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This paper presents a reduced-order modelling strategy for Rayleigh-Bénard convection
of a radiating gas, based on the proper orthogonal decomposition (POD). Direct nu-
merical simulation (DNS) of coupled natural convection and radiative transfer in a cubic
Rayleigh-Bénard cell is performed for an air/H2O/CO2 mixture at room temperature and
at a Rayleigh number of 107. It is shown that radiative transfer between the isothermal
walls and the gas triggers a convection growth outside the boundary-layers. Mean and
turbulent kinetic energy increase with radiation, as well as temperature fluctuations to
a lesser extent. As in the uncoupled case, the large-scale circulation (LSC) settles in
one of the two diagonal planes of the cube with a clockwise or anticlockwise motion,
and experiences occasional brief reorientations which are rotations of π/2 of the LSC in
the horizontal plane. A POD analysis is conducted and reveals that the dominant POD
eigenfunctions are preserved with radiation while POD eigenvalues are increased. Two
POD-based reduced-order models including radiative transfer effects are then derived:
the first one is based on coupled DNS data while the second one is an a priori model based
on uncoupled DNS data. Owing to the weak temperature differences, radiation effects on
mode amplitudes are linear in the models. Both models capture the increase in energy
with radiation and are able to reproduce the low-frequency dynamics of reorientations and
the high-frequency dynamics associated with the LSC velocity observed in the coupled
DNS.
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1. Introduction

It has been soon recognised that radiative transfer can significantly alter thermally
driven flows encountered in atmospheric physics, in astrophysics or in various engineering
applications. The emission and absorption of radiation affect the temperature of a radiat-
ing fluid, which, in turn control the buoyant motion. Water vapour and carbon dioxide are
the most common radiating gases in the infrared and are present in significant quantity
in the atmosphere or in confined environments such as buildings. First studies dedicated
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to radiative transfer effects on natural convection have been focused on the onset of
Rayleigh-Bénard convection (RBC), where a radiating fluid layer is confined between
two horizontal plates, heated from the bottom and cooled from above. Using linear
stability analysis, Goody (1956), followed by Spiegel (1960), have shown that radiative
transfer delays the onset of convection and stabilizes the fluid layer. Two stabilizing
physical mechanisms were highlighted: the decrease of the static temperature gradient in
the core of the layer and the damping of thermal perturbations with radiative transfer.
Though these studies were restricted to a grey fluid (radiative properties independent
of the wavelength), the stabilizing effect of radiation has been further confirmed for real
molecular gases (Bdéoui & Soufiani 1997) and supported by experiments conducted with
ammonia (Gille & Goody 1964) or carbon dioxide (Hutchinson & Richards 1999). The
study of the stability of a radiating fluid layer exposed to a cold radiative background,
which model the atmospheric nocturnal boundary-layer, also shows a delay of the onset
of convection when radiative transfer is taken into account (Prasanna & Venkateshan
2014).

While a substantial research effort has been devoted to understand turbulent RBC and
predict the scaling laws for the Nusselt number (Grossmann & Lohse 2000), the large-
scale organisation of the flow (Brown et al. 2005; Mishra et al. 2011), the turbulence
properties (Lohse & Xia 2010) or the plume dynamics (van der Poel et al. 2015), the
study of radiative transfer effects on RBC at high Rayleigh numbers Ra has received little
attention. The numerical investigation of radiative transfer effects is actually restricted by
the computational time required for solving the radiative transfer equation in a turbulent
participating medium. The radiative intensity Iν(Ω, r, t) varies in a seven-dimensional
space (wavenumber ν, propagation direction Ω, space r and time t): its discretisation
needs to cover all the spatial and temporal scales of the turbulence but also all the
propagation directions of the angular domain and all the wavenumbers of the spectrum.
Experimental investigations are also challenging as non-intrusive measurement techniques
are required when radiation comes into play and as radiating gases are associated with
low thermal conductivities, making harder the insulation of the experimental devices.

Some authors have nevertheless attempted to account for radiative transfer in steady
or weakly turbulent RBC. Lan et al. (2003) explored flow regimes above the onset
of convection (Ra ∼ 103) using three-dimensional (3D) coupled calculations for a
grey radiating fluid. Mishra et al. (2014) also performed two-dimensional (2D) coupled
calculations for a grey participating medium for Rayleigh numbers around 104 and
reported an increase of the number of convective cells with radiation. Radiation effects on
the shape and on the number of large-scale convection rolls have also been observed by
Sakurai et al. (2012) for mixed convection (Ra ∼ 106) using an optically thin model for
radiation. In weakly turbulent regime (106 6 Ra 6 107), the coupled numerical results
obtained by Soucasse et al. (2014a) for a real radiating gas in a a cubic cell show that
radiative transfer significantly increases the kinetic energy of the mean and fluctuating
flows, though the results were obtained within a limited integration time. This convection
intensification with radiation is also noticed in experiments where a lightspot serves as
heat source for an absorbing fluid (Lepot et al. 2018; Bouillaut et al. 2019). Radiation
is found to promote the mixing-length scaling regime as energy transfer is no longer
restricted by the boundary-layers and can influence the flow field in the core of the
cavity. The convection intensification with radiation in weakly turbulent regime seems
to contradict the stabilizing effect described at low Rayleigh numbers. Interestingly, the
same observations have been reported in differentially heated cavities where radiation is
found to promote the turbulence in unsteady regime (Soucasse et al. 2016; Kogawa et al.
2017), while the onset of convection is delayed (Borget et al. 2001). It should be finally
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mentioned that surface-to-surface radiation can also affect RBC as shown for instance
by Czarnota & Wagner (2016) who consider radiative and conductive horizontal plates.

This brief literature review reveals a lack of reference results to understand the
radiation effects on RBC but also a need of simple model able to capture these effects.
Among the different modelling strategies for natural convection flows, reduced-order
models based on proper orthogonal decomposition (POD) are established techniques
that can capture the dynamics of turbulent large-scale flow structures. POD is a modal
decomposition method that extracts a basis of orthogonal spatial modes from a statistical
analysis of sampled flowfield data. POD-based low-order models are then derived using
Galerkin projection of the Navier-Stokes equations onto a reduced set of POD modes,
selected from an energy criterion. Although these models are mainly used to analyse
numerical or experimental data a posteriori in a given configuration, they have been able
to predict flow modifications due to a change in the flow parameters, such as variations
of the turbulence intensity due to additional rates of strain (Lumley & Podvin 1996).
POD has been extensively used to analyse and model natural convection flows (Park
et al. 2004; Verdoold et al. 2009; Bailon-Cuba et al. 2010; Podvin & Sergent 2017).

The goal of this paper is to extend such kind of low-order model to account for
radiative transfer. We have carried out a long term direct numerical simulation (DNS)
of RBC at Ra = 107 in a cubic cell, for a radiating air/H2O/CO2 mixture at room
temperature whose composition is relevant for building applications. Radiative transfer
effects in these conditions have been analysed by comparison with uncoupled DNS results
discussed in a previous study (Soucasse et al. 2019). Two POD-based reduced-order
models including radiative transfer have been derived: the first one is based on coupled
DNS data while the second one is an a priori model based on uncoupled DNS data.
The linearisation of radiation emission (low temperature gradient assumption) is used
to decompose the radiative source term into a sum of modal contributions associated
with each POD temperature eigenfunction. The radiative contribution in the low-order
models is then obtained by projecting this decomposition onto the POD basis. The
problem configuration as well as the numerical methods used to perform the coupled
DNS are given in section 2. Radiative transfer effects are analysed from numerical results
in section 3. Finally, model derivation and model results are discussed in section 4.

2. Direct numerical simulations of coupled natural convection and
radiation

2.1. Problem setup and governing equations

We consider a cubical cavity of size L, heated from below and cooled from above. The
cavity is filled with a radiating air/H2O/CO2 mixture, of molar composition XH2O = 0.02
and XCO2

= 0.001, at atmospheric pressure and at a mean temperature T0 = 300 K.
Top and bottom walls are maintained at uniform temperature Tcold and Thot and the
four lateral walls are assumed to be adiabatic. The six walls are characterised by uniform
grey emissivities ε, the horizontal isothermal walls being black (ε = 1), while the vertical
adiabatic walls being perfectly diffuse reflecting (ε = 0). The problem setup is displayed
in figure 1. The Rayleigh number which controls the flow regime is set to 107 and is
given by Ra = gβ∆TL3/(νfa), where g is the gravitational acceleration, β = 1/T0 is the
thermal expansion coefficient, νf is the kinematic viscosity, a is the thermal diffusivity
and ∆T = (Thot − Tcold) the temperature difference between hot and cold walls. The
Prandtl number is set to 0.707 and is given by Pr = νf/a. Since radiation is treated in
dimensional form, we also need to specify the size of the cavity, which is set to L = 1 m.
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Figure 1. (a) Cubic Rayleigh-Bénard cell filled with a radiating air/H2O/CO2 mixture. Top
and bottom walls are isothermal and black while side vertical walls are adiabatic and perfectly
diffuse reflecting. (b) Absorption coefficient spectrum of the considered air/H2O/CO2 mixture
(atmospheric pressure, T0 = 300 K, XH2O = 0.02, XCO2 = 0.001)

Governing equations under Boussinesq approximation are

∇ · u = 0, (2.1)

∂u

∂t
+ u ·∇u = −∇p+ Pr θ ez +

Pr√
Ra
∇2u, (2.2)

∂θ

∂t
+ u ·∇θ =

1√
Ra

(
∇2θ + Prad

)
, (2.3)

where u = (u, v, w) is the dimensionless velocity vector, p is the dimensionless motion
pressure, θ is the reduced temperature and Prad is the dimensionless radiative power. A
no-slip velocity condition (u = 0) is prescribed on the six walls of the cavity and thermal
boundary conditions are written as follows

θ = 0.5 on z = 0,

θ = −0.5 on z = 1,

∇θ · n = 0 on x = 0, x = 1, y = 0, y = 1

 (2.4)

where x, y and z are the dimensionless Cartesian coordinates. Note that there is no
radiative flux on reflecting adiabatic side walls. Equations (2.1)-(2.3) are made dimen-
sionless using the length of the cavity L, the reference time L2/(a

√
Ra) and the reduced

temperature θ = (T − T0)/∆T , T0 being the mean temperature between hot and cold
walls.

The dimensionless radiative power is given by

Prad(r) =
L2

λ∆T

∫
ν

κν

(∫
4π

Iν(Ω, r)dΩ − 4πI◦ν (T (r))

)
dν, (2.5)

where Iν(Ω, r) is the actual radiative intensity at wavenumber ν, direction Ω and
position r, I◦ν (T (r)) is the Planck equilibrium intensity at temperature T , κν is the
absorption coefficient that is assumed to be uniform owing to the weak temperature
differences and λ is the thermal conductivity. The line-by-line (high resolution) absorption
spectrum of the considered mixture is shown in figure 1. The shape of the spectrum
makes the numerical evaluation of the integration over the wavenumbers in equation (2.5)
computationally expensive. In order to save computational time, the ADF model (Pierrot
et al. 1999) is used: it consists in substituting the integration over the wavenumber with an
integration over the values k of the absorption coefficient, for which a coarse logarithmic
discretisation is sufficient. In the present study, the values of the absorption coefficient
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of figure 1 have been logarithmically discretised in 16 k-classes. With the ADF-model,
the radiative power writes

Prad(r) =
L2

λ∆T

∑
j

kj

(∫
4π

Ij(Ω, r)dΩ − 4wjσT
4(r)

)
, (2.6)

where kj and wj are respectively the absorption coefficient and the weight associated
with the jth k-class and σ is the Stefan-Boltzmann constant. Ij(Ω, r) is the intensity
field associated with the jth k-class and satisfies the radiative transfer equation

Ω ·∇ Ij(Ω, r) = kj

(wjσ
π
T 4(r)− Ij(Ω, r)

)
, (2.7)

and boundary condition

Ij(Ω, r
w) = ε

wjσ

π
T 4(rw)) +

1− ε
π

∫
Ω′·n<0

Ij(Ω
′, rw)|Ω′ ·n |dΩ′, (2.8)

for propagation direction Ω·n > 0, n being the normal at boundary point rw directed
towards the inside of the domain. The accuracy of the present ADF-model has been
shown to be better than 1 % (Soucasse et al. 2012). Model parameters (kj , wj) and
details on the implementation can be found in Soucasse (2013).

It is worth noting that the flow equations are written and solved in dimensionless form,
while radiative transfer equations are treated in dimensional form since we consider an
actual molecular radiating gas. A key parameter for radiation is the optical thickness
τ = kL that varies over several orders of magnitude in our model. Considering a grey
fluid (wavelength-independent absorption, single k value) would facilitate a parametric
study of radiation effects but would fail to represent the behaviour of actual radiating
gases.

Without radiation coupling, the problem satisfies four independent reflection symme-
tries Sx, Sy, Sz and Sd with respect to the planes x = 0.5, y = 0.5, z = 0.5 and
x = y (Puigjaner et al. 2008). These four elementary symmetries generate a symmetry
group of sixteen elements. In unsteady regime, we expect these symmetries to be satisfied
by the time-averaged flow field. Radiation emission being proportional to T 4, radiative
transfer should break the Sz symmetry as the mean temperature gradient is directed
along the z axis. However, owing to the weak temperature gradients (∆T ' 0.1 K for the

conditions specified), non linear effects are negligible (namely 1− 4T 3
0∆T

T 4
hot−T

4
cold
' 3× 10−8)

so that we can consider that the Sz symmetry is still satisfied with radiation.

2.2. Numerical methods

2.2.1. Flow field

Equations (2.1)-(2.3) are solved using a Chebyshev collocation method for the three
dimensions of space (Xin & Le Quéré 2002). The pressure-flow coupling is ensured by
a projection method that force the velocity divergence free condition. Time integration
is performed through a second order temporal scheme combining a Backward Differ-
entiation (BDF2) scheme for the linear terms with an Adams Bashforth extrapolation
of convective terms. This algorithm is implemented for parallel computations applying
domain decomposition along the z-vertical direction (Xin et al. 2008).

The spatial flow mesh is made of 81 Chebyshev collocation points in the x and y
directions and 4×21 Chebyshev collocation points in the z direction (4 spatial domains are
constructed for parallelisation purposes, each discretized with 21 points). The number of
spatial collocation points in the kinetic and thermal boundary-layers (Nu,BL and Nθ,BL)
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is about 10 in the x and y directions and about 6 in the z direction, which is satisfactory
regarding the criterion proposed by Shishkina et al. (2010) (Nu,BL = 0.31Ra0.15 and
Nθ,BL = 0.35Ra0.15 for Pr ' 0.7). The thicknesses of the kinetic and thermal boundary-
layers have been estimated using the correlations provided by the same authors and are
respectively equal to δu/L = 0.027 and δθ/L = 0.031 at Ra = 107. It will be shown in
section 3 that radiation does not affect much the thermal and mechanical boundary-layer
thicknesses in the case studied. The dimensionless flow time step is set to 2.5× 10−3.

2.2.2. Radiation source term

In order to determine the intensity field Ij(Ω, r) and calculate the radiative power (2.6)
that goes into the energy balance (2.3), a ray-tracing algorithm has been implemented.
This approach consists in discretizing uniformly the 4π solid angle domain into a large
number of rays NΩ and approximating angular integrals using∫

4π

Ij(Ω, r) dΩ =
4π

NΩ

NΩ∑
i=1

Ij(Ωi, r). (2.9)

The intensity Ij(Ωi, r) is obtained by solving equation (2.7) along the ray of direction Ωi

ranging from the current point r of abscissa s = 0 to the boundary point rw of abscissa
s = l

Ij(Ωi, r) =

∫ l

0

kjwj
σ

π
T 4(s) exp(−kjs)ds+ Ij(Ωi, r

w) exp(−kj l). (2.10)

The discretization of the spatial integration along the ray in the equation above is easily
achieved using exact intersection calculations between the ray and the Cartesian mesh on
which the temperature field is provided. The intensity field at boundary points, which is
not known because of multiple reflections, is determined iteratively in a first step before
computing the intensity field in the medium at points r. The ray tracing algorithm is
implemented in parallel by distributing the NΩ rays among the different processors.
This method has been validated against the Monte Carlo method and used in coupled
calculations of natural convection and radiation (Soucasse et al. 2012, 2014b, 2016).

The spatial radiation mesh is made of 41 points in each spatial coordinate, obtained
by coarsening the spatial flow mesh by a factor of two in each direction. We have checked
that the use of this coarser grid is sufficient to capture all the spatial structures of the
radiation field. Interpolations are used to get the temperature field on the radiation
mesh and the radiation source term on the flow mesh. The angular mesh is made of
NΩ=900 rays (Nw

Ω=450 rays from boundary points) which yields very good accuracy.
The calculation is carried out for the 16 k-classes of the ADF-model.

An explicit coupling is carried out between flow and radiation calculations. In practice
it is sufficient to update the radiation field every 10 flow time steps: the flow time step
is imposed by numerical stability constraints and does not correspond to significant
variations of the temperature field, so that we can consider the radiation field constant
over this period. Integration of Navier-Stokes equations and radiation equations are
carried out simultaneously in an asynchronous way. Starting from a fluid at u = 0 and
θ = 0, coupled calculations are first carried out over a dimensionless time period of 2,400
in order to reach the asymptotic regime and then continued over a dimensionless time
period of 10,000 to conduct the analysis. The total CPU cost of the coupled simulation
is about 125,000 h (Intel Sandy Bridge E5-4650, 2.7 GHz processors), 97 % of this cost
being spent for radiation computation. In the next section, coupled DNS results will be
compared to uncoupled DNS results, where the gas is considered transparent (Prad = 0).
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Uncoupled results have been integrated over the same time period in the asymptotic
regime and have been discussed in a previous study (Soucasse et al. 2019).

3. Radiative transfer effects

Radiative transfer effects are analysed in this section by comparing coupled DNS results
to uncoupled DNS results. The effects on mean and fluctuating fields are discussed in
section 3.1 and the effects on reorientations are discussed in section 3.2. Then, POD
analysis of the coupled DNS is performed in section 3.3.

3.1. Mean and fluctuating fields

Figures 2 compares results obtained with and without radiation coupling for time-
averaged and fluctuating fields: the mean temperature 〈θ〉, the mean kinetic energy
0.5 〈u〉 · 〈u〉, the mean radiative power

〈
Prad

〉
, the half of temperature variance 0.5 〈θ′θ′〉

and the turbulent kinetic energy 0.5 〈u′ · u′〉, where 〈·〉 denotes the time-average and
′ denotes time fluctuations. These quantities are averaged over horizontal planes and
plotted along the vertical direction. While mean and fluctuating temperature fields
are not much affected by radiation coupling, there is a significant increase of kinetic
energy of both mean and fluctuating velocity fields when coupling with radiation. The
total kinetic energy increase (mean and fluctuating) is about 30 %. The mean radiative
power plot shows that the hot (respectively cold) gas in the lower (resp. upper) half of
the cavity is absorbing (resp. emitting), except in very thin emitting (resp. absorbing)
layer near the hot bottom (resp. cold top) wall. The temperature in the cavity is
thus slightly higher in the lower half of the cavity (slightly lower in the upper half)
allowing a reinforcement of the velocity field that leads to an increase of velocity and
temperature turbulent fluctuations. The increase of temperature fluctuations is however
smaller because radiative transfer tends to damp temperature fluctuations (Soufiani
1991).

A quantity of interest in Rayleigh-Bénard convection is the total energy flux qtot in the
vertical direction which is the sum of the conductive qcond, convective qconv and radiative
qrad energy fluxes

qtot = −∂ 〈θ〉
∂z︸ ︷︷ ︸

qcond

+
√
Ra 〈θw〉︸ ︷︷ ︸
qconv

+
L

λ∆T

〈∑
j

∫
4π

IjΩ · ezdΩ

〉
︸ ︷︷ ︸

qrad

. (3.1)

Averaged in the horizontal plane, this quantity is constant along z because the side
vertical walls are adiabatic. Figure 3 shows the three components of the total energy flux
averaged in time and in the horizontal plane. Flux values at the wall (z = 0, z = 1) and
in the core (z = 0.5) are reported in table 1. For the uncoupled case, we consider that
the gas is transparent (Prad = 0) but that the wall emissivities are the same as in the
coupled case (isothermal walls are black, adiabatic vertical walls are perfectly reflecting).
There is thus a radiative flux qrad exchanged between the two black isothermal walls,
which does not vary with z because the radiation field does not interact with the flow
field (the radiating walls are isothermal).

The conductive flux slightly increases with radiation coupling (the Nusselt number
at the wall is 16.66 with radiation and 16.24 without radiation), both at the wall and
in the core of the cavity. The convective flux however significantly increases in coupled
calculations, especially in the core of the cavity (about 30 %). In the coupled case, there
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Figure 2. From left to right, top to bottom: mean temperature 〈θ〉, mean kinetic energy
0.5 〈u〉 · 〈u〉, mean radiative power

〈
Prad

〉
, half temperature variance 0.5 〈θ′θ′〉 and turbulent

kinetic energy 0.5 〈u′ · u′〉 for coupled (black) and uncoupled (red-dashed) results. Results are
averaged over horizontal planes.

Wall qcond qconv qrad qtot

Coupled 16.66 0 120.82 137.48
Uncoupled 16.24 0 125.05 141.29

Core qcond qconv qrad qtot

Coupled 0.12 21.62 115.77 137.51
Uncoupled 0.08 16.14 125.05 141.27

Table 1. Energy budget at the wall and in the core of the cavity. Wall values are obtained by
averaging top z = 1 and bottom z = 0 wall values. Core values correspond to z = 0.5.

is actually an energy transfer between radiation and convection outside the boundary-
layers: in the lower half of the cavity, the gas absorbs radiation, the radiative flux
decreases with z and the convective flux increases accordingly while in the upper half of
the cavity, the gas emits radiation, the radiative flux increases with z and the convective
flux decreases accordingly. This convection enhancement through radiation is not possible
in the uncoupled case (the radiative flux is constant) where energy transfer is restricted
by boundary-layers near the walls. When considering a participating medium, it can be
noticed that the radiative flux at the wall is smaller (120.79 with radiation coupling
and 125.05 without) because gas absorption reduces the radiative exchange between the
isothermal walls. The total energy flux is thus also weaker in the coupled case. The total
energy flux values at the wall and in the core are consistent although there is a small
imbalance that is due to time averaging.
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Figure 3. Conductive flux qcond, convective flux qconv and radiative flux qrad as defined in
equation (3.1) for coupled (black) and uncoupled (red-dashed) cases. Results are averaged over
horizontal planes.

3.2. Flow reorientations

The unsteady dynamics of the flow in a Rayleigh Bénard cubic cell without radiative
transfer is characterized by low-frequency reorientations of the Large Scale Circulation
(LSC) (Bai et al. 2016; Foroozani et al. 2017; Vasiliev et al. 2019). The LSC is made of a
dominant roll that convects heat from the hot wall to the cold wall and lies in one of the
two diagonal planes x = y or x = 1−y with a clockwise or anticlockwise motion (namely
four quasi-stable states). A reorientation between two quasi-stable states correspond to
a sudden rotation of the LSC of π/2 around the vertical axis. Reorientations can be
monitored with the time evolution of the x and y components of the global angular
momentum with respect to the centre of the cavity r0

L =

∫
(r − r0)× u dr, (3.2)

which is plotted in figure 4 for both coupled and uncoupled calculations. It can be seen
that the coupling with radiation does not change the overall dynamics of reorientations.
Both components Lx and Ly display quasi-stable periods with moderate oscillations
around a mean value separated by abrupt aperiodic sign switches corresponding to
reorientations. The dynamics seems however more chaotic in the coupled case with several
reorientation attempts that are quick passing through a new stable state before returning
to the initial stable state. The coupled case is also characterised by a larger disequilibrium
in the time spent in each of the four quasi-stable flow states. This disequilibrium clearly
appears in the histograms (Lx-Ly) provided in figure 4 with a prevalence of the state
(Lx > 0;Ly < 0) to the detriment of the state (Lx < 0;Ly > 0). In the uncoupled case,
the imbalance between the four states is much weaker. It is also worth noting that the
flow spends more time in the vertical planes x = 0.5 or y = 0.5 (corresponding to Lx = 0
or Ly = 0) in the coupled case compared to the uncoupled case.

The reorientation frequency can be estimated by tracking the zeros of a filtered time
evolution of Lx and Ly to avoid small scale noise. We find a reorientation frequency of
1.65× 10−3 for coupled results and of 1.45× 10−3 for uncoupled results. Reorientations
seem to be more frequent with radiation although there is some uncertainty in the
frequency values given the limited integration time. We can actually infer two competing
mechanisms which may affect reorientations in the coupled case: on the one hand, the
higher rotation velocity of the LSC tends to stabilize the flow around a stable state,
and on the other hand, higher velocity fluctuations tend to promote rotation of the LSC
and reorientation events. Finally, a high frequency is noticeable in the time evolution of
figure 4. It corresponds to the rotation frequency of the LSC. It can be estimated by
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Figure 4. Time evolution of the three components of the angular momentum (left) and
histograms of the x and y components (right). Coupled calculations (top) and uncoupled
calculations (bottom). Time intervals are coloured according to their associated quasi-stable
state.

fc = 1/Tc = 0.0233 in the coupled case using a reference ellipsoid path length 3.85 and
a reference velocity wref = 0.0898. The LSC rotates faster than in the uncoupled case
(fc = 0.0205, wref = 0.0788), this increase of about 13 % being consistent with the global
kinetic energy increase of 30 %.

3.3. POD analysis

A POD analysis of coupled flow results has been carried out. It consists in searching
for a basis of spatial modes or empirical eigenfunctions φn(r) that optimally represent
the flow field U(r, t) = {u, γθ}, where γ is a scaling factor to be specified. These spatial
modes are orthonormal and their amplitude an(t) vary in time. One has

U(r, t) =

∞∑
n=1

an(t)φn(r). (3.3)

The POD modes are hierarchically organised according to their energy content λn and
their amplitudes are statistically uncorrelated, namely 〈an(t)am(t)〉 = λnδnm where δnm
is the Kronecker symbol. The objective is to restrict the decomposition (3.3) to a few
modes with the largest eigenvalues so that the flow dynamics can be analyzed in a low-
order subspace able to capture the most of the energy of the field U(r, t). The POD
spatial modes φn(r) are solution of the following eigenvalue problem (Berkooz et al.
1993) ∫ 4∑

k=1

〈
Um(r, t)Uk(r′, t)

〉
φkn(r′)dr′ = λnφ

m
n (r), (3.4)
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Figure 5. POD eigenspectrum obtained from coupled simulations (left) and POD
eigenspectrum ratio between coupled and uncoupled results (right).

which is solved in practice using the method of snapshots (Sirovich 1987). A statistical set
of 1,000 snapshots U(r, ti) is extracted from the coupled DNS at discrete times ti with
a constant sampling period of 10 dimensionless time units (thus covering the whole DNS
time sequence of 10,000 time units). In order to improve the convergence of the POD
method, we have built an enlarged snapshot set, obtained by the action of the symmetry
group of the problem on the original snapshot set (Holmes et al. 1996). The symmetry
group (including the Sz symmetry see section 2.1) contains 16 elements and this allows
us to multiply the number of snapshots by a factor of 16 to obtain a final snapshot set of
16,000 samples. Finally, the rescaling factor γ used to combine temperature and velocity
field is chosen so that each field has the same energy (Podvin & Le Quéré 2001)

γ2 =

〈∫
u(r, t) · u(r, t) dr∫

θ2(r, t) dr

〉
. (3.5)

Because velocity fluctuations are proportionately larger than temperature fluctuations
in coupled calculations, this factor is greater when coupling with radiation: we obtain
γcoupled = 1.421 and γuncoupled = 1.303. In the following, the POD analysis of coupled
DNS will be compared to the POD analysis of uncoupled DNS discussed by Soucasse
et al. (2019).

The POD eigenvalue spectrum is shown in figure 5. The eigenvalue decay is rather slow
owing to the 3-D and turbulent nature of the flow, even so the first three modes contain
62 % of the total energy. Is also given in figure 5 the ratio between the eigenvalue spectrum
obtained from coupled simulations and the eigenvalue spectrum obtained from uncoupled
simulations. All eigenvalues are higher in the coupled case, with larger eigenvalue ratios
for the low-order modes n 6 20, a minimum value of 1.1 around n = 1000 followed
by a slow increase for the higher-order modes. The shape of the spectrum ratio can
be interpreted if we consider that mode ordering roughly corresponds to a ranking of
the eigenfunctions in terms of a characteristic spatial scale, the low-order modes being
associated with the largest spatial scales and the high-order modes being associated with
the smallest spatial scales. We have seen that radiation-convection energy transfer outside
the boundary-layers reinforces the large-scale flow structures. This supplementary energy
compared to the uncoupled case is transported towards smaller scales of the turbulent
spectrum but is also dissipated because of radiative damping of thermal fluctuations.
Radiative damping rather affects the intermediate spatial scales as molecular diffusion
prevails for the smallest spatial scales, which may explain the decrease of the ratio for
the intermediate modes.
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Figure 6. First seven POD modes φn(r) obtained from coupled simulations with associated
amplitude an(t). Streamlines and iso-surfaces of convective heat flux φθnφ

w
n = 0.25 coloured by

mode temperature. Colourmap for mode temperature ranges from -0.5 (blue) to 0.5 (red).

The first seven POD modes are shown in figure 6, together with their associated
amplitude an(t) in the coupled DNS time sequence. Isovalues of the convective heat
flux φθnφ

w
n coloured by mode temperature, as well as streamlines, are displayed to

highlight the mechanical and thermal structures. A remarkable feature is that these
first seven eigenfunctions are nearly identical to the first seven eigenfunctions obtained
without radiation coupling, although the associated eigenvalues are different. Namely,
the projection matrix P from the POD coupled basis Bcoupled = {φ1,φ2, · · · ,φ7}coupled
onto the POD uncoupled basis Buncoupled = {φ1,φ2, · · · ,φ7}uncoupled is very close to
the identity matrix: we get ‖P − I‖F = 0.052, if ‖ · ‖F denotes the Frobenius norm.
This result will be key for the derivation of an a priori reduced-order model of radiative
transfer effects (see section 4.2.2). We briefly recall below the physical meaning of these
modes.

The first mode corresponds to the mean flow: its amplitude is nearly constant and
oscillates around a mean value aeq1 =

√
λ1. The velocity field is made of two counter-

rotating torus-like structures and the temperature field is vertically stratified from the
bottom hot wall to the top cold wall. Modes 2 and 3 form a pair of degenerated modes:
λ2 = λ3 and φ2(r) and φ3(r) are identical after a rotation of π/2 around the z axis.
They are made of a large-scale single roll around the x axis (mode 2) or the y axis (mode
3) and are referred to as LSC modes. Their time evolution is correlated with the x and y
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Figure 7. Histogram of the filtered amplitude af5 in the uncoupled and coupled DNS; the
amplitudes are filtered with a moving average of 100 dimensionless time units

components of the angular momentum (see figure 4) and displays aperiodic sign switches
(reorientations) between two quasi-stable states where the amplitude oscillates around
a mean value aeq2/3 = ±

√
λ2/3. Modes 2 and 3 have therefore to be combined to form

the quasi-stable diagonal states observed in the simulation. Mode 4 is an 8-roll mode
that transports fluid from one corner to the other and strengthens the circulation along
the diagonal. Its time evolution is correlated with the product a2(t)a3(t) and displays
abrupt sign switches around equilibrium values aeq4 = sgn(aeq2 a

eq
3 )
√
λ4. Its sign actually

indicates the diagonal plane of the LSC: a4 > 0 means the LSC lies in the plane x = 1−y;
a4 < 0 means the LSC lies in the plane x = y. Modes 5 and 6 form another pair
of degenerated modes and are referred to as boundary-layer modes. They are made
of two longitudinal co-rotating structures around the x axis (mode 5) or the y axis
(mode 6) and connect the core of the cell with the horizontal boundary-layers. Modes 2
and 5 (respectively modes 3 and 6) possess the same symmetries and strongly interact
together. Although the time evolution of amplitudes a5(t) and a6(t) seems noisy and
chaotic, a moving average over 90 dimensionless time units shows a non-zero equilibrium
contribution during quasi-stable states, with sign switches during reorientations such
that sgn(aeq5/6) = − sgn(aeq2/3). As figure 7 shows, this contribution is much lower than the

standard deviation aeq5/6 = ±η
√
λ5/6, in the uncoupled case (an estimated value of η was

about 0.2), but it is higher in the coupled case, with a value of η = 0.35. This means that
the connection between the roll and the boundary layer modes is much stronger in the
coupled case. Finally, mode 7 is a corner-roll mode which favours planar LSC (in planes
x = 0.5 or y = 0.5) rather than diagonal LSC (in planes x = y and x = 1− y). It has a
destabilizing effect on the quasi-stable states, although its temporal evolution does not
show any specific pattern during reorientations.

A last comment can be made regarding the thermal or mechanical nature of the POD
eigenfunctions. Though temperature and velocity fields have been combined to perform
the POD analysis, the mechanical and thermal weight associated with each POD mode
φn = {φun, γφθn} can be retrieved according to

‖φn‖2 = ‖φun‖2 + γ2‖φθn‖2 = 1. (3.6)

Table 2 shows that the relative energy weights ‖φun‖2 and γ2‖φθn‖2 are not the same
for each mode. Mode 1, which possesses the mean thermal stratification, is a thermal
mode while modes 2 to 7 are rather mechanical modes. One can also notice that the
POD mode ranking would differ if one uses a mechanical energy criterion (λn‖φun‖2) or a
thermal energy criterion (λnγ

2‖φθn‖2). This has been further confirmed by performing a
separate POD analysis of velocity and temperature fields: the same dominant structures
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Mode n 1 2,3 4 5,6 7
λn 2.0×10−2 7.1×10−3 8.5×10−4 5.3×10−4 4.8×10−4

‖φun‖2 0.13 0.76 0.82 0.69 0.64
γ2‖φθn‖2 0.87 0.24 0.18 0.31 0.36

Table 2. Thermal and mechanical content of the first seven POD eigenfunctions given by
partial norms ‖φu‖2 and γ2‖φθ‖2.

are obtained but they are not ranked exactly in the same way compared to the combined
case.

To sum up, POD analysis shows that the combined mechanical and thermal fluctuating
energy increases, and that the ratio of mechanical to thermal energy increases in the
presence of radiation, although the POD most energetic structures are not significantly
modified.

4. Reduced-order modelling

4.1. POD-based model with radiative terms

A POD-based reduced-order mode including radiation effects can be derived using
Galerkin projection of momentum and energy balance with radiation (2.2)-(2.3) onto a
POD basis set. Using decomposition (3.3) this yields a system of ordinary differential
equations of the form

dan(t)

dt
= (LBnm + LDnm + LRnm) am(t) +Qnmp am(t)ap(t) + Tn(t), (4.1)

where LBnm, LDnm and LRnm are linear contributions associated with buoyancy, diffusion
and radiation respectively, Qnmp are quadratic contributions associated with advection
of momentum and energy (definitions of these quantities are provided in appendix B).
Tn(t) is a closure term for taking into account the effect of the truncation.

4.1.1. Radiative terms

Radiative transfer effects can be considered as a linear contribution owing to the weak
temperature differences. The radiative emission in kjwjσT

4/π in the radiative transfer
equation (2.7) can be linearised around the mean temperature T0. Because the radiative
transfer equation is linear, we can then use the superposition principle and write the
radiative intensity as a sum of partial intensities associated with each term of the POD
decomposition of the temperature field. We are therefore able to define a modal-radiative
power Prad

n (r), corresponding to the radiative response to a temperature eigenfunction
φθn(r) and such that

Prad(r, t) =
∑
n

an(t)Prad
n (r). (4.2)

Details of the derivation of this modal-radiative power are given in appendix A. Figure 8
shows the modal-radiative power Prad

n associated with the first seven modes. It is
worth noting that Prad

n possesses the same symmetries as the associated temperature
eigenfunction φθn. Once Prad

n is determined, the radiation matrix LR can be computed
according to

LRnm =

∫
γ2√
Ra
Prad
m (r)φθn(r)dr. (4.3)
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Figure 8. Isovalues of modal-radiative power Prad
m (r) = ±2.5 for the first seven modes.

Values of the coefficients are reported in appendix B for the coupled temperature
eigenfunctions φθn(r) presented in section 3.3. The radiation matrix is essentially diagonal
with two off-diagonal terms corresponding to a linear coupling between modes 2 and 5,
and between modes 3 and 6 (these pairs of modes possess the same symmetries). The
coefficients LRnm have the same sign as the coefficients LDnm of the diffusion matrix, which
means that radiation will affect the reduced-order model as molecular diffusion does, and
are such that LRnm ∼ 0.1LDnm (except for LR11).

4.1.2. Closure

Following Podvin & Sergent (2015), the closure term is modelled as an equivalent
dissipation term, expressed as a combination of linear and cubic terms, and by the
addition of noise such that

Tn(t) = LAnm

1− 1

〈k〉
∑
p>2

|ap(t)|2
 am(t) + ε(t), (4.4)

where LAnm is an adjustable parameter, 〈k〉 is the temporal average of the energy of the
fluctuating modes in the truncation and ε(t) is a random noise perturbation of amplitude
σ. If the coefficients LAnm are not known before-hand, it is possible to determine them
from the observed dynamics, as was done in Soucasse et al. (2019). We will get back
to this point in section 4.2.1. Assuming that the closure law derived without radiation
remains valid in the presence of radiation, the final form of the model is thus

dan(t)

dt
=

LTnm − LAnm
〈k〉

∑
p>2

|ap(t)|2
 am(t) +Qnmp am(t)ap(t) + ε(t) (4.5)

where LT = LB + LD + LA + LR denotes the total linear contribution.
In Soucasse et al. (2019) we derived a POD-based dynamical system to describe the

evolution of the amplitudes of the largest POD modes in the same configuration in the
absence of radiation. This previous model will be referred to as no-radiation model in
the remainder of the paper. In the following, we develop two different models including
radiation effects.
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no-radiation model
LMnm m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
n = 2 -0.044 0.043
n = 3 -0.044 0.043
n = 4 -0.136
n = 5 -0.028 -0.143
n = 6 -0.028 -0.143
n = 7 -0.068

observed model
LMnm m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
n = 2 -0.043 0.024
n = 3 -0.043 0.024
n = 4 -0.187
n = 5 -0.030 -0.120
n = 6 -0.030 -0.120
n = 7 -0.047

Table 3. Time-average of the unresolved terms LM = LA(1−
∑7
n=2 λn/ 〈k〉) in the model

left) without radiation right) with radiation.

• The first model, called the observed model, is developed from direct observation of
the DNS with radiation. Parameters LB , LD, LR and Q are computed from coupled
POD eigenfunctions and parameter LA is adjusted based on the known amplitude of the
modes at equilibrium (see section 4.2.1).
• The second model, called the predicted model, represents an a priori attempt to

predict radiative transfer effects from uncoupled DNS data. Parameters LB , LD, Q and
LA are taken from the no-radiation model (Soucasse et al. 2019) and parameter LR is
computed from uncoupled POD eigenfunctions (section 4.2.2).

We actually restrict the expansion to the first seven modes and take the first mode
(mean flow) as constant so that the dimension of the reduced-order model is equal to six.

4.2. Observed and predicted models

4.2.1. Observed model

To determine the adjustable parameters LAnm of the observed model, we use information
about the POD amplitudes extracted from the DNS with radiation. Namely, we require
that the diagonal states be fixed points of the dynamical system aeqn , which leads to
a balance between the global linear contribution and the quadratic terms. Equilibrium
values are taken such that aeq1 =

√
λ1, aeq2/3 = ±

√
λ2/3, aeq4 = sgn(aeq2 a

eq
3 )
√
λ4, aeq5/6 =

− sgn(aeq2/3) η
√
λ5/6, aeq7 = 0, where η = 0.35. The values of the time averaged closure

terms are given in table 3. The values are close to those obtained in the case without
radiation, except for an increase in mode 4. This suggests that the nature of energy
transfer from large scales to small scales remains unaffected. The other parameters of the
observed model (LBnm, LDnm, LRnm and Qnmp) are directly computed from coupled POD
eigenfunctions and values are reported in appendix B.

In order to estimate the effect of the truncation of the radiation term
∑
m L

R
nmam(t)

in the model (4.5), we have computed the following radiation truncation error

en =
‖ γ2

√
Ra

∫
Prad(r, ti)φ

θ
n(r)dr −

∑7
m=1 L

R
nmam(ti)‖

‖ γ2
√
Ra

∫
Prad(r, ti)φθn(r)dr‖

(4.6)

where Prad(r, ti) is the radiative power of snapshot i at discrete time ti, am(ti) is the
associated POD coefficient extracted from the DNS, and the norm is defined such that
‖f(ti)‖ =

√∑
i f(ti)2. This quantity is equal to 0.13, 0.28, 0.20 and 0.31 for modes 2/3,

4, 5/6 and 7 respectively, showing that the radiation contribution of unresolved scales
is small but not negligible. This is not surprising given that the first seven modes only
contain 60% of the total energy. We can however infer that the form of the closure law still
holds, given that radiation acts as a dissipation term in the model. We will thus assume
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that the effect of the truncation of the radiation term is captured by the adjustable
parameter LA.

4.2.2. Predicted model

The second model attempts to predict the change in the energy level of the modes
directly from the uncoupled simulation results and the computation of the radiation
terms. We assume that the eigenfunctions are the same as in the uncoupled case, that
the modelled terms do not change and that the value of γ is not modified. The only
modification of the model is therefore due to the radiative terms which are computed
from the uncoupled POD eigenfunctions.

Let r0i be the equilibria in the uncoupled case. Owing to the symmetry between x and

y, it is sufficient to consider the fixed point r02 = r03 =
√
λ02/3, r05 = r06 = −η

√
λ05/6

(η = 0.2), r04 =
√
λ04, where λ0n denotes the uncoupled POD eigenvalue of mode n. In the

uncoupled case at equilibrium, we can derive the following relations for modes 2/3, 5/6
and 4

LB22 + LD22 + LM22 +Q212r
0
1 +Q234r

0
4 = 0, (4.7)

LB52 + LD52 + LM52 +Q512r
0
1 +Q534r

0
4 = 0, (4.8)

(LB44 + LD44 + LM44 +Q414r
0
1)r04 +Q423(r02)2 + 2Q425r

0
2r

0
5 +Q456(r05)2 = 0, (4.9)

where LM = LA(1 −
∑7
n=2 λn/ 〈k〉) is the equilibrium (time-averaged) closure term in

the no-radiation model (see table 3) and parameters LB , LD and Q are computed from
uncoupled POD eigenfunctions. Note that in equations (4.7) and (4.8) associated with
modes 2 and 5, we assume that diagonal and off-diagonal linear contributions are balanced
independently.

We now determine how inclusion of the radiation term leads to changes in the energy
of the modes at equilibrium. The unknown equilibria in the radiatively coupled case are
denoted r1, r2, r3 = r2, r4, r5, r6 = r5, r7 = 0. The predicted equilibrium relations with
radiation write

LB22 + LD22 + LR22 + LM22 +Q212r1 +Q234r4 = 0, (4.10)

LB52 + LD52 + LR52 + LM52 +Q512r1 +Q534r4 = 0, (4.11)

(LB44 + LD44 + LR44 + LM44 +Q414r1)r4 +Q423r
2
2 + 2Q425r2r5 +Q456r

2
5 = 0. (4.12)

Subtracting the two systems, equation by equation, one obtains

Q212r1 +Q234r4 = −LR22 +Q212r
0
1 +Q234r

0
4, (4.13)

Q512r1 +Q534r4 = −LR52 +Q512r
0
1 +Q534r

0
4, (4.14)

Q414r1r4 +Q423r
2
2 + 2Q425r2r5 +Q456r

2
5

= −LR44r4 +Q414r
0
1r

0
4 +Q423(r02)2 + 2Q425r

0
2r

0
5 +Q456(r05)2. (4.15)

Equations (4.13) and (4.14) can be solved directly for r1 and r4. We obtain new values
of 0.1578 and 0.028, representing increases of 22% and 14%. Equation (4.15) involves r2
and r5, which are both unknown. We note that it displays a quadratic dependence of
r2 with respect to r4. Moreover, in the uncoupled DNS (also in the coupled DNS), the
amplitude of mode 4 is very well correlated with the product a2a3 (with a correlation
coefficient larger than 0.9), so that a4 ∼ Ca2a3. We use this empirical relationship to
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Mode n 1 2, 3 4 5, 6 7√
λ0
n (uncoupled DNS) 0.127 0.067 0.024 0.017 0.0165√
λn (coupled DNS) 0.141 (12%) 0.085 (25%) 0.029 (17%) 0.023 (29%) 0.022 (33%)√
λpn (predicted) 0.154 (22%) 0.071 (7%) 0.028 (14%) 0.020 (15%) N/A

Table 4. Amplitudes of the POD eigenvalues λ0
n and λn in the uncoupled and coupled

simulations and predicted energies λpn. The value of λp5 is extrapolated from r5 using
λp5 = λ0

5(r5/r
0
5)2. The relative increase with respect to the uncoupled case is indicated in

parentheses.

estimate the increase in r2 such that

r2 = r02

√
r4
r04
, (4.16)

then solve equation (4.15) for r5. We obtain an increase of 7% for r2 and of 15% for
r5. The values of the predicted energies λpn are reported in table 4. An estimate of the
energy of POD mode 5, λp5, was made from the new equilibrium value r5 by assuming
that η remains constant, so that λp5 = λ05(r5/r

0
5)2. Another estimate will be provided

by integration of the predicted model (see section 4.3). The model therefore predicts an
increase in the energy of all the modes which is of the order of that observed in the
simulation, with an overprediction of the mean mode and an underprediction of the roll
modes.

4.3. Time integration

All models were integrated for a given noise level σ over 100,000 dimensionless time
units. The noise signal was the same for all models, but the noise intensities were different.
In the no-radiation model, the noise level was σ0 = 1.2 × 10−3. In the observed model,
the noise level is determined from the total energy level in the unresolved modes i.e.

σ

σ0
=

∑
n>7 λn∑
n>7 λ

0
n

∼ 1.22. (4.17)

The observed model was therefore integrated for relative noise levels σ/σ0 of 1.2 and
1.3. In the predicted model, the noise level is estimated from the new energy level of the
resolved modes. Since the transfer to the unresolved scales is assumed to be the same (it
is of the form LMa, where LM does not change), the noise level was therefore determined
using

σ

σ0
=

√∑
n66 λ

p
n∑

n66 λ
0
n

∼ 1.17. (4.18)

Results for the predicted model are shown for values of σ/σ0 of 1.1 and 1.2.
Histories for POD amplitudes a2, a3 and a4 in the observed and predicted models

are displayed in figure 9 for the first 10,000 dimensionless time units. It can be seen
that the overall dynamics of the coupled simulation (see figure 6) is fairly reproduced:
the system spends long time near equilibrium values and experiences fast reorientations
(sign switch of either a2 or a3); the time evolution of a4 is well correlated with the product
a2a3. The energy of the amplitudes integrated with the different models are reported in
table 5. Results for the predicted and the observed models are in good agreement with
the simulation (table 4), except for mode 7, the last mode in the truncation, which is
overestimated. However, the relative increase in mode 7 appears to be relatively well
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Figure 9. Time evolution of the amplitudes a2, a3, a4 from left to right; top row: observed
model (σ = 1.2σ0); bottom row: predicted model (σ = 1.2σ0).

Mode n 1 2, 3 4 5, 6 7√
〈a2n〉 (observed, σ = 1.2σ0) 0.141 0.074 0.029 0.023 0.052√
〈a2n〉 (observed, σ = 1.3σ0) 0.141 0.073 0.030 0.023 0.053√
〈a2n〉 (predicted, σ = 1.1σ0) 0.154 (22%) 0.062 (6%) 0.024 (12%) 0.015 (20%) 0.045 (15%)√
〈a2n〉 (predicted, σ = 1.2σ0) 0.154 (22%) 0.061 (5%) 0.021 (9%) 0.016 (27%) 0.047 (15%)√
〈a2n〉 (no-radiation, σ = σ0) 0.127 0.057 0.019 0.013 0.040

Table 5. Amplitudes of the POD coefficients in the different models. The percentages for the
predicted model are expressed relatively to the no-radiation model.

predicted by the observed model (+30% compared to the no-radiation model) as well
as by the predicted model (+15%). The time-averaged energy of the first seven POD
modes increases by 37% in the DNS due to radiative coupling. It increases by 42% in
the observed model and by 37% in the predicted model compared with the no-radiation
model. However, individual amplitudes in the predicted model are not as close to the
coupled DNS values as those of the observed model. We note that for all models, the
amplitudes of the roll modes a2/3 tend to decrease as the noise level increases, while
those of the boundary layer modes 5 and 6 tend to increase.

Figure 10 compares the symmetrized phase portraits of the DNS and the models in
the (a2, a3) space. Despite the strong similarity, some differences can be noticed between
the uncoupled and coupled simulations, as the system spends more time away from
the equilibria in the coupled case. This trend is reproduced by the models, as the size
of the high probability regions is larger in the observed and predicted models than in
the no-radiation model. Once again, the phase portraits of the observed model are in
closer agreement with the DNS than those of the predicted model. Figure 11 compares
the histogram of the POD amplitude of the 5th mode in the models. We note that the
observed model displays the wider distribution which was observed in the DNS (see
figure 7), while the predicted model is not able to reproduce this behaviour.

4.4. Time scales

Measures of the average time between reorientations Tn, defined as the mean times
between zeros of an after application of a moving-average filter of 5 Tc, are reported in
table 6. The models reproduce the order of magnitude of Tn observed in the simulations
and the moderate increase in the reorientation rate when compared with the no-radiation
model. Although the values of Tn reported in the table correspond to one particular
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Figure 10. Symmetrized phase portraits of the system; top row, from left to right: coupled
DNS, observed model (σ = 1.2σ0), predicted model (σ = 1.2σ0); bottom row, from left to right:
uncoupled DNS, no-radiation model (σ = σ0).

Figure 11. Histogram of the filtered model amplitude af5 : no-radiation model (top, σ = σ0),
predicted model (middle, σ = 1.2σ0), observed model (bottom, σ = 1.2σ0). A moving average
of 100 time units has been applied.

integration of the models, we checked that the order of magnitude did not change over
several integrations of the models with different noise signals.

Figure 12 compares the cumulated spectrum of the fluctuating energy of the first seven
POD modes for the different models and the DNS. These fluctuations represent 9-10%
of the mean value for all models and simulations with and without radiative coupling.
We can see that the effect of radiation in the DNS is to increase the energetic content
across the spectrum, for low and high frequencies. The fluctuations also increase over a
wide range of frequencies in both models. However, the increase is less marked at low
frequencies, in particular for the predicted model, for which no increase is detected below
the frequency f ∼ 0.002. A 15% increase (compared with 50% in the simulation) is noted
for the models at frequencies below fc/2 = 0.011, where Tc = 1/fc corresponds to the
recirculation time associated with fast oscillations of the large-scale circulation. In the
range centred around this frequency [fc/2, 2fc], the increase is respectively 23% in the
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Mode n 2 3 4
Tn (uncoupled DNS) 1258 1516 703
Tn (coupled DNS) 1061 1412 586
Tn (no-radiation, σ = σ0) 1330 1400 860
Tn (observed, σ = 1.2σ0 ) 1455 1535 610
Tn (observed, σ = 1.3σ0 ) 1090 1255 585
Tn (predicted, σ = 1.1σ0) 1300 1354 740
Tn (predicted, σ = 1.2σ0) 993 1064 712

Table 6. Inter-switch periods observed in the simulation and predicted by the different models.
The inter-switch period Tn is defined as the mean average time between two zeros of an provided
that the time is larger than 5Tc where Tc corresponds to the high frequency in the simulation
(note that this is a slightly different definition from our previous study (Soucasse et al. 2019)).
Values given for the models are rounded off to each 5 units.

Figure 12. Cumulated spectra of the fluctuations of the POD energy ePOD(t) =
∑7
n=1 an(t)2

in the DNS (left) and in the models (right). The noise level is σ = σ0 in the no-radiation model
and σ = 1.2σ0 in the observed and predicted models.

n 1,2 3 4,5 6
ωn (no-radiation) −0.009± 0.0543i -0.088 −0.137± 0.195i -0.045
ωn (observed model) −0.010± 0.0585i -0.084 −0.154± 0.208i -0.054
ωn (predicted model) −0.007± 0.0591i -0.085 −0.136± 0.209i -0.049

Table 7. Eigenvalues of the linearised model around the equilibria.

DNS, while it is about 30% for the predicted model and 40% for the observed model.
Over the full frequency range, the increase in the fluctuations is 34% in the DNS, while
it is 19% for the predicted model and 24% for the observed model (see figure 12).

Further insight into the dynamics of the model can be provided by linear stability
analysis around the equilibria. As seen in Soucasse et al. (2019), the equilibria are stable
but can be destabilized in the presence of noise due to the existence of a weakly stable
direction, corresponding to the least stable pair of eigenmodes. In particular, a connection
can be established between high frequencies in the model and the imaginary part of
the least stable pair of eigenvalues. Table 7 shows that in the observed and predicted
models the least stable pair of eigenvalues has an imaginary part of 0.0585 and 0.0591
respectively, compared with 0.0543 for the case without radiation, which corresponds
to relative increases of 8% and 9% respectively, to be compared with the value of 13%
observed in the simulation.

To sum up, the observed model is able to reproduce energy levels, higher LSC reorien-
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tation rates, faster oscillation times, and qualitative changes in the statistics of the POD
amplitudes due to radiative coupling. The predicted model, which is exclusively based
on uncoupled data, is not as accurate as the observed model but is still able to predict
an increase in the energy of the modes and a higher LSC reorientation rate.

5. Conclusion

DNS of coupled natural convection and thermal radiation has been performed in a cubic
Rayleigh Bénard cell at Ra = 107 for an air/H2O/CO2 mixture at room temperature.
Results show that radiation strengthens the convection, increases the kinetic energy of the
flow and, to a lesser extent, increases the temperature fluctuations. In addition, radiation
alters the reorientation dynamics of the LSC: the reorientations seem to be more frequent
and the flow spends more time outside the four quasi-stable flow states. A POD analysis
reveals that compared to the uncoupled case, the first POD eigenfunctions are preserved
while POD eigenvalues are increased when radiation is considered.

In order to capture these effects, a POD-based reduced-order modelling strategy has
been proposed. The approach extends standard POD modelling of Navier-Stokes equation
by the addition of a radiation term in the model. This radiation term is obtained from
a rigorous projection of the radiative power onto the POD basis set. The linearisation
of radiation emission (consistent with Boussinesq approximation) is used to decompose
the radiative power into a sum of modal contributions. From this approach, two models
have been considered. The first one is based on eigenfunctions and eigenvalues computed
from the radiatively coupled DNS. This observed model is able to reproduce the change
in dynamics associated with the coupling, in particular higher reorientation rates and
faster oscillations for the LSC. The second model is derived from POD results obtained
for the uncoupled case. This predicted model is able to foresee some of the increase in the
energy levels due to the effect of radiation. It also predicts a higher reorientation rate,
in good agreement with the observations made from the simulation. The study shows
that the POD-based reduced-order modelling approach is not only able to reproduce the
changes in dynamics due to moderate radiative coupling, but that it can also predict
them, at least in part.

To the best of our knowledge, this is the first time a POD-based low order model for nat-
ural convection is derived taking into account radiation effects. Although we have studied
a particular configuration (given Rayleigh number, given radiating species concentration,
etc.), the proposed methodology is applicable to any coupled natural convection-radiation
problem under Boussinesq approximation. The validity and accuracy of the predicted
approach of radiation effects from uncoupled data is not guaranteed for large changes in
radiation parameters. However, this predicted approach can be used as an exploratory
tool, to investigate the influence of radiative transfer at low computational cost.
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Appendix A. Derivation of the modal-radiative power

This appendix details the derivation of the modal-radiative power Prad
n introduced in

section 4.1.1. Owing to the weak temperature gradients, the power fourth temperature
field can be linearised around the mean temperature T0 and the POD decomposition of
the temperature field can be introduced

T 4(r, t) ' T 4
0 + 4T 3

0∆T
∑
n

an(t)φθn(r). (A 1)

Because of the linearity of the radiative transfer equation (equation (2.7)), the radiative
intensity field Ij(Ω, r) can be decomposed similarly

Ij(Ω, r, t) =
wjσ

π
T 4
0 +

wjσ4T 3
0∆T

π

∑
n

an(t)ψθj,n(Ω, r), (A 2)

where ψθj,n(Ω, r) is a modal-intensity field for the jth k-class, associated with POD mode

temperature field φθn(r) and satisfying the following transport equation

Ω ·∇ ψθj,n(Ω, r) = kj
(
φθn(r)− ψθj,n(Ω, r)

)
, (A 3)

and boundary condition for Ω · n > 0

ψθj,n(Ω, rw) = εφθn(rw)) +
1− ε
π

∫
Ω′·n<0

ψθj,n(Ω′, rw)|Ω′ ·n |dΩ′. (A 4)

Once equations (A 3)-(A 4) are solved for each k-class using the ray-tracing algorithm
detailed in section 2.2, one can compute a modal-radiative power associated with the nth

POD mode

Prad
n (r) =

L2

λ

σ4T 3
0

π

∑
j

kjwj

(∫
4π

ψθj,n(Ω, r)dΩ − 4πφθn(r)

)
, (A 5)

and the radiation matrix, as defined in equation (4.3). The total radiative power is
then the sum of all modal-radiative powers, weighted by the associated POD coefficient
(equation (4.2)).

Appendix B. Model parameters

This appendix provides model parameters LD, LB , LR and Q, defined by

LBnm =

∫
Pr φmθ φ

n
3 dr, (B 1)

LDnm =

∫ [
Pr√
Ra

∂2φmi
∂xj∂xj

φni +
γ2√
Ra

∂2φmθ
∂xj∂xj

φnθ

]
dr, (B 2)

LRnm =

∫
γ2√
Ra
Prad
m (r)φθn(r)dr, (B 3)

Qnmp =

∫ [
−φpj

∂φmi
∂xj

φni − γ2φ
p
j

∂φmθ
∂xj

φnθ

]
dr. (B 4)

LB , LD and LR are linear contributions in the model arising from Galerkin projection
of buoyancy term, diffusion terms and radiative term in equations (2.2)-(2.3) onto the
POD basis. Similarly, Q is a quadratic contribution in the model arising from Galerkin
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LDnm m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
n = 1 0.17
n = 2 -0.09 0.03
n = 3 -0.09 0.03
n = 4 -0.15
n = 5 0.03 -0.09
n = 6 0.03 -0.09
n = 7 -0.17

LBnm m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
n = 1 0.04
n = 2 0.12 -0.08
n = 3 0.12 -0.08
n = 4 0.08
n = 5 0.03 0.08
n = 6 0.03 0.08
n = 7 0.11

LRnm m = 1 m = 2 m = 3 m = 4 m = 5 m = 6 m = 7
n = 1 0.003
n = 2 -0.008 0.005
n = 3 -0.008 0.005
n = 4 -0.009
n = 5 0.005 -0.013
n = 6 0.005 -0.013
n = 7 -0.018

Table 8. Linear diffusion matrix (top left), linear buoyancy matrix (top right) and linear
radiation matrix (bottom) computed from coupled POD eigenfunctions. Entries below 10−5

are left empty.

projection of advection terms in equations (2.2)-(2.3) onto the POD basis. More details
on the derivation of these terms can be found for instance in Podvin & Le Quéré (2001).

In the observed model, these quantities are determined from coupled POD eigenfunc-
tions, and values are reported in tables 8 and 9. In the no-radiation model and in the
predicted model, these quantities are determined from uncoupled eigenfunctions; values of
parameters LD, LB and Q can be found in Soucasse et al. (2019) and values of parameter
LR (for the predicted model only) are given in table 10. Uncoupled POD eigenfunction
and coupled POD eigenfunctions being very similar, differences in parameter values are
mostly due to differences in the value of γ that increases when coupling with radiation.
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Xin, S., Chergui, J. & Le Quéré, P. 2008 3D spectral parallel multi-domain computing for
natural convection flows. In Parallel Computational Fluid Dynamics, pp. 163–171.

Xin, S. & Le Quéré, P. 2002 An extended Chebyshev pseudo-spectral benchmark for the 8:1
differentially heated cavity. Int. J. Heat Mass Transfer 40, 981–998.


