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Abstract: Many problems in medical image reconstruction and machine learning can be formulated
as nonconvex set theoretic feasibility problems. Among efficient methods that can be put to work
in practice, successive projection algorithms have received a lot of attention in the case of convex
constraint sets. In the present work, we provide a theoretical study of a general projection method
in the case where the constraint sets are nonconvex and satisfy some other structural properties.
We apply our algorithm to image recovery in magnetic resonance imaging (MRI) and to a signal
denoising in the spirit of Cadzow’s method.

Keywords: cyclic projections; nonconvex sets; uniformly convex sets; strong convergence

1. Introduction

1.1. Background and Goal of the Paper

Many problems in applied mathematics, engineering, statistics and machine learning can be
reduced to finding a point in the intersection of some subsets of a real separable Hilbert space H.
In mathematical terms, let (Si)i∈I be a finite family of proximinal subsets (i.e., sets S such that any
x ∈ H admits a closest point in S) [1] ofH with a non-empty intersection, we address the problem of
finding a point in the intersection of the sets (Si)i∈I using a successive projection method.

When the sets are closed and convex, the problem is known as the convex feasibility problem,
and is the subject of extensive literature; see [2–5] and references therein. In this paper, we take one step
further into the scarcely investigated topic of finding a common point in the intersection of nonconvex
sets. Convex feasibility problems have been applied to an extremely wide range of topics in systems
analysis and control, signal and image processing. Important examples are: model order reduction [6],
controller design [7], tensor analysis [8], image recovery [9], electrical capacitance tomography [10],
MRI [11,12], and stabilisation of quantum systems and application to quantum computation [13,14].

Extension of this problem to the nonconvex setting also has many applications, related to
sparse estimation and more specifically low rank constraints, such as in control theory [15], signal
denoising [16], phase retrieval [17], structured matrix estimation [18,19] and has great potential
impact on the design of scalable algorithm in many machine learning problems such as Deep Neural
Networks [20]. Studies of projection methods in the nonconvex settings have been quite scarce in the
literature [21–23] and a lot of work still remains to be done in order to understand the behavior of such
methods for these difficult problems.
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In the present paper, our goal is to investigate how the results in [22] can be improved in such
a way that strong convergence can be obtained. The results proved in [22] make the assumption
that the sets involved in the feasibility problem can be written as a possibly not countable union
of closed convex sets, and one of the sets is boundedly compact. Our study will be based on the
assumption that the convex sets in the family are uniformly convex, which allows to remove the
boundedly compactness assumption. As will be seen in Section 4, uniform convexity can be obtained
by simply modifying the algorithm even in the case where the sets Si are not expandable into a family
of uniformly convex sets.

1.2. Preliminary on Projections and Expansion into Convex Sets

The notation Card will denote the cardinality of a set. H will denote a real separable Hilbert space
with scalar product 〈· | ·〉, norm | · |, and distance d. Let S be a subset ofH. S denotes the closure of S.
S is proximinal if each point inH has at least one projection onto S. If S is proximinal, then S is closed.
When S is proximinal, PS is the projection point-to-set mapping onto S defined by

(∀x ∈ H) PS(x) = {y ∈ S | |x− y| = infz∈S |x− z|}.

pS(x) denotes an arbitrary element of PS(x) and d(x, S) = |x− pS(x)|. B(x, ρ) denotes the closed ball
of center x and radius ρ. In the case of a projection onto a convex set C, Kolmogorov’s criterion is:〈

x′ − PC(x), x− PC(x)
〉
≤ 0 (1)

for all x′ ∈ C. Our work is a follow-on project to the work in [22] which introduced the notion of
convex expandable sets in order to tackle certain feasibility problems involving rank-constrained
matrices as described in [23]. We recall what it means for a nonconvex set to be expandable into
a family of convex sets.

Definition 1. A subset S of H is said to be expandable into a family of convex sets when it is the union of
non-trivial, i.e., not reduced to a single point, convex subsets Cj ofH, i.e.,

S =
⋃

j∈J Cj (2)

where J is a possibly uncountable index set. Any family (Cj)j∈J satisfying (2) is called a convex expansion of S.

Remark 1. Uncountable unions often appear in practice. An important example is the set of matrices of rank r
in Rn×m for 0 < r < min{n, m}. This set is the union of the rays passing through the null matrix and any
matrix of rank r different from zero. This constraint often appears in signal processing problems such as signal
denoising [16] and more generally, structured matrix estimation problems [19].

Uniform convexity is an important concept, which allows to prove many strong convergence
results in the framework of successive projection methods ([4], Section 5.3).

Definition 2. A convex subset C of H is uniformly convex with respect to a positive-valued nondecreasing
function b(t) if

∀(x, y) ∈ C2, B((x + y)/2, b(|x− y|)) ⊂ C.

Uniform convexity will be instrumental in our analysis. We define the following condition which
is stronger than the condition of being expandable into a family of convex sets.

Definition 3. A subset S of H is said to be expandable in uniformly convex sets when the sets Cj in (2) are
moreover uniformly convex with the same function b(·). Any family (Cj)j∈J of uniformly convex sets satisfying
(2) is called a uniformly convex expansion of S.
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1.3. The Projection Algorithm

For any point x in H, for the sake of simplicity, pSi (x) will be noted by pi(x). We will assume
throughout that the family {Si}i∈I is finite.

Definition 4. (Method of Projection onto Uniformly Convex Expandable Sets)
Given a point x0 in H, two real numbers α and λ in (0, 1], a nonnegative integer M and a sequence (In) of
subsets of I satisfying the following conditions

C1. (∀n ∈ N) In ⊂ I, I =
⋃n+M

j=n Ij and Card(In) > 1

C2. (∀n ∈ N) (∀i ∈ In) α ≤ αi,n and ∑j∈In αj,n = 1

the projection-like method considered in this paper is iteratively defined by

(∀n ∈ N)


1.

∣∣∣∣∣∣∣∣∣∣∣

– If ∃j ∈ In such that pj(xn) ∈
⋂

i∈In Si

Then

∣∣∣∣∣ – If In 6= I set In = I and go to 1

– If In = I set λn = 1, αj,n = 1 and go to 2

– Else go to 2

2. xn+1 = xn + λn ∑i∈In αi,n (pi(xn)− xn)

(3)

with λn satisfying

C3. (∀n ∈ N) λ ≤ λn ≤ µn where µn =


∑i∈In αi,n |xn−pi(xn)|2
|xn−∑i∈In αi,n pi(xn)|2

if xn 6∈
⋂

i∈In Si

1 if xn ∈
⋂

i∈In Si

.

Remark 2. Using the assumption Card(In) > 1, the coefficients αi,n, i ∈ In, can be chosen in such a way that
the denominator in the definition of µn is not equal to zero. Note that one can relax the constraint Card(In) > 1
in the case where µn is well defined at every iteration, thus allowing to recover the cyclic projection method.

The numbers α and λ ensure that the steps taken at each iteration are sufficiently large as compared
to the distance of the iterations to their projections on each Si, i ∈ I. The use of the integer M ensures
that each Si is involved at least every M iterations. The “If” condition in Step 1 of the algorithm ensures
that xn will move at each iteration by enforcing that it does not yet belong to all the selected sets Si,
i ∈ In. Our method is an extension of Ottavy’s method [4] to the case of nonconvex sets. The idea of
using a potentially variable index set In at each iteration allows to recover several variants, such as
cyclic projections [2,21,22,24] or parallel projections [2,23,24]. Notice that, due to finiteness of the
cardinality of I, finding an index j such that pj(xn) ∈

⋂
i∈In Si is easy if such an index exists.

1.4. Our Contributions

The main contributions of our work are a proof that strong convergence holds in the proposed
setting, and a new constructive modification of the projection method in order to accommodate the case
of non-necessarily uniformly convex expandable sets. Based on our findings, we will then weaken our
assumptions and provide a new algorithm which does not need uniform convexity, while preserving
strong convergence to a feasible solution. Applications to an infinite dimensional MRI problem and to
low rank matrix estimation for signal denoising are presented in Section 5.
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2. Ottavy’s Framework

2.1. Successive Projection Point-to-Set Mapping

Let α and λ be two real numbers chosen in (0, 1). Define the point-to-set mapping

D : x ∈ H → D(x) = {x̃ ∈ H; x̃ = x + λ(x)(x̄− x)}

where x̄ is a weighted average,
x̄ = ∑

i∈I(x)
αi(x)pi(x)

I(x) is a subset of selected constraints such that

I(x) ⊂ I and I(x) 6= ∅

αi(x), i ∈ I is a set of normalized nonvanishing weightings such that

αi(x) ∈ [0, 1], ∑
i∈I(x)

αi(x) = 1, and pi(x) 6= x ⇒ αi(x) ≥ α

λ(x) is the relaxation parameter such that

λ(x) ∈ [λ,+∞) and x 6= x̄ ⇒ λ(x) ∈ [λ, µ(x̄)]

with

µ(x̄) =

 ∑
α∈I(x)

αi(x) |x− pi(x)|2
 /|x− x̄|2.

2.2. Ottavy’s Lemma

In [4], Ottavy proved the very useful lemma.

Lemma 1. For any x ∈ H, x̃ ∈ D(x), and z ∈ ∩i∈I Si, the following results hold:

(i) |x̃− x|2 ≤ β
(
|x− z|2 − |x̃− z|2

)
(ii) 2〈x− z|x− x̃〉 ≤

(
1 +

2
λ

)(
|x− z|2 − |x̃− z|2

)
(iii) max

i∈I(x)
|pi(x)− x|2 ≤ (2 + λ)

2αλ2

(
|x− z|2 − |x̃− z|2

)
.

3. A Strong Convergence Result

Let (xn)n∈N be the sequence of iterates of the projection method defined by (3). In the present
section, we show strong convergence of this sequence to a point in ∩i∈ISi.

For every n in N and for each i ∈ I, define

Ti,n =
⋃{C ⊂ Si | C is convex and pi(xn) ∈ C} Tn =

⋂
i∈In Ti,n.

When the (finite) family (Si)i∈I is expandable into a family of convex sets, Ti,n 6= ∅ for every n in
N and for each i ∈ I.
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Lemma 2. If the following conditions are satisfied

C4. (∀n ∈ N) Tn 6= ∅

C5. The finite family (Si)i∈I is expandable in convex sets

then, for every n in N and for every zn in Tn, we have

(i) |xn+1 − xn|2 ≤
2
λ

(
|xn − zn|2 − |xn+1 − zn|2

)
(ii) 2 〈xn − zn | xn − xn+1〉 ≤ (1 +

2
λ
)
(
|xn − zn|2 − |xn+1 − zn|2

)
(iii) sup

i∈In

|pi(xn)− xn|2 ≤
(2 + λ)

2αλ2

(
|xn − zn|2 − |xn+1 − zn|2

)
.

Proof. Fix n in N and zn in Tn. According to C5, each point pi(xn) belongs to a set Ci,jn ⊂ Si, a convex
set in the uniformly convex expansion of Si indexed by jn. Hence pi(xn) is also the projection of xn

onto Ci,jn , and zn ∈ Ci,jn . Replacing respectively x, x̃ and z by xn, xn+1 and zn in Ottavy’s Lemma
(Lemma 1, or [4, Lemma 7.1]), we obtain the desired results.

Lemma 3. If the conditions C4, C5, and

C6. (∃(zn)n∈N) such that zn ∈ Tn for all n in N and ∑n∈N |zn+1 − zn| < +∞

are satisfied, then

(i) The sequences(|xn − zn|)n∈N and (|xn+1 − zn|)n∈N are bounded.

(ii) The series ∑n∈N(|xn − zn|2 − |xn+1 − zn|2) is convergent.

(iii) For each i in I, the sequence (|pi(xn)− xn|)n∈N converges to zero.

(iv) The sequence (|xn − zn|)n∈N is convergent.

(v) The sequence (zn)n∈N converges strongly to a point in
⋂

i∈I Si.

Proof. (i) Let (zn)n∈N be a sequence satisfying C6, and let k in N. We deduce from Lemma 2(i) that
|xk+1 − zk| ≤ |xk − zk|. Then we have

|xk+1 − zk+1| ≤ |xk+1 − zk|+ |zk+1 − zk| ≤ |xk − zk|+ |zk+1 − zk|.

Therefore
|xn+1 − zn+1| ≤ |x0 − z0|+ ∑n

k=0 |zk+1 − zk|

and then C6 ensures that the sequences (|xn − zn|)n∈N and (|xn+1 − zn|)n∈N are bounded.
(ii) Now, the cosine law, followed by the Cauchy-Schwarz inequality give

|xk+1 − zk+1|2 = |xk+1 − zk|2 + 2 〈xk+1 − zk | zk − zk+1〉+ |zk − zk+1|2

≤ |xk+1 − zk|2 + 2 |xk+1 − zk| |zk+1 − zk|+ |zk+1 − zk|2.
(4)

Using Lemma 2(i), we then obtain that

0 ≤ |xk − zk|2 − |xk+1 − zk|2 ≤ |xk − zk|2 − |xk+1 − zk+1|2 + 2 |xk+1 − zk| |zk+1 − zk|
+ |zk+1 − zk|2.
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Thus

0 ≤ ∑n
k=0

(
|xk − zk|2 − |xk+1 − zk|2

)
≤ |x0 − z0|2 + 2 ∑n

k=0 |xk+1 − zk| |zk+1 − zk|
+ ∑n

k=0 |zk+1 − zk|2.

Since the sequence (|xn+1− zn|)n∈N is bounded and the series ∑n∈N |zn+1− zn| is convergent, the result
(i) follows at once.

(iii) Lemma 3(i) and Lemma 2(iii), imply that limn→∞ supi∈In
|pi(xn)− xn|2 = 0. Thus for any

k ∈ [0, M],

lim
n→∞

sup
i∈In+k

|pi(xn)− xn| = 0.

Then we deduce from C1 that limn→∞ supi∈I |pi(xn)− xn| = 0, which completes the proof of (iii).
(iv) Squaring the triangle inequality gives

|xk+1 − zk|2 − |xk+1 − zk+1|2 ≤ 2 |xk+1 − zk+1| |zk+1 − zk|+ |zk+1 − zk|2

≤ 2 |xk+1 − zk| |zk+1 − zk|+ 3 |zk+1 − zk|2.

Using (4), we deduce that∣∣∣|xk+1 − zk+1|2 − |xk+1 − zk|2
∣∣∣ ≤ 2 |xk+1 − zk| |zk+1 − zk|+ 3 |zk+1 − zk|2.

Since the sequence (|xn+1 − zn|)n∈N is bounded, and ∑n∈N |zn+1 − zn| is convergent, we deduce
from the last inequality that ∑n∈N(|xn+1− zn+1|2− |xn+1− zn|2) is convergent. Then using Lemma 3(i),
we obtain that the series ∑n∈N(|xn+1 − zn+1|2 − |xn − zn|2) is convergent, which is equivalent to the
convergence of the sequence (|xn − zn|)n∈N.

(v) Since, by C6, (zn)n∈N is a Cauchy sequence, it is strongly convergent to a point z in the Hilbert
spaceH. For every n in N, zn ∈ Tn =

⋂
i∈In Ti,n ⊂

⋂
i∈In Si. Fix i in I. Due to condition C1, there exists

a subsequence (zσ(n))n∈N of (zn)n∈N satisfying zσ(n) ∈ Si for all n ∈ N. Therefore, z ∈ Si. Since this
assertion is true for all i in I, and each Si is closed, we obtain that z ∈ ⋂i∈I Si.

Remark 3. In the convex case, Lemma 3(iii) is known in the simpler case where (zn)n∈N is chosen to
be a constant sequence in

⋂
i∈I Si and is a consequence of the Fejér monotonicity [5].

We now state the main result of this section, which is strong convergence under the assumption
that the sets Si, i ∈ I, are expandable in uniformly convex sets.

Theorem 1. If the conditions C4, C6, and C7.

The finite family (Si)i∈I is expandable in uniformly convex sets with respect to a function b are
satisfied, then the sequence (xn)n∈N converges strongly to a point in

⋂
i∈I Si.

Proof. Notice that C7 implies C5. According to C5, each point pi(xn) belongs to a convex set Ci,jn ⊂ Si
in the uniformly convex expansion of Si, indexed by jn. Hence pi(xn) is also the projection of xn onto
Ci,jn , and zn ∈ Ci,jn . Let (zn)n∈N be a sequence satisfying C6. Fix n in N, and i in I. Define

H(xn, pi(xn)) = {x ∈ H | 〈x− pi(xn) | pi(xn)− xn〉 ≥ 0}.

According to C7, pi(xn) and zn belong to a uniformly convex set Ci,jn ⊂ Si. Thus

B((zn + pi(xn))/2, ρi,n) ⊂ Ci,jn ,
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where ρi,n = b(|zn − pi(xn)|). Since pi(xn) is also the projection of xn onto Ci,jn , it results from the
Kolmogorov criterion (1) that

Ci,jn ⊂ H(xn, pi(xn)).

Then
B((zn + pi(xn))/2, ρi,n) ⊂ Ci,jn ⊂ H(xn, pi(xn)). (5)

Now, consider the translation T : x 7→ y = x− (pi(xn)− zn)/2. Clearly,

x ∈ B((zn + pi(xn))/2, ρi,n) if and only if y ∈ B(zn, ρi,n). (6)

On the other hand, using zn ∈ Ci,jn , we get that x ∈ H(xn, pi(xn)) implies y ∈
H(xn, pi(xn)). Indeed,

〈y− pi(xn) | pi(xn)− xn〉= 〈x− (pi(xn)− zn)/2− pi(xn) | pi(xn)− xn〉

= 〈x− pi(xn) | pi(xn)− xn〉 −
1
2
〈pi(xn)− zn | pi(xn)− xn〉

and since zn ∈ Ci,jn , Kolmogorov’s criterion gives

1
2
〈pi(xn)− zn | pi(xn)− xn〉 ≤ 0,

which implies

〈y− pi(xn) | pi(xn)− xn〉= 〈x− (pi(xn)− zn)/2− pi(xn) | pi(xn)− xn〉
≥ 〈x− pi(xn) | pi(xn)− xn〉

and, after recalling that x ∈ H(xn, pi(xn)),

〈y− pi(xn) | pi(xn)− xn〉 ≥ 0

which implies that y ∈ H(xn, pi(xn)) as desired. Hence (5), together with (6) imply

B(zn, ρi,n) ⊂ H(xn, pi(xn)).

Now, assume xn 6∈ Si, and define

yn = zn + (pi(xn)− xn)/|pi(xn)− xn|
un = zn + ρi,n(zn − yn).

One easily checks that |un − zn| = ρi,n, i.e., un ∈ B(zn, ρi,n). Thus, using (2.2), we get un ∈
H(xn, pi(xn)), i.e., 〈un − pi(xn) | pi(xn)− xn〉 ≥ 0. Therefore

〈zn − pi(xn) | pi(xn)− xn〉 ≥ 〈zn − un | pi(xn)− xn〉 = ρi,n |pi(xn)− xn|. (7)

Since this inequality is obviously satisfied when xn ∈ Si, it holds whether xn 6∈ Si or not. Now, let

ρn = min
i∈In

ρi,n,

and
ρ = inf

n∈N
ρn.

The case: ρ = 0.
In the case where ρ = 0, we have
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• either there exist n0 in N and i0 in In0 , such that ρi0,n0 = 0,
• or lim infn→∞ ρn = 0.

In the first case, since b(·) vanishes only at zero, we have zn0 = pi0(xn0) and pi0(xn0) ∈ Tn0 ⊂⋂
i∈In0

Si. According to (3), pi0(xn0) ∈
⋂

i∈I Si, and for all n > n0, xn = pi0(xn0). Therefore, the sequence
(xn)n∈N has converged to a solution in a finite number of steps. In the second case, there exists
a subsequence (ρσ(n))n∈N which converges to zero. Fix i in I. Since b(·) is nondecreasing,

ρσ(n) ≥ min
j∈Iσ(n)

b
(∣∣∣|zσ(n) − pi(xσ(n))| − |pi(xσ(n))− pj(xσ(n))|

∣∣∣). (8)

According to Lemma 3(ii) and (iii), (|pi(xn)− pj(xn)|)n∈N converges to zero for all j in I, and
(|zn − pi(xn)|)n∈N converges to a limit c independent of i. Hence, for all ε > 0 there exists N in N such
that for all n ≥ N, |zσ(n) − pi(xσ(n))| ≥ c− ε/2 and |pi(xn)− pj(xn)| ≤ ε/2 for all j in I. Thus, for all
n ≥ N, and for all j in I, |zσ(n) − pi(xσ(n))| − |pi(xσ(n))− pj(xσ(n))| ≥ c− ε.

Assume c > 0, and take ε = c/2. Then, since b(·) is nondecreasing and vanishes only at zero,
we deduce from (8) that for all n ≥ N, ρσ(n) ≥ b(c/2) > 0, which contradicts limn→∞ ρσ(n) = 0.
Hence, c = 0, and limn→∞ |zn − pi(xn)| = 0 for all i in I. Using Lemma 3(ii), we deduce that
limn→∞ |xn − zn| = 0, and it results from Lemma 3(iv) that (xn)n∈N converges strongly to a point in⋂

i∈I Si.

The case ρ 6= 0.
In the case ρ 6= 0, we deduce from (7) that

〈zn − pi(xn) | pi(xn)− xn〉 ≥ ρ |pi(xn)− xn|

and since 〈pi(xn)− xn | pi(xn)− xn〉 = |pi(xn)− xn|2 ≥ 0,

〈zn − xn | pi(xn)− xn〉 ≥ ρ |pi(xn)− xn|. (9)

Therefore, combining the definition of xn+1 and (9), we have

λn ∑
i∈In

αi,n |pi (xn)− xn| ≤
λn

ρ ∑
i∈In

αi,n 〈zn − xn, pi (xn)− xn〉

=
1
ρ

〈
zn − xn, λn ∑

i∈In

αi,n (pi (xn)− xn)

〉

=
1
ρ
〈zn − xn, xn+1 − xn〉 .

Using Lemma 2(ii) and Lemma 3(i), we deduce that the series ∑n∈N |xn+1 − xn| is convergent.
Then (xn)n∈N is a Cauchy sequence, and is therefore strongly convergent to a point x∗ in H.
Using Lemma 3(ii), we deduce that (pi(xn))n∈N is also strongly convergent to x∗ for any i in I.
Since each set Si is closed, we immediately conclude that x∗ ∈ ⋂i∈I Si, which completes the proof.

4. Projections onto Stepwise Generated Uniformly Convex Sets

In this section, we show how the results of Section 3 may be used to define a strongly convergent
cyclic projection algorithm in the case where the sets Si are only expandable in convex sets, but not into
uniformly convex sets. To our knowledge, this method is new, even in the convex case. The underlying
idea of the algorithm is as follows. First, note that the condition C4 is realistic for the type of nonconvex
sets considered in this paper, and may be interpreted as a strong consistency condition. On the other
hand, in many cases, a trivial sequence (an)n∈N where an ∈ Tn for all n in N is already known, as in
the applications presented in Section 5. Using this sequence, we define a projection method which
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converges strongly to a point in
⋂

i∈I Si. For every n in N, i in I, and an in Tn, Bi,n will denote the closed
ellipsoid with main axis [an, pi(xn)], with center 1/2(an + pi(xn)), which is rotationally invariant
around this axis and with maximal radius equal to |an − pi(xn)|/2 and with minimal radius equal to
γ|an − pi(xn)|/2 for some γ ∈ (0, 1). We denote by p′i(xn) the projection of xn onto Bi,n; see Figure 1.

Definition 5. (Method of Double Projection onto Convex Expandable Sets)
Assume C4 is satisfied. Given a point x0 in H, two real number α and λ in (0, 1], a nonnegative integer M,
a sequence (In) of subsets of I and a sequence (an)n∈N where an ∈ Tn for all n in N, the projection method onto
stepwise generated uniformly convex sets is iteratively defined by

(∀n ∈ N)



1. (∀i ∈ In) p′i(xn) = pBi,n(xn)

2.

∣∣∣∣∣∣∣∣∣∣∣

– If ∃j ∈ In such that p′j(xn) ∈
⋂

i∈In Si

Then

∣∣∣∣∣ – If In 6= I set In = I and go to 2

– If In = I set λn = 1, αj,n = 1 and go to 3

– Else go to 3

3. xn+1 = xn + λn ∑i∈In αi,n (p′i(xn)− xn)

under the conditions C1, C2, and

C′3. (∀n ∈ N) λ ≤ λn ≤ µn where µn =


∑i∈In αi,n |xn−p′i(xn)|2
|xn−∑i∈In αi,n p′i(xn)|2

if xn 6∈
⋂

i∈In Bi,n

1 if xn ∈
⋂

i∈In Bi,n.

In the remainder of this section, the sequence (xn)n∈N is defined by the algorithm of Definition 5.
The main result is the following.

Theorem 2. If the condition C5 is satisfied, and the sequence (an)n∈N introduced in Definition 5 satisfies C6,
then the sequence (xn)n∈N converges strongly to a point in

⋂
i∈I Si.

Proof. The method introduced in Definition 5 is a general projection algorithm onto specific uniformly
convex sets constructed at each iteration. For every n in N and each i in I, an and p′i(xn) belong to
Bi,n. Then Lemma 2 and Lemma 3 where pi(xn) and (zn)n∈N are respectively replaced with p′i(xn) and
(an)n∈N hold true. In the same way, taking (zn)n∈N = (an)n∈N in the proof of Theorem 1, we deduce
that the sequence (xn)n∈N converges strongly to some point x∗ in H. Nevertheless, since pi(xn) is
replaced with p′i(xn), it is still not clear why x∗ ∈ ⋂i∈I Si. Let us now address this specific point. Fix n in
N, i in I, and an in Tn. According to C5, an and pi(xn) belong to a convex set Ci,jn ⊂ Si, and pi(xn) is also
the projection of xn onto Ci,jn . Hence the Kolmogorov criterion (1) gives 〈pi(xn)− an | xn − pi(xn)〉 ≥
0. Therefore

〈pi(xn)− an | xn − p′i(xn)〉+ 〈pi(xn)− an | p′i(xn)− pi(xn)〉 ≥ 0

which implies

〈pi(xn)− an | xn − p′i(xn)〉 ≥ 〈pi(xn)− an | pi(xn)− p′i(xn)〉. (10)

Moreover, since the segment [an, pi(xn)] is the main axis of the ellipsoid Bi,n and p′i(xn) ∈ Bi,n,
we have 〈an − pi(xn) | p′i(xn)− pi(xn)〉 ≥ 0. Combining this with (10), we get

0 ≤ 〈pi(xn)− an | pi(xn)− p′i(xn)〉 ≤ 〈pi(xn)− an | xn − p′i(xn)〉 ≤ |pi(xn)− an| |xn − p′i(xn)|.

We deduce from Lemma 3(iii) where pi(xn) is replaced with p′i(xn) that limn→∞ |p′i(xn)− xn| = 0.
On the other hand, as pi(xn) is the projection of xn onto Ci,jn , and an ∈ Ci,jn , we have |pi(xn)− an| ≤
|xn − an|. Moreover, following the same steps as in the proof of Lemma 3(i) gives that (|xn − an|)n∈N
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is bounded, from which we deduce that (|pi(xn)− an|)n∈N is bounded as well. Therefore we deduce
from the last inequality that

lim
n→∞
〈an − pi(xn) | p′i(xn)− pi(xn)〉 = 0. (11)

Let x = an − pi(xn) and y = p′i(xn)− pi(xn). Then, we have

x− y = an − p′i(xn)

and

x−ωy = ω

(
1
ω
(an + (ω− 1)pi(xn))− p′i(xn)

)
(12)

for all ω ∈ R.
Assume that p′i(xn) 6= pi(xn). Using Claim 1, we get that〈

an − p′i(xn) |
1

ωi,n
(an + (ωi,n − 1)pi(xn))− p′i(xn)

〉
≤ 0

as long as we enforce

ωi,n ≥
〈p′i(xn)− an | pi(xn)− an〉
〈p′i(xn)− an | pi(xn)− p′i(xn)〉

. (13)

In particular, we can take

ωi,n = max
{ 〈p′i(xn)− an | pi(xn)− an〉
〈p′i(xn)− an | pi(xn)− p′i(xn)〉

, ε

}
(14)

for any appropriately chosen ε > 0. Using Niculescu’s Lemma 4 in Appendix B, we obtain that(√
1

ωi,n
+

√
ωi,n

1

)
〈an − pi(xn), p′i(xn)− pi(xn)〉

2|an − pi(xn)|
≥ |p′i(xn)− pi(xn)|. (15)

Note that this inequality also holds without resorting to Claim 1 if p′i(xn) = pi(xn). According to
Theorem 1, (xn)n∈N and (p′i(xn))n∈N are strongly convergent to a point x∗ in H. We now split the
remainder of the argument into the following complementary cases involving an increasing function
σ: N 7→ N which parametrises possible subsequences.

• If the sequence (|an − p′i(xn)|)n∈N converges to zero, then using Claim 2, (|p′i(xn)− pi(xn)|)n∈N
also converges to zero. Therefore, (pi(xn))n∈N is also strongly convergent to x∗ for each i in I.
Since each set Si is closed, we again conclude that x∗ ∈ ⋂i∈I Si.

• If the sequence (|an − p′i(xn)|)n∈N does not converge to zero, and the sequence (〈p′i(xn)− an |
pi(xn)− p′i(xn)〉)n∈N converges to zero, then we must have |aσ(n) − p′i(xσ(n))| > ε for some ε > 0
and some subsequence indexed by an appropriately chosen increasing function σ. This implies in
particular that

lim
n→+∞

|pi(xσ(n))− p′i(xσ(n))| | cos
(

p′i(xσ(n))− aσ(n), pi(xσ(n))− p′i(xσ(n))
)
| = 0.

As a result, either

lim
n→+∞

cos
(

p′i(xσ(n))− aσ(n), pi(xσ(n))− p′i(xσ(n))
)
= 0 (16)

or
lim

n→+∞
|pi(xσ(n))− p′i(xσ(n))| = 0.
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Notice further that (16) holds only if (|pi(xσ(n))− p′i(xσ(n))|)n∈N converges to zero. Thus, both cases
simplify into the conclusion that (|pi(xσ(n)) − p′i(xσ(n))|)n∈N converges to zero. Therefore
(pi(xσ(n)))n∈N is also strongly convergent to x∗ for each i in I. Since each set Si is closed, we again
conclude that x∗ ∈ ⋂i∈I Si.

• If both sequences (|an − p′i(xn)|)n∈N and (〈p′i(xn)− an | pi(xn)− p′i(xn)〉)n∈N do not converge
to zero, then |aσ(n) − p′i(xσ(n))| > ε and 〈p′i(xσ(n))− aσ(n) | pi(xσ(n))− p′i(xσ(n)〉 > ε for some
ε > 0 and for some subsequence indexed by an appropriately chosen increasing function σ.
Since |an − pi(xn)| is the length of the main axis of Bi,n, and, as such, bounds from above the
distance between any two points in Bi,n, we deduce that |an− p′i(xn)| ≤ |an− pi(xn)|. Furthermore,
since the sequences (|an − pi(xn)|)n∈N and (|an − xn|)n∈N are bounded, we deduce that

|an − pi(xn)| ≤ |an − xn| ≤ B

for some B > 0. Then using the Cauchy-Schwarz inequality in the numerator in (14), we get

ωi,σ(n) ∈ [ε,
B2

ε
]

for some ε ∈ (0, B). Since |aσ(n) − pi(xσ(n))| > ε, we deduce from (11) and (15) that (|p′i(xσ(n))−
pi(xσ(n))|)n∈N converges to zero. Therefore, (pi(xσ(n)))n∈N is also strongly convergent to x∗ for
each i in I. Since each set Si is closed, we again conclude that x∗ ∈ ⋂i∈I Si.

These previous cases cover all the possible cases and all lead to the conclusion that x∗ ∈ ⋂i∈I Si.
The proof is thus complete.

The two following claims were instrumental in the proof of Theorem 2. We now provide
their proofs.

Claim 1. Assume that p′i(xn) 6= pi(xn). Then

〈p′i(xn)− an | pi(xn)− an〉
〈p′i(xn)− an | pi(xn)− p′i(xn)〉

(17)

is a well defined nonnegative real number. Moreover, we have〈
an − p′i(xn) |

1
ωi,n

(an + (ωi,n − 1)pi(xn))− p′i(xn)

〉
≤ 0 (18)

for all

ωi,n ≥
〈p′i(xn)− an | pi(xn)− an〉
〈p′i(xn)− an | pi(xn)− p′i(xn)〉

.

Proof. We have p′i(xn) 6∈ [an, pi(xn)]. Indeed, assume for contradiction that p′i(xn) ∈ [an, pi(xn)].
This would imply that p′i(xn) lies in the interior of Bi,n and therefore xn = p′i(xn). However, since by
convexity of Ci,jn , [an, pi(xn)] ⊂ Ci,jn , this would imply that xn ∈ Ci,jn , and therefore p′i(xn) = xn =

pi(xn), the sought-after contradiction.
Consider now the 2D plane containing an, pi(xn) and p′i(xn). Set gn to be at the intersection of the

line perpendicular at p′i(xn) to [an, p′i(xn)] with the segment [an, pi(xn)] (see Figure 1). First, we have

〈p′i(xn)− an | pi(xn)− an〉 = cos(αi,n) |p′i(xn)− an||pi(xn)− an|

and
|p′i(xn)− an|2 = 〈gn − an | p′i(xn)− an〉 = cos(αi,n) |gn − an||p′i(xn)− an|
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from which we obtain

|gn − an| =
|p′i(xn)− an|2 |pi(xn)− an|
〈p′i(xn)− an | pi(xn)− an〉

(19)

Since Bi,n is an ellipse with maximal axis [an, pi(xn)], our next step is to express gn as the convex
combination

gn = θi,n an + (1− θi,n) pi(xn) (20)

of an and pi(xn) for some θi,n ∈ [0, 1]. Notice that (20) implies

|gn − an| = (1− θi,n)|pi(xn)− an|,

which itself gives

θi,n = 1− |gn − an|
|pi(xn)− an|

.

Using (19), we get

θi,n = 1−
|p′i(xn)− an|2

〈p′i(xn)− an | pi(xn)− an〉
=
〈p′i(xn)− an | pi(xn)− p′i(xn)〉
〈p′i(xn)− an | pi(xn)− an〉

.

Notice further that, by construction, since [an, pi(xn)] is the main axis of Bi,n and since, by
assumption, p′i(xn) 6= pi(xn), we have (see Figure 1)

〈p′i(xn)− an | pi(xn)− p′i(xn)〉 > 0. (21)

Then, setting

dn=
1

ωi,n
(an + (ωi,n − 1)pi(xn)),

we see that we need to take ωi,n ≥ 1/θi,n, i.e.,

ωi,n ≥
〈p′i(xn)− an | pi(xn)− an〉
〈p′i(xn)− an | pi(xn)− p′i(xn)〉

,

(which, owing to (21), is well defined), in order to ensure that〈
an − p′i(xn) | dn − p′i(xn)

〉
≤ 0

i.e., (18) holds. Finally, (19) and (21) together ensure that (17) is nonnegative.

Claim 2. We have
|an − p′i(xn)| ≥ |p′i(xn)− pi(xn)|.

Proof. By definition of pi(xn), the fact that an ∈ Si implies that

|pi(xn)− xn| ≤ |an − xn|.

Thus xn belongs to the half space

H =

{
x ∈ H; 〈x− 1

2
(an + pi(xn)) | pi(xn)−

1
2
(an + pi(xn))〉 ≥ 0

}
which is the set of points in H which are closer to pi(xn) than an. Clearly, p′i(xn) ∈ H as well,
which completes the proof.
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Figure 1. Section of the ellipsoid Bi,n.

5. Applications

5.1. MRI Image Reconstruction: The Infinite-Dimensional Hilbert Space Setting

The field of inverse problems was extensively investigated in the last five decades, fueled in
particular by the many challenged in medical imaging. Projection methods have played an important
role in the development of efficient reconstruction techniques [25], a well studied example being the
method of projection onto convex sets (POCS) [2]. In recent years, techniques from penalised estimation
have gained increasing popularity since the discovery of the compressed sensing paradigm, allowing
for fewer measurements to be collected whilst achieving remarkable reconstruction performance.
One penalisation approach which has been a center of focus since its introduction is the Rudin Osher
Fatemi functional [26], which can be described as follows: the reconstructed image u is the solution of
the minimization problem,

arg min
u∈BV(Ω)

‖u‖TV(Ω) +
λ

2

∫
Ω
(yobs(x)−A[u](x))2dx

where λ is a positive relaxation parameter and the term ‖u‖TV(Ω) is defined in Appendix A. The term∫
Ω(yobs(x)−A[u](x))2dx is called the fidelity term and the term ‖u‖TV(Ω) is called the regularisation

term. This infinite-dimensional minimization problem enforces the solution, which is a priori in L2(Ω),
to satisfy a finite bounded variation (BV) norm constraint.

One important remark is that the optimisation problem can be turned into a pure feasibility
problem by imposing the TV-norm and the fidelity terms to be less than or equal to a certain tolerance.
Using this approach, one can define an alternating projection procedure as in Algorithm 1 below,
where we will use the forward operator A = Fpartial , the partial Fourier Transform which plays
a central role in MRI. The usual Fourier transform will be denoted by F as usual.

In this example, we will use the projections on the sets

S1 =

{
u ∈ L2(Ω) |

∫
Ω
(λ yobs −A[u](x))2dx ≤ λη f id, λ ∈ R+

}
,

S2 =
{

u ∈ L2(Ω) | ‖u‖p,TV(Ω) ≤ ηTV

}
,

S3 =
{

u ∈ L2(Ω) | Fpartial [u] = λyobs, λ ∈ R+

}
.
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The set S2 is not convex for p ∈ (0, 1), but, since the epigraph of | · |p,TV(Ω) is a cone, the set S2 is
expandable into convex sets as discussed in [22,23]. Notice that when the scaling factor λ is dropped
in the definition of S1 and S3, the problem is equivalent to the standard TV-penalised reconstruction
approach. Introducing this scaling factor allows to recover a solution up to a scaling, which can easily
be recovered by rescaling the solution by using the constraint Fpartial [u] = yobs as a post-processing
step. The introduction of the scaling α in these definition allows the null function to belong to the
intersection of the sets S1, S2 and S3. Thus, we will set an = 0, n ∈ N in the sequel. In what follows,
ỹobs will be the function will value equal to zero except for the observed frequencies which are taken
as the observed values.

Our implementation is described in Algorithm 1. Experiments were made after incorporating
the projection onto the TV ball into a freely available code provided in [27]. The fidelity term was
set to η f id = 10−3 and the regularisation term ηTV was tuned using cross validation. The projection
onto the TV-ball was computed using the method described in [28]. In order to avoid numerical
instabilities, the iterates were rescaled every 10 iteration, which does not change the convergence
analysis due to conic invariance of our formulation. We chose very thin ellipsoids Bi,n by setting
α = 10−6. A numerical illustration is given in Figure 2 below. Extensive numerical simulations will be
presented in a forthcoming paper devoted to a thorough study of projection methods for MRI and
X-ray computed tomography (XCT).

Algorithm 1: Alternating projection method for MRI for p = 1.
Result:

1 y = Fpartial [u0] observed data;
2 ηTV bound on the TV norm;
3 η f id bound on the fidelity term;
4 ε convergence tolerance;
5 Compute y(0) from y by filling in unobserved with zeros ;
6 Set k = 1, u1 = F−1(ỹobs) ;
7 while Difference between two successive iterates larger than ε do
8 Compute p′1(un) = PB1,n(un);
9 Compute p′1(un) = PB2,n(un);

10 Compute p′1(un) = PB3,n(un);
11 Set un+1 = un + λn ∑3

i=1 αi,n (p′i(un)− un);
12 end while

Since S1 and S3 are convex and S2 is expandable into convex sets, we deduce from Theorem 2
that Algorithm 1 converges strongly to a point in

⋂3
i=1 Si.

Figure 2. POCS reconstruction with 30 iterations.
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5.2. A Uniformly Convex Version of Cadzow’s Method

The method presented in Section 4 is now applied to a denoising problem in the spirit of Cadzow’s
method [16].

Let x = [x0, . . . , xN−1]
> be a complex-valued vector of length N. LetH be a linear operator which

maps x into the set of Hankel L× K matrices, with L ≥ K, L + K = N + 1, defined by setting the (i, j)
component to the value xi+j−2 i.e.,

H(x) =


x0 x1 x2 · · · xK−1

x1 x2 x3 · · · xK
x2 x3 x4 · · · xK+1
...

...
...

...
...

xL−1 xL xL+1 · · · xN−1

.

The adjoint operator associated withH, denoted byH∗, is a linear map from L× K matrices to
vectors of length N, obtained by averaging each skew-diagonal.

The denoising problem we consider in this section is the one of estimating a signal x corrupted by
random noise, as described in the observation model

yt= xt + εt,

for t = 0, . . . , N − 1, where

• xt is a sum of damped exponential components, i.e.,

xt =
κ

∑
k=−κ

ck ρt
k exp(2ιπ fkt),

with 2κ + 1 ≤ K, ρk a real damping factor satisfying |ρk| ≤ 1, fk a real number representing
a frequency and ck a complex coefficient,

• εt is a random noise.

This denoising problem is of crucial importance in many applications and is also known as
super-resolution in the literature; see [16,29–33]. The main motivation behind Cadzow’s algorithm is
that many signals of interest have low rank Hankelization. In mathematical terms, we can often look
for approximations and denoising, for signals which satisfy the constraint that rank(H(x)) = r where
r ≤ 2κ + 1. Such constraints are important when the observed signal is corrupted with additive noise,
which increases the rank ofH(x). Consequently, an intuitive way of estimating x from y is to do rank
reduction: starting from x(0) = y = [y0, . . . , yN−1]

>, the Cadzow’s algorithm iteratively updates the
estimate via the following rule

x(n+1) = H∗(Tr(H(x(n)))), n = 0, 1, . . .

Here Tr computes the truncated singular value decomposition (SVD) of any L × K matrix X,
that is,

Tr(X) =
r

∑
j=1

σj ujv∗j ,

with

X =
K

∑
j=1

σj ujv∗j
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being an SVD of X and with σ1 ≥ σ2 ≥ . . . ≥ σK being the singular values. As is now well
known, Cadzow’s algorithm is easily interpreted as a method of alternating projections in the matrix
domain [23]. Denote by PMr the projection onto the setMr of L× K matrices of rank r, and by PMH

the projection onto the spaceMH of L× K Hankel matrices. Then, Cadzow’s method is easily seen to
be equivalent to the following matrix recursions

X(n+1) = PMH

(
PMr (X(n))

)
, n = 0, 1, . . .

SinceMH is convex andMr is expandable into convex sets, we deduce from the main result
of [22] that Cadzow’s method has cluster points inMH ∩Mr. On the other hand, applying the method
of Section 4 can be advantageous in the application of projection methods to the case of low rank matrix
constraints such as in the application of Cadzow’s method. In particular, our method shows that the
SVD can be computed only approximately in the first iterations and still belong to the ellipsoids Bi,n,
thus implying possibly important computational savings. Our new method converges to a point in
MH ∩Mr.

An example showing the efficiency of Cadzow’s method is presented in Figure 3 below. In this
experiment, we set the signal-to-noise ratio (SNR) to 3.5 dB and the rank constraint equal to 15
(an appropriate choice for the rank can be made using statistical techniques such as cross-validation).
We took K = bN/2− 10c.

Figure 3. Application of our method to denoising a benchmark Electrocardiogram (ECG) type signal.

6. Conclusions and Future Work

The work presented in this paper is a follow on project to the work of [22]. We obtain strong
convergence results in Hilbert spaces in the case of uniformly convex expandable sets, a notion which
refines the definition of convex expandable sets introduced in [22,23]. We showed that the proposed
methods apply to practical inverse and denoising problems which are instrumental in engineering and
signal and data analytics.

Future work is planned in developing new and faster algorithms for nonconvex feasibility
problems, using acceleration schemes such as Richardon’s extrapolation [34].
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Appendix A. Definition of the Total Variation (TV) Norm

Recall that a function u is in BV(Ω) for a bounded open set Ω ⊂ Rd if it is integrable and there
exists a Radon measure Du such that∫

Ω
u(x)div g(x)dx = −

∫
Ω
〈g, Du(x)〉dx

for all g ∈ C1
c

(
Ω,Rd

)
. This measure Du is the distributional gradient of u. When u is smooth,

Du(x) = ∇u(x)dx, and TV-norm is equivalently the integral of its gradient magnitude,

‖u‖TV(Ω) =
∫

Ω
|∇u|dx.

For p ∈ [1,+∞], the Lp-TV norm is defined by

‖u‖p,TV(Ω) =

(∫
Ω
|∇u|pdx

) 1
p

. (A1)

For p ∈ (0, 1), formula (A1) defines a quasi-norm which is nonconvex, called the Lp-TV norm by abuse
of language, as is common in the image processing community.

Appendix B. Niculescu’ Lemma

Niculescu’s Lemma [35] (Theorem 2), [36] is a converse of the Cauchy-Schwarz inequality. It can
be stated as follows.

Lemma 4. Assume there exist two positive real numbers ω and ω′ such that

〈x−ωy | x−ω′y〉 ≤ 0.

Then, we have
〈x, y〉

〈x, x〉 1
2 〈y, y〉 1

2
≥ 2√

ω
ω′ +

√
ω′
ω

.
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