0.
This yields λ̂. From (13), it also follows that λ must satisfy

λ ≥ ξ
γK . Putting these facts together concludes the proof.

From Theorem 1, it follows that if the AR constraint is
removed (i.e., ξ = 0), then the optimal λ is always given by λ̂
in (17) irrespective of the rate constraint per UE γ. As shown
in (17) λ̂ is monotonically decreasing with M and with all the
terms of the power consumption model (i.e., η, C0, C1, D0,
D1 and A). Furthermore, if the ratio M/K is kept fixed, then

λ̂ is also monotonically decreasing with K . Therefore, if no
AR constraint is imposed and practical values of M and K
are considered, the optimal density can be very small (see for
example the results illustrated in Figure 2) and the resulting
solution will provide poor AR, thus making the system unable
to support the rising demand for higher area data rates. On the
other hand, for ξ values of practical interest such that ξ ≥ ξmin

with ξmin = λ̂γK , then the AP density that minimizes the



power consumption is exclusively determined by the area data
rate constraint and is given by

λ∗ =
ξ

γK
. (18)

This is in sharp contrast to the results for the EE maximization
problem (e.g., [13], [14]) wherein the EE is a monotonically
increasing function of the AP density and thus it is preferable
to have as high AP density as possible. From (18), it follows
that λ∗ depends linearly on the target average area data rate
constraint ξ and it is inversely proportional to the number K
of UEs per AP. In the following analysis, we only consider the
practically most interesting case for which ξ is large enough
such that the constraint ξ ≥ ξmin is always satisfied.

C. Optimal Number of UEs per AP

Next, we want to find the optimal K . To this end, we

substitute λ∗ = ξ
γK into (11) and obtain:

minimize
M,K∈Z+

b̂( ξ
γ K )

−(α
2

−1)

(MK −1)d̂− 2
(α−2)

+ξ
γ

(C0

K +C1+D0
M
K +D1

M
K K+Aγ

)

,
(19)

subject to
M

K
> cmin, (20)

where

b̂ =
ωσ2Γ(α/2 + 1)

ηπα/2
and d̂ =

(

1− ǫ22γ

2γ − 1

)

. (21)

Notice that the objective function of (19) grows large as
M, K → ∞ thus the optimal solution must be at finite
integer values of M and K that can be easily found by
using an exhaustive search algorithm. However, we also want
to understand the structure of the solution, which cannot
be obtained from a numeric search algorithm, and therefore
we relax the integer constraints to find the best real-valued
solutions. Moreover since M is dependent on K through the
inequality in (20), we denote the number of antennas per UE
as c̄ = M

K and look for the optimal K under the assumption
that c̄ is given.

Theorem 2. Consider any fixed positive c̄ > cmin for which
the problem (19) is feasible, then the optimal number of UEs
per cell is computed as

K∗ = K(o) (22)

where the value {K(o)} is the real positive solution of

b̂
(

ξ
γ

)−α
2 (α

2 − 1
)

(

(c̄− 1) d̂− 2
(α−2)

)Kα/2 +D1c̄K
2 − C0 = 0. (23)

Proof: The objective function of (19), denoted by g,
is convex in K for α ≥ 4 whereas it is quasi-convex for
2 < α < 4 and both have their global minimum located at

K(o) > 0 where ∂g
∂K = 0. When α ≥ 4 the proof of convexity

is straightforward by evaluating the second derivative condition

withK > 0. When 2 < α < 4, we have that g → ∞ asK → 0
and that ∂2g/∂K2 > 0 if

K < Kmax =
ξ

γ
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(
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(α−2)

)

b̂
(

α
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4
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2/α

(24)

whereas ∂g/∂K > 0 if

K > Kmin =
ξ

γ





C0
(

(c̄− 1) d̂− 2
(α−2)

)

b̂
(

α
2 − 1

)





2/α

. (25)

Thus g is convex for 0 < K < Kmax and it is also
monotonically increasing for K ≥ Kmax since Kmin < Kmax

(i.e., g is a quasi-convex function). This means that the global
minimum lies in the interval (0, Kmax) and thus it is achieved
for the K(o) > 0 such that ∂g/∂K = 0.

Notice that finding the solution of (23) is easy since the
problem is convex with respect to K within the range of
interest. However, to obtain better insights on the fundamental
trade-offs between the parameters that define the optimal
number of UEs per cell, let us look at the special case of
α = 4 which is a common approximation for the path loss
exponent and makes (23) a second order polynomial equation.

Corollary 1. Consider the path loss exponent α = 4 and
suppose the optimization problem in (19) is feasible, then the
optimal K for any given value of c̄ > cmin is

K∗ =

√

√

√

√

√

√

C0
(

(c̄− 1) d̂− 1
)

b̂
(

γ
ξ

)2

+D1c̄
(

(c̄− 1) d̂− 1
)

. (26)

From (26) we see that when α = 4 the optimal K∗ is
monotonically increasing with C0 and monotonically decreas-
ing with D1. This means that as the fixed power consumption
decreases less UEs need to be served in each cell to minimize
the APC. Also if the power consumption corresponding to
signal processing tasks decreases, then more UEs can be
served. We see that the optimal K∗ remains unaffected by
the parameters D0 and C1.

D. Optimal Number of AP Antennas

Finally, let us optimize the number of AP antennas M
while K is kept constant.

Theorem 3. Consider K to be given and the optimization
problem in (19) to be feasible, then the optimal number of AP
antennas is obtained as

M∗ = c̄∗K (27)

where

c̄∗ =







b̂
(

ξ
γ

)−α
2

K(α
2 −1)

d̂ (D0 +D1K)







1/2

+
2

d̂(α− 2)
+ 1. (28)

Proof: The objective function of (19), denoted by g, is a
convex function of c̄ for c̄ > c̄min and the global minimum is

found when ∂g
∂c̄ = 0.



Table I. SIMULATION PARAMETERS

Parameter Symbol Value

Path loss exponent α 3.76

Fixed propagation loss (1 km) ω 130 dB

Power amplifier efficiency η 0.39

Level of hardware impairments ǫ 0.05

System bandwidth Bw 20 MHz

Load power consumption ABw 0.023 W/bit

Static power consumption C0 10 W

Circuit power per active UE C1 0.1 W

Circuit power per AP antenna D0 1 W

Signal processing coefficient D1 3.12 mW

Noise variance over system bandwidth σ2 2 · 10−13 W
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Figure 2. Area power consumption [kWatt/km2] as a function of λ for
ξ = 20 [Gbit/s/km2]. The vertical lines depict the optimal λ∗ (from (16)).

The minimum values found in Theorem 1 are depicted as λ̂. The values of ρ,
M and K are optimized to yield minimum APC.

Notice that c̄∗ decreases monotonically with D0 and D1,
which means that as the circuit power and signal processing
power per AP antenna decrease a larger number of antennas
can be used for minimizing the APC. Furthermore, from (23)
we see that K∗ decreases as C0 grows large and thus the same
occurs for M∗. On the other hand, the term C1 does not affect
the optimal number of AP antennas.

V. SIMULATION RESULTS

This section validates and illustrates the analytical insights
from Section IV by a numerical study. The selection of main
parameters is listed in Table I and is based on [12], [14].

First we would like to show how the APC depends on the
density of APs to see the impact of deploying denser networks.
Figure 2 shows the APC as a function of λ for two different
values of γ when the optimal ρ and the optimal integer-valued
choice of M and K are used. Notice that the APC is a
convex function and the minimum lies at low values of λ,
which validates the insights given by Theorem 1. This means
that, for most practical AP densities, the APC is an increasing
function of λ, in fact we can see that the optimal values of
λ∗ (for γ = {60, 100} [Mbit/s/user]) that guarantee an AR of
ξ = 20 [Gbit/s/km2] are well above the minimum. Note that
this particular value of ξ is conservative when compared to
the future values 170 and 105 [Gbit/s/km2] predicted by the
METIS project [18] in shopping malls and virtual reality office
scenarios, respectively. Thus, increasing the density of APs
without bound is not the best approach to design a network
with minimum power consumption. Moreover, observe that the
APC increases as γ grows large and this effect increases as
λ takes larger values. It is also worth mentioning that the
lower bound on R provided in Lemma 1 yields practically

(a) 3D graph of the APC vs M and K , with optimal real-value
(blue square where M = 165.35 and K = 18.06) and exhaustive
search integer (green square where M = 174 and K = 19)
solutions.
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Figure 3. Area power consumption [kWatt/km2] vs M and K for γ = 60

[Mbit/s/user] and ξ = 20 [Gbit/s/km2]. The results are given for optimal
values of ρ and λ.

the same results for the APC as the Monte-Carlo simulations,
which validates the tightness of this analytically tractable lower
bound.

Figure 3(a) depicts the APC as a function of both M
and K for γ = 60 [Mbit/s/user] with optimal values of
λ and ρ. We can see that the exhaustive search algorithm
yields the optimal solution (M∗, K∗) = (174, 19) with a
total transmission power per cell of K∗ρ∗ = 302 mW which
corresponds to a Massive MIMO setup wherein a large number
of AP antennas is used to serve a smaller number of UEs.
Notice that the global minimum APC from the integer and
real-valued solutions differ only by 0.01% due to rounding
effects. To illustrate the convex shape of the APC, Figure 3(b)
depicts its value as a function of K for a fixed c̄ and as a
function of M for a fixed K . Notice that the particular fixed
values of c̄ and K correspond to the optimal points. Also, the
results of 3(b) confirm the tightness of the lower bound given
by Lemma 1.

To provide some insights on the impact that the desired
AR has on the network design, we illustrate the behavior
of the APC and the optimal AP density versus ξ. Figure 4
depicts the APC for optimal values of λ and ρ comparing
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Figure 5. Density of APs [AP/km2] as a function of ξ for γ = 60

[Mbit/s/user]. The choice of ρ is optimal.

three network configurations: an optimal choice of M and
K , a fixed massive MIMO (i.e., M = 174, K = 19) and
a single UE per cell. Figure 5 shows the optimal density
of APs as a function of ξ for an optimal ρ comparing the
same configurations. We can see that both the APC and the
density of APs are increasing functions of the AR with the
only exception of the APC for the fixed Massive MIMO setup.
In this case, the APC has a convex shape and for low values
of ξ the APC takes larger values than with a single UE per
cell system. This means that massive MIMO is only desirable
if ξ is sufficiently high, otherwise it is better to use smaller
cells with fewer UEs. However, we can see that the APC of
the Massive MIMO setup converges to the optimal behavior
for values of ξ above 10 [Gbit/s/km2], which is well below
the AR requirements of future networks estimated by the
METIS project [18] mentioned earlier. Notice also that for
ξ above 10 [Gbit/s/km2] both the optimal and Massive MIMO
configurations offer a reduction of 2× power consumption
while needing 19× less AP density approximately. The latter
fact could greatly simplify the practical network deployment.

VI. CONCLUSION

In this paper, we studied the optimal design of cellular
networks for high requirements on the average data rate per
area and UEs while having minimal power consumption.
This was done by formulating an optimization problem using
stochastic network geometry and realistic power consumption
models. The problem was solved analytically by deriving
closed form expressions for the optimization variables: the
transmission power per UE, density of APs, number of UEs
per cell and number of AP antennas.

The results showed that, in contrast to previous works [13],
[14] on EE optimization, increasing the density of APs without
bound is not the proper way to go in order to design practical

networks with minimal power consumption. Instead, the AP
density must be fixed on the basis of the AR requirement and
a massive MIMO setup must be deployed. This implementation
significantly reduces the power consumption and AP density
by multiplexing several UEs simultaneously with the use of a
large number of AP antennas to mitigate interference.

This work assumes static indoor users, in future work we
will extend the model to cover user mobility scenarios where
channel estimation errors and overhead cannot be neglected.
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