
HAL Id: hal-02881889
https://centralesupelec.hal.science/hal-02881889

Submitted on 26 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Timed Discrete-Event Simulation of Aviation Scenarios
Hai Nguyen Van, Frédéric Boulanger, Burkhart Wolff

To cite this version:
Hai Nguyen Van, Frédéric Boulanger, Burkhart Wolff. Timed Discrete-Event Simulation of Aviation
Scenarios. SNE Simulation Notes Europe, 2020, 30 (2), pp.51-60. �10.11128/sne.30.tn.10512�. �hal-
02881889�

https://centralesupelec.hal.science/hal-02881889
https://hal.archives-ouvertes.fr

Timed Discrete-Event Simulation
of Aviation Scenarios

Hai Nguyen Van*, Frédéric Boulanger**, Burkhart Wolff**

Université Paris-Saclay, CNRS, LRI, 91405 Orsay, France; *ORCID 0000-0002-0585-1651 ; **firstname.lastname@lri.fr

https://www.sne-journal.org/sne-volumes/

volume-30/sne-301-articles-1/

timed-discrete-event-simulation-of-aviation-scenarios

Abstract. Ensuring systems behave as they are expected is
unavoidable in the context of critical environments. In the avi-
ation industry, certification standards provide rules and pro-
tocols to ensure correct maneuvers with respect to logical or
timed events. These are targeted to computer-intensive sys-
tems as well as to human flight crews. In this setting, we are
interested in the modeling and simulation of event-driven and
time-driven behaviors at a high level. This study focuses on the
TESL language [9] that provides a logical framework for timed
behaviors with monitoring and testing features. In particular,
we model various aviation scenarios and focus our study on
fault monitoring.

Introduction

In past years, an increase in modeling and simulation in
industry has emerged to assist engineers and designers
of various process levels. In a broader way, this has
been ensured by the emergence of Model-Based De-
sign that allows the differentiation of stages and com-
ponents composing large systems. These large systems
consist of modeled components of various nature and
form a multi-paradigm environment where each part is
modeled with its own semantics of execution: this is
commonly called heterogeneous modeling [23]. For in-
stance in control systems, mode switches can be mod-
eled with finite-state machines, and sensor data pro-
cessors with dataflow models. Recent advances have
proved that these submodels could be unified to form a
supermodel. Figure 1 highlights this idea where each
submodel is described by a different paradigm, then
they are coordinated as a supermodel.

Complementary to modeling, the increased demand
of automatic validation relates to the critically-large
models where sole human analysis no longer suffices.

The addition of mathematics and logics to the under-
standing of modeling and computing problems at a
larger scale is named formal methods. The problem is
two-fold. On one side, heterogeneous modeling raises
the question of the adaptability of paradigms. Indeed,
each modeling paradigm comes with a specific model
of computation detailing a precise semantics of execu-
tion for each submodel. On the other side, validation
demands a unified environment for safety property ver-
ification or test generation for these various paradigms.
In the last decades, several multi-paradigm frameworks
have appeared and attempt to address these issues, e.g.,
Ptolemy II [32, 13], ModHel’X [8], BCool [37].

Supermodel

Submodel 1 Submodel 2

Submodel 3

∂x

∂t
= V cos γ

∂h

∂t
= V sin γ

Figure 1: A supermodel for heterogeneous submodels

Our study focuses on TESL [9] which has been in-
troduced as the inner language of the ModHel’X frame-
work. Similarly to intermediate programming lan-
guages in compiler theory, models in ModHel’X are
coordinated using TESL. Indeed, it is a specification
language that describes discrete-events with time anno-
tations (tags). This flavor of chronometric time is nec-

1

https://www.sne-journal.org/sne-volumes/volume-30/sne-301-articles-1/timed-discrete-event-simulation-of-aviation-scenarios
https://www.sne-journal.org/sne-volumes/volume-30/sne-301-articles-1/timed-discrete-event-simulation-of-aviation-scenarios
https://www.sne-journal.org/sne-volumes/volume-30/sne-301-articles-1/timed-discrete-event-simulation-of-aviation-scenarios

essary to compose modeled systems where events are
described with respect to chronometric time durations,
instead of logical time as would be found in temporal
logics [31].

In this paper, we highlight the application of this
language to aeronautical systems. We are interested in
modeling standard scenarios used by common aircrafts,
and validated by airworthiness authorities (ICAO An-
nex 8 [1], EASA AIR OPS [2]). Our goal is to exhibit
a unified modeling framework suited for validation and
verification by means of:

• multi-level model specification;

• generation of execution traces for simulation pur-
poses;

• real-time testing and system monitoring.

In the heterogeneous context, our framework allows
to abstract from programming details in order to rea-
son on high-level behaviors. We believe this is partic-
ularly useful for aviation-related systems. Indeed, soft-
ware in current airborne systems are usually certified
for the highest Design Assurance Level as defined by
RTCA/DO-178C [14, 33]. This certification is known
to provide guidance for software life-cycle processes,
and emphasizes on verifying the relation between high-
level requirements and low-level implementation. The
testing topic of this certification is especially focused
on requirements. Our work precisely targets this prob-
lem by providing a specification-based testing/monitor-
ing framework. For these reasons, we believe our study
addresses several current Flight Control Systems (FCS):

Multi-pilot aircrafts. The Airbus A320 aircraft fam-
ily is a well-known system made of fault-tolerant com-
ponents based on redundancy and dissimilarity. Tra-
verse [36, 35] reported that the aircraft primary con-
trol surface computers were designed by different de-
sign analysts on independent architectures. This case
of heterogeneity clearly exhibits how a multi-paradigm
environment needs to be unified in order to be validated
at a higher-level.

Unmanned aircrafts. Furthermore, recent advances
in unmanned aircrafts [39, 15] make the topic of verifi-
cation and validation even more crucial due to the need
of safe, reliable and fully automated software-intensive
systems [19, 24] where, accordingly, design and test
procedures tend to be fully automated.

1 The TESL Language

The core language of our study is the TESL language.
It is inspired from the CCSL language [25, 7] and the
Tagged Signal Model [21]. It lies at the heart of the
ModHel’X modeling and simulation framework and
serves as an intermediate representation for simulation
solvers. In our setting, events are described and speci-
fied by clocks. A clock that ticks means that the asso-
ciated event is occurring. Theses entities are ruled by
three kinds of modality:

• Event-driven implications. An occurring event can
trigger another one: “If clock K1 ticks, then clock
K2 will tick under conditions”.

• Time-driven implications. An occurring event trig-
gers another one after a chronometric time delay
measured on the time scale of a specific clock. Re-
mark that this delay is a duration expressed as a
difference between two tags, and not as a number
of ticks.

• Tag relations. By default, clocks live in indepen-
dent time islands. The purpose of tag relations is
to link these different time scales, e.g., time ex-
pressed in seconds and minutes admits an arith-
metic relation stating that time flows 60 times as
fast in seconds than in minutes. This does not
mean that the seconds clock ticks 60 times more
than the minutes clock, but simply that their tag
annotation satisfies this arithmetic relation.

To provide a glimpse of the core features of TESL,
we present a brief grammar of the language:

• tag relation bK1, K2c ∈ R
The time frames of clocks K1 and K2 are related by
the arithmetic relation R.

• Kevt sporadic τ on Kmeas
Some event will occur on clock Kevt at timestamp
τ measured on clock Kmeas.

• Kmaster implies Kslave
At every instant, if Kmaster ticks, then Kslave instan-
taneously ticks.

• Kmaster sustained from Kbegin to Kend implies Kslave
In the interval between a tick on clock Kbegin and
a tick on clock Kend, Kmaster implies Kslave as
previously (scoped implication).

2

• Kmaster time delayed by τ on Kmeas implies Kslave
Whenever the master clock Kmaster ticks, the time
tag on the measuring clock Kmeas is measured and
delayed by duration τ to yield the date of a future
instant at which clock Kslave will tick.

• K1 strictly precedes K2
Any event occurring on K2 is preceded in the strict
past by a distinct event occurring on K1.

2 The Takeoff Scenario

Figure 2: Airspeed indicator and altimeter (courtesy of Laminar

Research)

To illustrate how time scales can be constructed in
TESL, we are interested in modeling the takeoff pro-
cedure of a small single engine aircraft with basic pa-
rameters: time, airspeed and altitude. We assume usual
atmospheric conditions and specifically chose to model
performance parameters extracted from the Cessna 172
aircraft [10, 22]. The rotation speed VR specifies when
the pilot should move the pitch control backwards to
generate lift.

Speed Description

VR = 55 kt Rotation speed

Table 1: Extract of V-speeds of the Cessna 172

In the next subsections, we first introduce an execu-
tion trace to provide intuitions for our case study. Then,
we will exhibit the TESL specification for this scenario.

2.1 Clocks and execution traces

To define the basic quantities and events in which we
are interested, we define clocks that describe the time-
line of events. These are embedded with time tag an-

notations that rule how quantities and units are related.
Each clock denotes a quantity with a specific unit:

// Declaring quantities and units

rational-clock time-S // in [s]

rational-clock time-MIN // in [min]

rational-clock speed-MPS // in [m.s−1]

rational-clock speed-KT // in [kt]

rational-clock altitude-FT // in [ft]

Moreover, the specification is augmented with three
clocks for the events of our interest:

• VR-reach: speed reaches VR;
• liftoff: the aircraft is airborne;
• flaps-retract: flaps are retracted.

The TESL language is a specification language that
allows to describe traces. Figure 3 depicts a minimal
execution trace with three instants. At the first instant,
time is just 0 s. Then at the second instant, speed has
reached VR = 55 kt at 12.2 s. Hence, clock VR-reach
is triggered, and so is liftoff consequently: they are
said to be ticking synchronously. Then at the third in-
stant, flaps-retract ticks at the altitude of 400 ft
at 27.2 s.

time-S

time-MIN

speed-MPS

speed-KT

altitude-FT

VR-reach

liftoff

flaps-retract

0.

55.

12.2

0.203

28.29

0. 400.

27.2

0.453

� � �

0 VR
400 ft

0.

0.

0.

Figure 3: Execution trace when performing takeoff

Remark. The above trace depicts a minimal run.
It illustrates an observation. Other instants may exist
in between those mentioned, where none of our events
occur. These instants are simply not “observed”.

3

2.2 Causality and Timestamp Relations

Units In the next paragraphs, we use TESL to de-
scribe the above potential behavior.

// Unit conversion between [s] and [min]

tag relation time-S = 60.0 * time-MIN

// ... and between [m.s−1] and [kt]

tag relation speed-KT = <3600/1852> * speed-MPS

Clocks time-S and time-MIN respectively ex-
press time given in seconds and minutes. Clocks
speed-MPS and speed-KT respectively denote
speeds in meters per second and knots (as given by the
airspeed indicator). We use tag relations to describe
unit conversions between such quantities. In particu-
lar, tags on clocks time-S and time-MIN shall sat-
isfy the arithmetic relation that one minute is equiva-
lent to sixty seconds. Likewise, one knot is equiva-
lent to 3600

1852 m .sec−1. In our context, the notion of time
lies under tag annotations. Compared to temporal log-
ics where time is purely logical, we precisely capture
chronometric durations.

Acceleration and liftoff Tag relations also allow to
describe how quantities are related and can define the
acceleration profile of the modeled aircraft. Here we
consider the uniform acceleration of a light aircraft
gaining speed at 4.5 kt .sec−1:

tag relation speed-KT = 4.5 * time-S

Remark. The permissive nature of the language
also allows to leave this unspecified. We could have
also required to design a general-purpose specification
independently from the physical profile.

Whenever speed reaches VR at 55 kt, the event
VR-reach is triggered, and instantaneously triggers
liftoff indicating that the aircraft is airborne.

VR-reach sporadic 55.0 on speed-KT

VR-reach implies liftoff

Flaps retraction To quickly reach the desired alti-
tude, the pilot controls the pitch (longitudinal axis) to
maintain the airspeed at fixed value Vy while climbing.
This approximately corresponds to a vertical speed of
1200 ft .min−1. The relation is written:

tag relation altitude-FT =

1200.0 * time-MIN + -244

Finally, the aircraft reaches the altitude for flaps re-
traction at 400 ft.

liftoff time delayed by 400. on altitude-FT

implies flaps-retract

3 The Autobrake System

In this section, we explore more complex specifications
by employing a mix of event and time-triggered events,
and the usage of sequential and asynchronous operators.
We are interested in modeling the takeoff procedure of
a transport-category aircraft with takeoff rejection com-
ponents such as the Airbus A320 [3, 20]. As said earlier,
decision, rotation and lift off do not necessarily coin-
cide (depending on the aircraft performance category).
As a matter of fact, the manufacturer distinguishes and
specifies the following speed thresholds as illustrated in
Table 2.

Speed Description

V1 = 118 kt Decision speed

VR = 126 kt Rotation speed

Table 2: Extract of V-speeds of the A320 under given physical

assumptions [4]

As depicted in Figure 4, decision speed V1 defines
the speed limit at which the pilot in command is al-
lowed to reject takeoff (RTO). Then VR is the rotation
speed as previously described, and lift off occurs 3s af-
ter. Should the pilot decide to reject after V1, the air-
craft would brake on a too short remaining runway, and
hence overrun.

3.1 Acceleration and Speed Thresholds

We define speed thresholds as previously and also add
a precedence constraint. This emphasizes on the fact
that reaching VR must have been preceded by reaching
V1 prior.

V1-reach strictly precedes VR-reach

V1-reach sporadic 118.0 on speed-KT

VR-reach sporadic 126.0 on speed-KT

Again, to define a specification independently from
the aircraft performance, the precedence operator is

4

time-S

speed-MPS

speed-KT

V1-reach

VR-reach

SPLR-arm

AUTOBRK-arm

AUTOBRK-active

AUTOBRK-inactive

RTO

BRK-apply

liftoff

0.

72.

37.04

16.

118.

60.70

26.22

126.

64.82

28. 31.

139.5

71.765

1 2 3 4 5

0.

72.

37.04

16. 20.

90.0

46.3

1 2 3

0 V1 VR lifto�

3 s

0 RTO

(a) Go Situation (b) No Go Situation

Figure 4: Execution trace when rejecting takeoff

Figure 5: Autobrake command switch on panel board (extracted

from [5])

enough and the two following lines could have been ig-
nored. Finally, the aircraft is airborne 3s after rotation
speed has been reached.

VR-reach time delayed by 3. on time-S

implies liftoff

3.2 Rejecting Takeoff with Autobrake

One of the aircraft braking systems is named Auto-
brake [3], and opposes to manual pedal braking. Its
usage is preferable as:

• The number of brake pressure is minimized, reduc-
ing brake wear;

• A symmetrical brake pressure is applied ensuring
an equal braking effect on gear wheels, especially
on wet runways.

The system is activated whenever the following con-
ditions are met:

1. Ground spoilers ARMED
2. Auto brake ARMED
3. Speed exceeds 72 kt
4. Accelerate-stop with THRUST on IDLE

5

These above conditions are written as:

SPLR-arm strictly precedes AUTOBRK-active

AUTOBRK-arm strictly precedes AUTOBRK-active

AUTOBRK-active sporadic 72.0 on speed-KT

Finally in the event of takeoff rejection (RTO), the
system applies brakes if autobrakes were in an active
state.

RTO sustained from AUTOBRK-active

to AUTOBRK-inactive implies BRK-apply

Event Death Killing a clock allows to prevent it from
ticking, i.e. from having further event occurrences. This
mechanism can be used to describe different forms of
race conditions. Likewise, we can specify that reach-
ing V1 will prevent the event of rejecting takeoff. Con-
versely, applying brakes prevents from reaching V1.

V1-reach kills RTO

BRK-apply kills V1-reach

3.3 Simulation

Two situations that satisfy the above specification are
depicted in Figure 4. The first execution trace in Fig-
ure 4a shows the Go situation where the pilot normally
proceeds to aircraft takeoff. In the first instant, the pilot
arms ground spoilers and autobrake. Consequently, au-
tobrake is activated when speed exceeds 72 kt. There is
no takeoff rejection (clock RTO), and the aircraft keeps
on accelerating by reaching V1 and VR speeds until be-
ing airborne (clock liftoff) after a delay of 3s.

On the other side, a No Go situation is illustrated
in Figure 4b where speed has exceeded 72 kt but take-
off rejection has been declared at 20s when the speed
is 90kt, which immediately triggers brakes. This pre-
vents from reaching V1 and consequently VR and air-
craft liftoff.

4 Towards Hybrid Systems:
Accelerate-Stop Distance

Our language also addresses the modeling of hybrid
systems. This is exhibited by the ability to define dif-
ferential equations in tag relations. In our case study,
we can refine our specification to take into account dif-
ferential quantities. In the case of a takeoff rejection, it

is necessary to ensure that the two-stage acceleration-
deceleration ensures that the aircraft does not overrun,
and remains within the limits of the runway. To provide
a good abstraction level to the reader, we chose to de-
liberately simplify the definition of the Accelerate-Stop
Distance and not take into account the recognition and
decision time as specified by airworthiness authorities
([2], CAT.POL.A.205 Take-off).

Acceleration To compute these distances, we need to
express instantaneous distance with respect to current
time and speed. If we denote x as the distance of the
running aircraft, provided time t and speed v, we have

dx = v.d t

In our setting, this is straightforwardly expressed as

tag relation (d distance-M)

= speed-MPS * (d time-S)

where distance-M is the quantity denoting the run
distance during acceleration phase.

Deceleration As done previously, we need to define
how deceleration is expressed and accordingly the run
distance. To proceed so, we will define new clocks
for this deceleration stage: speed-MPS-DECEL,
speed-KT-DECEL and distance-M-DECEL.
Likewise, to keep our model simple enough but still
relevant, we will assume a uniform deceleration of
−3kt .s−1. In TESL, this would be expressible as a
linear tag relation as previously, or equivalently with a
differential equation between speed and time:

tag relation (d speed-KT-DECEL)

= -3.0 * (d time-S)

Finally, distance during deceleration relates to the
following tag relation:

tag relation (d distance-M-DECEL)

= speed-MPS-DECEL * (d time-S)

To run our specification with a concrete example,
let us assume that takeoff rejection has been declared
at 20s. Figure 6 illustrates this process where the air-
craft has approximately reached 520m at 20s. Finally,
the aircraft reaches speed zero at 50s with a final run
distance of approximately 1159m.

Remark. The precision of the differential calcu-
lus lies in the ODE solver in use. In this example, we

6

time-S

speed-MPS

speed-KT

distance-M

speed-MPS-DECEL

speed-KT-DECEL

distance-M-DECEL

RTO

0.

0.

0.

0.

2.5

11.25

5.787

14.468

5.

22.5

11.575

43.406

7.5

33.75

17.362

86.812

10.

45.

23.15

144.68

12.5

56.25

28.937

217.03

15.

67.5

34.72

303.84

17.5

78.75

40.512

405.12

20.

90.

46.3

520.87

20.

90.

46.3

90.

46.3

520.87

520.87

22.5

82.5

42.441

626.97

25.

75.

38.583

723.43

71.333

36.697

26.222

768.28

27.5

67.5

34.725

812.66

30.

60.

30.866

889.82

32.5

52.5

27.008

957.34

35.

45.

23.15

1015.2

37.5

37.5

19.291

1063.4

40.

30.

15.433

1102.0

42.5

22.5

11.575

1130.9

45.

15.

7.716

1150.2

47.5

7.5

3.858

1159.9

50.

0.

0.

1159.9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

0 RTOAcceleration Deceleration

Figure 6: Execution trace when performing accelerate-stop

used the simple first-order forward Euler with an inte-
gration step of 2.5s. Our language is agnostic to this
design choice and potentially admits any other relevant
ODE solver. It aims at bridging gaps between different
paradigms generally found for modeling complex sys-
tems.

5 Formal methods

5.1 Testing and Monitoring

In the previous sections, we have observed that the
TESL language specifies execution traces. These
can be constructively generated with a solver named
Heron [27]. It is a multicore-aware solver made of ap-
proximately 4,000 lines of Standard ML [26] code com-
piled with MPL [40]/MLton [38]. It solves TESL spec-
ifications by exhaustively constructing execution traces
as illustrated in the previous paragraphs. In particu-
lar, this allows to exhaustively test and monitor sys-
tems to the extent of the system observation interfaces.
Our solver fetches observations provided by an external
driver and filters out irrelevant execution trace branches.
By keeping the only satisfying runs of the specification
combined with those compliant with the observation of
the system, the solver keeps exploring exhaustive possi-
bilities. Whenever the solver faces an unwanted behav-
ior, it will finally filter out all branches and remain in
an inconsistent state, meaning that the system has pro-
duced a violating behavior.

For this purpose, it is possible to suggest a scenario
to the solver and request a simulation trace (if it ex-
ists). From the specification of the Autobrake in Sec-
tion 3 and its corresponding satisfying execution traces
in Figure 4, we can specify an additional directive to the
solver and request a run where the clock RTO is the only

one allowed to tick at instant 3. This is written

@scenario strict 3 RTO

The Heron solver will find no possibly satisfying
run as it is not possible for RTO to tick alone without
BRK-apply to tick as well. After successfully gen-
erating 2 instants, it will eventually fail and output the
following:

Solve [1]
-> Consistent premodels: 1
-> Step solving time measured: 0.005 s

Solve [2]
-> Consistent premodels: 1
-> Step solving time measured: 0.016 s

Solve [3]
-> Consistent premodels: 0
-> Step solving time measured: 0.003 s

ERROR: No further state found.

The solver, its source code and all men-
tioned examples in this paper are provided at
github.com/heron-solver/heron.

5.2 Formalized Semantics

In an effort to fully validate our language and its log-
ical foundations, a fragment of the TESL language,
which consists of core formulae, has been proved to
enjoy good and formal properties ensuring its well-
foundedness. It has been formalized with two kinds of
logical semantics providing an accurate meaning of lan-
guage terms and how they are supposed to behave:

• a denotational semantics [28] mathematically de-
scribes the set of execution traces denoted by the
language;

• an operational semantics [27] describes how the
languages behaves/executes to generate traces.

7

https://github.com/heron-solver/heron

These two semantics have been proved to be equiv-
alent in the Isabelle/HOL proof assistant [29, 30]. This
ensures that the language qualifies for two key proper-
ties:

compositionality The semantic composition of two
models yields the semantics of the supermodel. This
is notably emphasized by the property of stuttering-
invariance which shows that the addition of observation
instants does not “break” a run and preserves specifica-
tion satisfiability.

executability The specification is constructive and
allows the derivation of execution traces. This allows
for trace generation for testing and simulation purposes.

Figure 7: Executing the operational semantics in the Isabelle/HOL

proof assistant

6 Related Work

The aim of our study and its purpose to the avia-
tion community is similar to the goal of the real-time
on-board Fault Detection and Diagnosis introduced by
Goupil et al. [16] but differs in the scope of their study.
Their study focuses on numerical aspects of signals and
emphasizes on the link between academic and industrial
R&D. Our research work aims at bringing new knowl-
edge regarding timed aspects of discrete-event models.

Chhaya et al. [11] introduced the Aviation Sce-
nario Definition Language (ASDL) which provides a

Domain-Specific Language for scenarios of the same
kind of our study. They provide an extensive frame-
work to design aviation-related procedures. On the
mathematical side, specifications consider only logical
time and are translated into finite-state machines which
employ traditional model-checking for verification pur-
poses. Compared to our approach, our language aims at
remaining a general-purpose and multi-level coordina-
tion framework, combined with the ability of specifying
constraints containing chronometric time and physical
quantities.

On a system-oriented level, Lustre/SCADE [17] is
a well-known asset for the development of critical em-
bedded systems. It has been qualified for DO-178B and
is used for specifying flight control systems onboard the
Airbus A340-600 and A380 [6]. Lustre/SCADE con-
siders a unique and global driving clock for all specified
components, whereas our framework allows to specify
independent time islands where no global clock may ex-
ist. Moreover, time in SCADE is purely logical and
does not consider chronometric time. In the problem
we attempt to address, it may be necessary to consider
the latter while designing and specifying real-time sys-
tems. Indeed, time delay constraints are crucial for
closed loop controls of FCSs as time lags may exist due
to computing, latency or storage [6].

Dealing with test oracles [12], our framework right-
fully determines correctness on the outputs of a system.
Indeed, the previously mentioned semantics allows to
exhaustively generate execution traces that are correct
with respect to specifications. The test oracle consists
in filtering out generated branches which no longer sat-
isfy the current outputs. The test oracle detects a vi-
olation whenever all possibly-satisfying branches have
been filtered out.

7 Future Work

The permissive nature of the language allows to leave
time relations between different quantities unspecified
by default. Time related clocks can be gathered and
are said to live in time islands. Leaving them unre-
lated means that they live independently. This feature
is particularly interesting for distributed computing as
it is not always possible to determine how time flows in
one computing unit relatively to another. Yet, it has to
be made sure that any computation is completed even-
tually. A similar synchronization mechanism can be
found, for instance, in the Airbus A380 [34].

8

8 Conclusion

Our study highlights the TESL specification language
as a unified environment for modeling and validation
along the different stages of (1) designing models,
(2) running their simulation, and (3) monitoring their
runtime-compliance. We have presented a case study of
fundamental operational scenarios found in the aviation
industry, with high-level models addressing large-scale
systems. In particular, our language and its associated
high-level specifications are agnostic to concrete hard-
ware implementations, providing a suitable framework
for testing and monitoring systems similarly to black-
box testing. We believe our framework also addresses
the current trend for distributed computing [18] which
is increasingly finding its way in critical embedded sys-
tems.

References

[1] Annex 8 - Airworthiness of Aircraft. International
Civil Aviation Organization, 2018.

[2] Easy Access Rules for Air Operations (Regulation
(EU) No 965/2012). European Union Aviation
Safety Agency, 2019.

[3] Airbus. A318/A319/A320/A321 Flight Crew
Training Manual, 2002.

[4] Airbus. A318/A319/A320/A321 Performance
Training Manual, 2006.

[5] Airbus. Airbus A320 - Front Panel, 2007.

[6] Ameur Y. A, Boniol F, and Wiels V. Toward a
wider use of formal methods for aerospace sys-
tems design and verification. International Jour-
nal on Software Tools for Technology Transfer 12
(2009), 1–7.

[7] André C. Syntax and Semantics of the Clock Con-
straint Specification Language (CCSL). Research
Report RR-6925, INRIA, 2009.

[8] Boulanger F, Hardebolle C, Jacquet C, and Mar-
cadet D. Semantic adaptation for models of com-
putation. In 2011 Eleventh International Confer-
ence on Application of Concurrency to System De-
sign (June 2011), pp. 153–162.

[9] Boulanger F, Jacquet C, Hardebolle C, and Pro-
dan I. TESL: a language for reconciling het-
erogeneous execution traces. In Formal Methods
and Models for Codesign (MEMOCODE), 2014
Twelfth ACM/IEEE International Conference on
(Lausanne, Switzerland, Oct 2014), pp. 114–123.

[10] Cessna Aircraft Company. Cessna Skyhawk Infor-
mation Manual.

[11] Chhaya B, Jafer S, and Durak U. Formal verifi-
cation of simulation scenarios in aviation scenario
definition language (asdl). Aerospace 5, 1 (2018).

[12] Durrieu G, Waeselynck H, and Wiels V. Leto - a
Lustre-based test oracle for airbus critical systems.
In Formal Methods for Industrial Critical Systems
(Berlin, Heidelberg, 2009), D. Cofer and A. Fan-
techi, Eds., Springer Berlin Heidelberg, pp. 7–22.

[13] Eker J, Janneck J. W, Lee E. A, Liu J, Liu X,
Ludvig J, Neuendorffer S, Sachs S, and Xiong
Y. Taming heterogeneity - the Ptolemy approach.
Proceedings of the IEEE 91, 1 (Jan 2003), 127–
144.

[14] Ferrell T. K, and Ferrell U. D. RTCA DO-
178C/EUROCAE ED-12C. In Digital Avionics
Handbook. Taylor & Francis, 2017, pp. 16–1.

[15] Garcia R, and Barnes L. Multi-UAV simulator uti-
lizing X-Plane. Journal of Intelligent and Robotic
Systems 57, 1 (Oct 2009), 393.

[16] Goupil P, Dayre R, and Brot P. From theory to
flight tests: Airbus flight control system TRL5
achievements. IFAC Proceedings Volumes 47,
3 (2014), 10562 – 10567. 19th IFAC World
Congress.

[17] Halbwachs N, Caspi P, Raymond P, and Pilaud
D. The synchronous data flow programming lan-
guage lustre. Proceedings of the IEEE 79, 9 (Sep.
1991), 1305–1320.

[18] Hildenbrand Y. ED-247 (VISTAS) gateway for
hybrid test systems. In SAE Technical Paper (10
2018), SAE International.

[19] Jung D, and Tsiotras P. Modeling and hardware-
in-the-loop simulation for a small unmanned
aerial vehicle. In AIAA Infotech@ Aerospace 2007
Conference and Exhibit (2007), p. 2768.

9

[20] Ladkin P. B. Analysis of a technical description of
the Airbus A320 braking system. High Integrity
Systems 1 (1995), 331–350.

[21] Lee E. A, and Sangiovanni-Vincentelli A. L. The
tagged signal model a preliminary version of
a denotational framework for comparing mod-
els of computation. Tech. Rep. UCB/ERL
M96/33, EECS Department, University of Cali-
fornia, Berkeley, 1996.

[22] Linton J. O. The physics of flight: I. fixed and
rotating wings. Physics Education 42, 4 (2007),
351.

[23] Liu X, Liu J, Eker J, and Lee E. A. Heterogeneous
Modeling and Design of Control Systems. Wiley-
Blackwell, 2005, ch. 7, pp. 105–122.

[24] Livadas C, Lygeros J, and Lynch N. A. High-level
modeling and analysis of the traffic alert and col-
lision avoidance system (TCAS). Proceedings of
the IEEE 88, 7 (July 2000), 926–948.

[25] Mallet F. Clock constraint specification language:
specifying clock constraints with UML/Marte. In-
novations in Systems and Software Engineering 4,
3 (2008), 309–314.

[26] Milner R, Tofte M, and Macqueen D. The Defini-
tion of Standard ML. MIT Press, Cambridge, MA,
USA, 1997.

[27] Nguyen Van H, Balabonski T, Boulanger F, Keller
C, Valiron B, and Wolff B. A symbolic opera-
tional semantics for TESL - with an application to
heterogeneous system testing. In Formal Model-
ing and Analysis of Timed Systems - 15th Interna-
tional Conference, FORMATS 2017, Berlin, Ger-
many, September 5-7, 2017, Proceedings (2017),
pp. 318–334.

[28] Nguyen Van H, Boulanger F, and Wolff B. A
formal development of a polychronous polytimed
coordination language. Archive of Formal Proofs
2019 (2019).

[29] Nipkow T, and Klein G. Concrete Semantics: With
Isabelle/HOL. Springer Publishing Company, In-
corporated, 2014.

[30] Nipkow T, Wenzel M, and Paulson L. C. Is-
abelle/HOL: A Proof Assistant for Higher-order
Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

[31] Pnueli A. The temporal logic of programs. In 18th
Annual Symposium on Foundations of Computer
Science (sfcs 1977) (Oct 1977), pp. 46–57.

[32] Ptolemaeus C, Ed. System Design, Modeling, and
Simulation using Ptolemy II. Ptolemy.org, 2014.

[33] RTCA DO-178C. Software Considerations in
Airborne Systems and Equipment Certification.
RTCA Inc., Washington, D.C., 1992. This docu-
ment is also known as EUROCAE ED-12C in Eu-
rope.

[34] Sánchez-Puebla M. A, and Carretero J. A new ap-
proach for distributed computing in avionics sys-
tems. In Proceedings of the 1st international sym-
posium on Information and communication tech-
nologies (2003), Trinity College Dublin, pp. 579–
584.

[35] Spitzer C, Ferrell U, and Ferrell T, Eds. Digital
Avionics Handbook. Electrical engineering hand-
book series. Boca Raton: CRC Press, 2015.

[36] Traverse P. Airbus electrical flight controls: A
family of fault-tolerant systems. In Digital Avion-
ics Handbook. Taylor & Francis, 2015, pp. 31–1.

[37] Vara Larsen M. E, Deantoni J, Combemale B,
and Mallet F. A behavioral coordination operator
language (BCOoL). In 18th International Con-
ference on Model Driven Engineering Languages
and Systems (MODELS 2015) (Aug. 2015).

[38] Weeks S. Whole-program compilation in MLton.
In Proceedings of the 2006 Workshop on ML (New
York, NY, USA, 2006), ML ’06, ACM, pp. 1–1.

[39] Weibel R. E, and Hansman R. J. Safety considera-
tions for operation of unmanned aerial vehicles in
the national airspace system. Tech. rep., 2006.

[40] Westrick S, Yadav R, Fluet M, and Acar U. A. Dis-
entanglement in nested-parallel programs. Proc.
ACM Program. Lang. 4, POPL (Dec. 2019).

10

	The TESL Language
	The Takeoff Scenario
	Clocks and execution traces
	Causality and Timestamp Relations

	The Autobrake System
	Acceleration and Speed Thresholds
	Rejecting Takeoff with Autobrake
	Simulation

	Towards Hybrid Systems: Accelerate-Stop Distance
	Formal methods
	Testing and Monitoring
	Formalized Semantics

	Related Work
	Future Work
	Conclusion

