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A novel Motion Cueing Algorithm based on real-time optimization and
periodic invariant sets

Martin Soyer1,2, Sorin Olaru2, Zhou Fang1

Abstract— This paper deals with control design of Motion
Cueing Algorithms for driving simulation. The development
of driving-assistance systems and the gradual move towards
autonomous driving led automobile manufacturers to focus on
high performance driving simulation in order to validate novel
functionalities and driving confort before production. Driving
simulators are currently constrained environments because of
the workspace size and the actuators resistance. As part of the
software operating the platform, a control block has to manage
the position of a cabin by guaranteeing realistic acceleration
feelings to a driver. In this purpose, the controller is usually
design within Model Predictive Control (MPC) framework.
However large prediction horizons and constrained tracking
problems implies heavy computational burden. In this paper,
a novel MPC-based motion cueing algorithm is proposed
considering periodic invariant sets as a key concept to decrease
the complexity of the real-time optimization.

I. INTRODUCTION
This structure of such a virtual driving simulator is

illustrated in Fig 1 on Renault’s platform, ULTIMATE which
is a Symmetric Large Displacement Systems with a less
than 1500 kg payload [1]. The control of the underlying
mechanical system represents the ultimate goal of the present
control application while the performance is being evaluated
in terms of the driver stimuli.

In the cabin, a driver handles, with practically all the real
world degrees of freedom, a virtual vehicle. This virtual
vehicle is receiving drivers’ maneuver signals and simulates
its movements within a software block that delivers the
acceleration profile that need to be rendered to the driver. This
acceleration profile represents a reference signal for the high
level control system which in turn is in charge of providing
references to the lower level control blocks:
• position references to rails control systems
• tilt angles references for the hexapod control.

This cascaded control process is depicted in a schematic way
in Fig 2.

This paper will focus on the control block that provides
positions in this constrained workspace (compared to a real
situation in a outdoor environment) in order to maximize the
acceleration rendering of the driver and consequently to avoid
motion sickness [2]. This system is known in the literature
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Fig. 1. Renault’s ULTIMATE Driving Simulator

as Motion Cueing Algorithm (MCA) and it represents a
research interest for industrial and academics for decades.
Historically, the first motion cueing algorithms were filter-
based and are still used in industry due to their Real-Time
implementation attractiveness, the main principle is to isolate
high frequency movements by reproducing their accelerations
and to compensate the gravity feelings using the tilt with
low frequency accelerations. The main drawback of a such
approach is the relative conservatism due to the constraints
avoidance design philosophy. In other words those kind of
algorithms fail to exploit the whole workspace. Moreover,
filter properties leads to backlash effect [2] and cause motion
sickness when braking. Since the last decades, the literature is
focused on optimization-based algorithms and particularly on
Model Predictive Control (MPC) which was used in MCA for
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the first time in 2004 [3]. MPC-MCA provides a framework
that takes the bounds of the workspace and the limitations of
actuators into account in the computation of control actions
[4], [5], [6], [7], [8].

Recursive feasibility guarantee is a main issue for the class
of real-time optimization-based control [9], [10]. Our design
builds on an alleviated formulation of MPC problem from a
computational point of view and imposes, at each iteration,
that the next state remains into the Maximal Controllable Set
[11] which is the largest controlled invariant admissible sets
with respect to states and inputs constraints. The main benefit
of this formulation besides complexity is the consideration of
a large domain of attraction to avoid conservativeness. This
property can be practically exploited for systems of small
dimensions, but the constraints of the Maximal Controllable
set can easily make the optimization problem difficult to
handle starting from 3 dimensions to higher ones [12]. This
issue needs to be considered for the system controlled by
MCA, especially if the vestibular system is considered in the
model [13]. The main theoretical contribution of this work
on MCA is the simplification of the maximal controllable
set in the constraints imposed for the real-time optimization
by means of a periodic controlled invariant [14] set which
provides a much simpler domain of attraction by maintaining
recursive feasibility of the whole process.

First we focus on the system modelling and describe the
simplifying assumptions, two models will be considered in the
following, in 2 and 3 dimensions. Subsequently, we discuss on
performance criteria for controller design that prevent from
motion sickness and ensure the best acceleration feelings.
Finally, An optimization-based MCA will be proposed using
the periodic invariance properties in order to lighten the
optimization problem by keeping the recursive feasibility.

Notation : A Polytope P in the H-Representation is a set
P = {x ∈ Rn |Fx ≤ g} where F ∈ Rq×n and g ∈ Rq. A
Polyhedron denotes a bounded polytope. A Polyhedron P in
V-Representation is a set P = {

∑n
i λivi/∀i λi ≥ 0} where

{v1, ..., vn} are vertex of the polyhedron. ‖.‖2Q will denotes
the squared weighted 2-norm such that ∀x ∈ Rn ‖x‖2Q =

xTQx where Q is a positive definite n× n matrix.

II. DESCRIPTION OF THE SYSTEM AND SIMPLIFIED
ASSUMPTIONS

This paper considers two models of the MCA in order to
represent the main dynamical block with control input which
aims to provide the closest acceleration feelings to the driver,
as close as possible to the real driving situation.

In the following we will concentrate on the linear move-
ments of rails as its action is directly related to the perceived
acceleration while hexapod tends to redistribute weight
acceleration in between axes (tilt coordination).

In both models considered next we employ simplifying
assumptions that rails respond ideally with no inertia1, thus,

1The model being discrete then one can consider the simplifications to
be related to the intersample behavior which is more relevant for the given
perception objective.

the acceleration state computed by MCA is the same with
the one perceived by the driver.

The role of MCA is to preserve as faithfully as possible the
unconstrained acceleration of a vehicle within the constrained
environment. The system has the virtual vehicle acceleration
as input and provides the constrained position to the rail
controller, thus globally it can be assimilated a chain of
integrators subjected to constraints on position (workspace
boundaries), on speed, acceleration and jerk (actuators lim-
itations). Parameters of the ULTIMATE Driving Simulator
are summarized in Table I.

TABLE I
PARAMETERS OF ULTIMATE

Parameter Notation Limit
Position pk 2.6 m
Speed vk 3 m/s

Acceleration ak 5 m/s2

Jerk jk 600 m/s3

Sampling Time Ts 8ms

A. State-Space model with acceleration as a state component
The first model used in the numerical study is a triple

integrator with a 3-dimensional state xk =
[
pk vk ak

]T
and uk = jk :

xk+1 =

1 Ts
1
2T

2
s

0 1 Ts
0 0 1

xk +B =

 1
6T

3
s

1
2T

2
s

Ts

uk
yk =

[
0 0 1

]
xk

subject to constraints : −2.6
−3
−5

 ≤ xk ≤

 2.6
3
5


−600 ≤ uk ≤ 600

(1)

In this model, jerk is weakly constrained whereas state-
space is highly compelling. This constrained LTI model is
generally accepted by motion cueing community and used in
modern MPC-based MCA [4].

B. State-Space model with acceleration as a control action
The second model is a constrained double integrator with

a 2-dimensional state xk =
[
pk vk

]T
and uk = ak :

xk+1 = Axk +Buk

subject to constraints:[
−2.6
−3

]
≤ xk ≤

[
2.6
3

]
−5 ≤ uk ≤ 5

(2)

where
A =

[
1 Ts
0 1

]
and B =

[
1
2T

2
s

Ts

]
The advantage of this model is to have a 2 dimensions

state-space, however the restrictive constraints are moved
toward the input signal.



III. MCA PERFORMANCE CRITERIA FOR CONTROL
DESIGN

In this paper we aim to design a tracking MPC-based
MCA for different linear models with constraints, therefore
the criteria to be optimized at each iteration has an influence
on tracking performance. Despite the relative classical design
framework, the challenges come from the hard constraints and
their implications, from the fact that the reference trajectory
may violate the boundaries of the feasible domain during
a turn or emergency braking and the real time compilation
demands (less than 8ms as sampling rate). We recall the main
role of MCA which is the restitution of this acceleration
and particularly keeping the global shape of the acceleration
profile to guarantee comfort from a feelings perspective
which is actually non-standard feature due the fact that future
trajectories are uncertain.

However, tracking an acceleration in a constrained environ-
ment may imply a drift toward the boundaries of the feasible
domain in the state space and then let a significant part of
the controllable set unused. A solution to avoid the drift is
to regulate the cabin to the center of the workspace with
an unperceived change in the acceleration profile. Similar, a
centering of the control signal toward the center of feasible
interval for actuators will allow an improved controllability
as response to virtual vehicle movements (Figure 2).

As the jerk is weakly constrained in the model (1) it may
evolve rapidly and damage actuators. As a consequence, a
weight for the control action has to be considered in the MPC
cost function. Motion sickness may appear when the acceler-
ation feeling is delayed compared to the expectation of the
driver from visual stimuli [1]. Practically this delay is partly
due to computation of control actions, and consequently even
for LTI model (1) to the solving of optimization problems.
The choice of a quadratic criteria can be advantageous in
view of complexity of (convex) programming.

Tuning the MPC prediction horizon is a sensitive issue,
technically, during the operation of the simulator with a
driver, acceleration trajectory is not known in advance as
long as it depends on the effective driver’s behavior (the
weight on the pedal, braking, turn, reflexes,...). In our control
problem, the tracking trajectory is updated in real-time upon a
software simulation thus leading to a possible abrupt change
of the parameters particularly yref in the MPC cost function
J(x,u,yref ). Moreover, manufacturers can face often in
practice one of these situations :
• A predefined scenario in order to validate a specific

functionality, the driver is guided by instructions of a
supervisor, signaling and traffic laws, then its trajectory
can be planned in advance.

• An autonomous driving scenario in order to study the
driver’s behavior, in that case the trajectory of the vehicle
is well known in advance.

Therefore, acceleration data can be estimated by computer
simulations of an autonomous vehicle or by an average
trajectory of real simulations with other non-optimal MCA
such as filter-based ones.

Criteria for model (1) will be written as follows by reducing
the information to the essential components :

J1
k =

Nh∑
i=1

‖yrefk+i+1 − Cxk+i+1‖2qy + ‖xk+i‖2Qx
+ ‖uk+i‖2R

(3)
While the first and the third components are classical MPC

ingredients, the second aims to introduce a weighting to the
return of the body to the center of the symmetric feasible
domain.

Criteria for model (2) can be written in a more compact
way by excluding prediction on the jerk :

J2
k =

Nh∑
i=1

‖urefk − uk‖2R + ‖xk+i‖2Qx
(4)

Here the tracking objective takes the form of tracking the
input signal but relying it to state contribution.

With these basic elements for modelling performance
criteria, the design of MPC-based MCAs for the two models
(1) and (2) can be formulated according to a classical tracking
MPC approach.

IV. A RECEDING OPTIMIZATION-BASED SOLUTION FOR
TRACKING

In this section we will provide tools to design a MPC-
based MCA with periodic invariance properties in order to
accelerate computation of control action by enforcing the
recursive feasibility. We use for the presentation of the main
definitions a linear discrete-time dynamical model :{

xk+1 = Axk +Buk
yk = Cxk

(5)

with the origin as fixed point and subject to states and control
constraints : {

xk ∈ X, ∀k ∈ N
uk ∈ U, ∀k ∈ N (6)

where X ⊂ Rn and U ⊂ Rm are compact convex set
containing the origin in their respective interior. The system is
assumed to be controllable and the output state yk measurable.
These structures with respect to the MCA model aims to show
the extended framework of the proposed design approach.

A. Preliminary notions

In MPC theory, recursive feasibility guarantee can be
obtained considering invariant sets with respect to states and
inputs constraints. In order to introduce periodic invariance,
we first recall different notions of invariance and controlled
invariance.

Definition IV.1 (Positive invariance). A set Ω is said to be
positively invariant for the autonomous system xk+1 = f(xk)
if xk+1 ∈ Ω, ∀xk ∈ Ω.

Definition IV.2 (Maximal Controllable set). Given a
proper controlled invariant set Ω ⊂ X we define the Maximal
controllable set to Ω, denoted C(Ω), to be the collection of
initial states x0 ∈ X for which there exists a finite admissible
control sequence that brings x0 to Ω.



Definition IV.3 (N -Steps Controllable set to Ω). Given a
controlled invariant set Ω ⊂ X and N ∈ N∗, a set CN is
said to be N-Step controllable set to Ω if Ω can be reached
in at most N steps.

For models (1) and (2) with linear structures, given a
stabilizing feedback law uk = −Kxk, the iterative procedure
in [15] can be used to construct the maximal positively
invariant admissible polyhedral set Ω∞ which is, in fact,
the largest positively invariant set that respect constraints and
the linear control structure.

Then the maximal controllable set to Ω∞ can be infinitely
determined due to the class of polyhedral sets but for LTI
systems finite approximations can be constructed using for
example the reachable set procedure in [11]. A lightened
formulation of MPC with guarantees of recursive feasibility
can be derived from the use of a N -Steps Controllable set
CN as approximation for the maximal controllable set :

minimize
(uk, . . . , uk+Nh−1)

J i
k(xk+1, . . . , xk+p, uk, . . . , uk+p−1)

subject to

xk+1+j = Axk+j +Buk+j , ∀j ∈ J1, NhK
uk+j ∈ U, ∀j ∈ J0, Nh − 1K
xk+1 ∈ CN

(7)

B. Periodic invariance

The main methodological contribution is the using of
periodic invariance property in order to simplify the maximal
controllable set CN by conserving an invariance property to
guarantee the recursive feasibility of MPC.

Definition IV.4 (Periodic invariance [16]). Given p ∈ N∗. A
set C ∈ X containing the origin is said to be p-invariant
if for all initial state xk ∈ C there exists a control
sequence (uk, ..., uk+p−1) ∈ Up such that xk+p ∈ C and
(xk+1, ..., xk+p−1) ∈ X.

In other words a state leaving a p-invariant set returns in
at most p steps. It can be shown that any full dimensions set
containing the origin contained in CN is controlled periodic
invariant with respect to (X,U). In the following, a controlled
p-invariant inner approximation of CN will be denoted C̃N .

In order to exemplify the concept let us consider two sets
C̃1

N and C̃2
N for models (1) and (2) that are respectively p1-

invariant and p2-invariant with p1 = 15 and p2 = 19, these
sets are depicted on Fig.3.

Considering controlled periodic invariant sets, several
finite-time optimization problems denoted by Pi(p, xk) can
be rewritten for the same model i but with a different
optimization cost and optimization structure (i ∈ {1, 2}):

minimize
(uk, . . . , uk+p−1)

J i
k(xk+1, . . . , xk+p, uk, . . . , uk+p−1)

subject to

xk+1+j = Axk+j +Buk+j , ∀j ∈ J1, pK
xk+j ∈ X, ∀j ∈ J1, p− 1K
uk+j ∈ U, ∀j ∈ J0, p− 1K

xk+p ∈ C̃N

(8)
These optimization problems will replace the classic MPC

formulation in order to decrease based on switching the
complexity both off-line and on-line.

Practically, complexity of X is low (a square for a 2D state
space and a cube for a 3D state space) and C̃N one’s is of
the same order, this formulation is consequently less complex
than (7).

Consideration of simpler periodic invariant sets implies a
loss of recursive feasibility from a classical MPC framework
point of view, to compensate for this loss, Algorithm 1 is
described next:
• If the current state is in C̃N , then the optimization

problem (8) is solved for a horizon p.
• Else the state left C̃N , and the problem is solved with

a decreasing horizon until the state returns in C̃N .

Algorithm 1 Tracking with p-invariant MPC
Initialization (x0 ∈ B ⊂ X)
k = 1
j = 1 % index counting the steps of a periodic window
repeat for each k

if xk ∈ C̃N then
j=p
Solve Pi(p, xk)→ (u1k, ..., u

1
k+p−1))∗

else
j=j-1
Solve Pi(j, xk)→ (u1k, ..., u

1
k+j−1))∗

end if
xk+1 = Axk +Bu1k
k = k + 1

until k = Nsimu

Proposition IV.1. The iterative procedure in Algorithm 1 is
recursively feasible if the initial state is in C̃N .

Proof. Assume the procedure is feasible at step k.
• If xk ∈ C̃N which is controlled p-invariant then it exists

(uk, ..., uk+p−1) ∈ Up such that (xk+1, ..., xk+p−1) ∈ X
and xk+p ∈ C̃N .

• If xk 6∈ C̃N , there exists j ∈ J1, p − 1K such
that xk−j ∈ C̃N . Consequently, there exists a con-
trol sequence (uk−j , ..., uk−j+p−1) ∈ Up such that
(xk−j+1, ..., xk, ..., xk−j+p−1) ∈ X and xk−j+p ∈ C̃N .
As a consequence of these two properties there always
exists a control sequence that leads states toward C̃N .



Fig. 3. Left: 3D State space representation for model (1), CN and C̃N ,
Right : 2D State space representation for model (2), CN and C̃N

The receding horizon optimization is in charge of
selecting the horizon p at each time step in order to
enforce this property.

V. SIMULATION RESULTS

The study case elaborated in this simulation considers
the acceleration reference associated to a signal perceived
during a slalom. Here, results from simulations of MPC-
MCA from (7) are compared with results from application
of Algorithm 1 to models (1) and (2). The periodic invariant
set is obtained by contracting an inner approximation of the
maximal controlable set with a periodic index p1.The chosen
prediction horizon is similar to invariance periods : Nh = p1.

Weightings in the criteria are qy = 100, Qx =
diag(100, 1, 50) and R = 1 for model (1), Qx =
diag(100, 1) and R = 50 for model (2).

Acceleration is rendered with timely reaction and respecting
the profile although the constraints are activated. In particular
the shape of the reference profile is respected (fig. 4) and it is
to highlight that the periodic invariant MPC applied to model
(2) reaches saturations in acceleration an is consequently
closer to the reference. However responses of periodic
invariant MCAs are affected by switching of the cost function
which affects the acceleration. All three algorithms are
conservative as they don’t use the whole workspace in position
(fig. 4) altough the 2D system manages the workspace in a
better way, positioning the virtual car closer to the center of
symmetry.

In fig. 5 the jerk is presented as a control action for classical
MPC (7) and Algorithm 1 applied to model 1. We can observe
a more aggressive behavior of control action when state
trajectory leaves C̃1

N as the system tends to return within this
latter set.

From a computational point of view, Table II shows the
theoretical decrease of the number of constraints with respect
to optimization problems to solve during procedures.

Fig. 8 represents computation time of optimization problem
at each iteration as a function of time and confirms the de-
crease of computational burden. In this situation, comparison
between models (1) and (2) is not obvious because p2 is
slightly higher than p1 on one hand and the state trajectory
remains in C̃N in the 2-dimensions case so the optimization
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is always performed in the worst case as it is shown on
Figures 6 and 7.

VI. CONCLUSION

This paper presented a novel MCA that alleviates compu-
tational costs by guaranteeing recursive feasibility properties
and by having similar acceleration rendering performance.
The low complexity periodic invariant sets are representing
the theoretical notions that replaces the costly maximal control
invariant sets of the terminal constraints and long predictions
horizons. Future works should focus on application of such
strategies on more complex models including computational
delays and nonlinearities in order to control hexapod and
improve the acceleration feelings of drivers.



Fig. 6. 3D State space trajectory for p-invariant algorithm for model (1)

TABLE II
COMPLEXITY OF OPTIMIZATION PROBLEM

MPC Formulation Number of constraints
Model (1) Invariant MPC 489

Model (1) p-invariant MPC 170 (worst case)
Model (2) p-invariant MPC 152 (worst case)
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