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ABSTRACT Although the direct sampling method (DSM) has demonstrated its feasibility and robustness
for imaging of small inhomogeneities, mathematical analyses of DSM have been conducted only on the
full-aperture inverse scattering problem. Numerous studies have shown that DSM can also be applied in
the limited-aperture inverse scattering problem, but most of its applications are still heuristic. This study
considers an application, mathematical analysis, and improvement of DSM with a single-incident field only
in the limited-aperture inverse scattering problem. First, we introduce a traditional indicator function of DSM
at a single frequency, establish its mathematical structure, and examine its inherent limitation. To demonstrate
the theoretical result, various results of numerical simulations with synthetic and experimental data are
presented. Next, we consider the multi-frequency indicator function of DSMwith a single-incident direction
to improve imaging performance. For this, we design amulti-frequency indicator function ofMDSM, analyze
its mathematical structure, and theoretically explain the improvement of the imaging of single inhomogeneity
and the limitation on the identification of multiple inhomogeneities. Various numerical simulations with
synthetic and experimental data are presented to validate our results.

INDEX TERMS Direct sampling method, limited-aperture inverse scattering problem, numerical simula-
tions, structure of indicator function.

I. INTRODUCTION
The main goal of the inverse scattering problem is to deter-
mine the unknown targets, such as location, shape, and/or
other physical properties, from the collected scattered fields
or far-field patterns. Owing to its various potential appli-
cations, for example, defects identifications in bridges and
concrete walls [1]–[3], non-destructive testing [4]–[6], and
biomedical imaging such as breast cancer detection [7]–[9]
and brain imaging [10]–[12], numerous scientists, engi-
neers, and so on have been studying this problem recently.
In various real-world applications such as ground-penetrating
radar [13]–[15], synthetic aperture radar [16]–[18], and
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seismic imaging [19]–[21], the range of incident and obser-
vation directions must be restricted. This is known as a
limited-aperture inverse scattering problem. Unfortunately,
this interesting problem is very difficult to solve because
of its inherent nonlinearity and ill-posedness. Consequently,
various algorithms have been developed to solve this prob-
lem, including iterative methods for minimizing the norm
between the measurement data and the one provided by a
numerical model miming the presence of true and man-made
targets [7], [22]–[24]. However, in such iterative methods,
a good initial guess is required to avoid either a very large
number of iterations or being trapped in a local minimum.

To overcome these limitations and obtain a good
initial guess, various non-iterative methods have been
investigated that involve various limited-aperture inverse
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scattering problems, for example, MUltiple SIgnal Classifi-
cation (MUSIC) [25]–[27], Kirchhoff and subspace migra-
tions [28]–[30], and topological derivatives [31]–[33]. One
can refer to [34]–[40] for various inversion techniques applied
in limited-aperture inverse scattering problems. It is notewor-
thy that these techniques yield very good results with a large
number of incident waves and their corresponding scattered
fields, whereas their performances decrease when the number
of the incident waves is not sufficiently large [41]–[44].
Furthermore, we need additional operations, such as singular
value decomposition, and careful threshold of nonzero sin-
gular values (subspace migration), as well as generation of
projection operator onto the noise subspace through a careful
threshold of nonzero singular values (MUSIC), or solving an
adjoint problem (topological derivative).

Direct sampling method (DSM) is also a non-iterative
technique utilized for identifying the location of small tar-
gets or outlining the shape of extended targets. In con-
trast to the other methods, DSM requires either one or a
few incident fields for imaging and is very fast because
it does not need any additional operations. Additionally,
it turned out that DSM is a stable and robust technique in
an inverse scattering problem. One can refer to [45]–[51] for
a detailed description, application, advantages, and funda-
mental limitations. Recently, some authors investigated the
mathematical structure of the DSM indicator function, pro-
posed an improved version, and verified its relationship with
the Kirchhoff migration in full-aperture inverse scattering
problem [52]. Meanwhile, it has been applied heuristically in
the limited-aperture inverse scattering problem; hence, there
is a need to perform a rigorous analysis to establish the
mathematical structure of DSM. This is the motivation of this
study.

In this paper, we consider a DSM with a single-incident
direction to identify two-dimensional small or large dielectric
inhomogeneities in the limited-aperture inverse scattering
problem. We first investigate the mathematical structure of
an indicator function of DSM by establishing a relationship
with a Bessel function of integer order of the first kind,
the range of observation directions, and physical property
about inhomogeneities (location, shape, size, etc). We also
explain the unexplored intrinsic properties of DSM. Sim-
ulation results using synthetic data corrupted by random
noise and real data [53] are exhibited to support theoretical
results and demonstrate the effectiveness and limitations.
Moreover, we introduce a multi-frequency indicator function
of DSM (MDSM) for an improvement in the DSM. In con-
trast to numerous previously conducted studies, MDSM is
effective for imaging small single inhomogeneity, but it is
not effective for many small inhomogeneities. To explain
the theory behind this, we investigate a mathematical theory
of a multi-frequency indicator function by establishing a
relationship with Bessel functions, Struve functions, Legen-
dre polynomials, generalized hypergeometric functions, the
range of incident and observation directions, and physical
property of targets. As in the single-frequency case, the

considered multi-frequency indicator functions are compared
using numerical simulations with synthetic and experimental
data.

Let us emphasize that orthogonality sampling method is
also an effective and stable non-iterative technique, which
requires either one or a few incident fields [54]–[57], and is
very similar to the DSM [58]. This issue, though important it
may be, seems to be outside the scope of this research.

This paper is organized as follows. In section II, we briefly
introduce the basic concept of the direct-scattering problem
and asymptotic expansion formula for the far-field pattern in
the presence of small inhomogeneities. The structure analysis
of the DSM indicator function at a single frequency and
its corresponding numerical simulation results are presented
in sections III and IV, respectively. The indicator function
of DSM using multiple frequencies is designed and ana-
lyzed, and corresponding numerical simulation results are
shown in section V. Section VI presents the conclusions and
perspectives.

II. A TWO-DIMENSIONAL DIRECT-SCATTERING
PROBLEM AND ASYMPTOTIC FORMULA
In this section, we briefly survey the two-dimensional direct-
scattering problem from small dielectric inhomogeneities6m
denoted by 6m = rm + αmDm, for m = 1, 2, · · · ,M ,
where rm denotes the location of the mth dielectric inhomo-
geneities, αm denotes its size, andDm characterizes the shape
of 6m. Let 6 denote the collection of all inhomogeneities,
i.e., 6 =

⋃
m6m. Throughout this paper, we assume that

all inhomogeneities are well-separated from each other. Let
ω = 2π f denote the angular frequency, and εm andµm denote
the dielectric permittivity and magnetic permeability of 6m,
respectively, while εb andµb denote those of the background.
Herein, we assume that all inhomogeneities are non-magnetic
(i.e., the value of magnetic permeability is constant such that
µm ≡ µb = 1.256× 10−6H/m). The piecewise constant
permittivity ε(x) can be defined as follows:

ε(x) =

{
εm for x ∈ 6m

εb for x ∈ R2
\6

Using this, we define the free-space wavenumber, k =
ω
√
εbµb.

Herein, we consider the plane-wave illumination, i.e.,
we set the incident field as uinc(x,d) = eikd·x, where d ∈
S1 denotes the propagation direction, and S1 denotes the
two-dimensional unit circle centered at the origin. Let u(x,d)
denote the time-harmonic total field with transmission con-
dition on the boundary of 6m that satisfies the following
Helmholtz equation:

1u(x,d)+ ω2ε(x)µbu(x,d) = 0.

The total field can be expressed as a sum of the incident and
scattered field, u(x,d) = uinc(x,d)+uscat(x,d). To guarantee
the uniqueness of solution, the scattered field must satisfy the
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following Sommerfeld radiation condition:

lim
|x|→∞

√
|x|
(
∂uscat(x,d)

∂|x|
− ikuscat(x,d)

)
= 0

uniformly in all directions x̂ = x/|x| ∈ S1.
The scattered field, uscat(x,d), can be represented by a

single-layer potential with unknown density φm(r,d) related
to 6 (see [59] for the details) as follows:

uscat(x,d) = −
i
4

∫
6

H (1)
0 (k |x− r|)ϕ(r,d)dr,

where H (1)
0 denotes the Hankel function of order zero of the

first kind. We denote u∞(θ ,d) be the far-field pattern of
scattered field that is defined on S1. Then, following [60],
u∞(θ ,d) satisfies the following equation:

uscat(x,d) =
eik|x|
√
|x|

{
u∞(θ ,d)+ O

(
1
√
|x|

)}
(1)

uniformly in all directions, θ = x/|x| ∈ S1. Based on [59],
[60] and asymptotic form of Hankel function, u∞(θ ,d) can
be expressed as a single-layer potential with unknown density
function, ϕ(r,d):

u∞(θ ,d) =
1+ i

4
√
kπ

∫
6

e−ikθ ·rϕ(r,d)dr. (2)

Since the exact form of density function ϕ(r,d) of equation
(2) is unknown, we cannot design an indicator function of
DSM at this stage. Now, let us assume that the following
relationship holds, for all m = 1, 2, · · · ,M :

αm

√
εm

εb
�
λ

2
, (3)

where λ denotes the given wavelength. Therefore, based
on [61],6m can be regarded as a small inhomogeneity, so the
far-field pattern can be represented by the following asymp-
totic expansion formula below. In the sequel, this will play a
key role in designing the indicator function of DSM.
Lemma 1 (Asymptotic Expansion Formula [60]): Assume

that condition (3) holds. Then, u∞(θ ,d) can be represented
by the following asymptotic expansion formula:

u∞(θ ,d) ≈
k2(1+ i)

4
√
kπ

M∑
m=1

Emeikrm·(d−θ), (4)

where

Em = α2m area(Dm)
(
εm − εb
√
εbµb

)
.

Here area(Dm) denotes the area of Dm.

III. SINGLE-FREQUENCY DSM IN A LIMITED-APERTURE
PROBLEM
In the limited-aperture problem, we define the following
finite set of observation directions, S1obs:

S1obs = {θn = (cos θn, sin θn) : n = 1, 2, · · · ,N } ⊂ S1,

where

θn = θ1 + (θN − θ1)
n− 1
N − 1

.

Then, based on the traditional DSM [45], [46], [52], the
indicator function of DSM in a limited-aperture configuration
can be introduced as follows: for z ∈ � and a fixed incident
direction d,

FDSM(z) =
|〈u∞(θn,d), e−ikθn·z〉L2(S1obs)|

||u∞(θn,d)||L(S1obs)||e
−ikθn·z||L2(S1obs)

, (5)

where� denotes the region of interest (ROI). Here, the inner
product and its corresponding norm are given by

〈f (θn), g(θn)〉L2(S1obs)
=

N∑
n=1

f (θn)g(θn)

and

‖f (θ )‖2
L2(S1obs)

= 〈f (θ ), f (θ )〉L2(S1obs)
,

respectively.
Based on definition (5) and several previously conducted

studies [45], [46], [52], the location of all inhomogeneities,
6m, must be identified via the map of FDSM(z) because
FDSM(z) = 1 at z = rm ∈ 6m and 0 ≤ FDSM(z) < 1 at�\6.
However, in the limited-aperture problem, its results are quite
different from those of the traditional studies; thus, a new
analysis of the indicator function of DSM is needed. In the
sequel, we derive the mathematical structure of indicator
function, FDSM(z). Before starting this derivation, we recall a
useful result derived in [29, Theorem 4.1] that demonstrates a
relationship between an exponential function and an infinite
series of Bessel functions of integer order.
Lemma 2: Let z = |z| (cosφ, sinφ) ∈ R2 and θ =

(cos θ, sin θ ) ∈ S1obs. Then, for sufficiently large N , the
following relationship holds uniformly:

N∑
n=1

eikθn·z ≈
∫
S1obs

eikθ ·zdθ = (θN − θ1)J0(k|z|)

+ 4
∞∑
s=1

is

s
Js(k|z|) cos

s (θN + θ1 − 2φ)
2

× sin
s(θN − θ1)

2
. (6)

Using the asymptotic formula (4) and equation (6), the
mathematical structure of the DSM indicator function (the-
orem 1) can be obtained.
Theorem 1: Assume that the total number of observation

directions, N , is sufficiently large. Let rm − z = |rm −
z|(cosφm, sinφm). Then, the DSM indicator function can be
represented as follows:

FDSM(z) ≈
|81(z, k)+31(z, k)|

max
z∈�
|81(z, k)+31(z, k)|

, (7)
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where

81(z, k) =
M∑
m=1

Emeikd·rmJ0(k|rm − z|) (8)

and

31(z, k) =
4

θN − θ1

M∑
m=1

Emeikd·rm
∞∑
s=1

is

s
Js(k|rm − z|)

× cos
s (θN + θ1 − 2φm)

2
sin

s(θN − θ1)
2

. (9)

Proof: By applying the asymptotic formula of far-field
pattern (4) to indicator function (5), we evaluate

〈u∞(θ ,d), e−ikθ ·z〉L2(S1obs)

=
k2(1+ i)

4
√
kπ

M∑
m=1

Emeikd·rm
N∑
n=1

eikθn·(rm−z)

≈
k2(1+ i)

4
√
kπ

M∑
m=1

Emeikd·rm
∫
S1obs

eikθ ·(rm−z)dθ . (10)

The application of equations (6) and (10) yields that

〈u∞(θ ,d), e−ikθ ·z〉L2(S1obs)

≈
k2(1+ i)(θN − θ1)

4
√
kπ

(
81(z, k)+31(z, k)

)
.

Finally, using Hölder’s inequality,

〈u∞(θ ,d), e−ikθ ·z〉L2(S1obs)

≤ ||u∞(θ ,d)||L2(S1obs)||e
−ikθ ·z

||L2(S1obs)
, (11)

we can obtain equation (7). This completes the proof.

A. PROPERTIES OF AN INDICATOR FUNCTION
Based on the explored structure of indicator function, we can
discover some properties of DSM and methods of improve-
ment of DSM.
Observation 1: Based on the analyzed structure, i.e., equa-

tion (7), we observe that J0(k|rm − z|) = 1 and 31(z, k) = 0
when z = rm ∈ 6m. This is because J0(0) = 1 and
Jn(0) = 0, for n = 1, 2, · · · . This means that it is possible
to identify the location of 6m via the map of FDSM(z). Due
to the oscillating property of the Bessel function, the terms
J0(k|rm − z|) and 31(z, k) are the main causative agents of
generating some artifacts, and their appearance depend on the
value of wavenumber, k .
Observation 2: It is noteworthy that the term J0(k|rm−z|)

is independent of the range of observation directions, but
31(z, k) significantly depends on the range of such direc-
tions. Thus, we can say that the terms J0(k|rm − z|) and
31(z, k) contribute to and disturb the imaging performance,
respectively. Hence, the key idea for improving the imaging
accuracy is to eliminate or lower the magnitude of 31(z, k).
Observation 3: From (9), we can examine that

31(z, k) ∝
1

θN − θ1
.

Thus, if the range of observation direction is wide, the effect
of the term 31(z, k) becomes negligible; correspondingly,
the imaging result will be good. Otherwise, if the range of
such directions becomes narrow, the term 81(z, k) becomes
negligible and the term 31(z, k) can significantly affect the
imaging performance.
Observation 4: Based on the structure of indicator func-

tion established in Theorem 1, it is possible to improve
the imaging performance. The first way to improve it is by
applying high frequency because, for sufficiently large k , the
following asymptotic form holds:

Js(k|r− z|) ≈

√
2

kπ |r− z|
cos

(
kπ |r− z| −

sπ
2
−
π

4

)
.

(12)

We can observe that

31(z, k) = O
(

1

(θN − θ1)
√
k|rm − z|

)
.

Hence, as k −→ +∞, FDSM(z) = 1 at z = rm ∈ 6m and
FDSM(z) = 0 at z ∈ �\6. Unfortunately, this is an ideal
method.
Observation 5: Another way is to eliminate the disturbing

term31(z, k). Since z is arbitrary and rm is unknown, we can-
not control the value of Js(k|rm−z|). Therefore, the condition
on the range has to be set based on the following equation: for
any integer s,

cos
(
s (θN + θ1 − 2φm)

2

)
sin
(
s(θN − θ1)

2

)
= 0. (13)

One possible selection is θN − θ1 = 2π , i.e., a full-aperture
case. Based on [52], we have that

FDSM(z) ≈
|81(z, k)|

max
z∈�
|81(z, k)|

.

Therefore, one can obtain good imaging results since there
is no disturbing term 31(z, k). Except for the full-aperture
case, the other way to satisfy equation (13) is to set θN +θ1−
2φm = π and θN−θ1 = π . One possible solution is to choose
θ1 = φm and θN = π + φm that satisfy equation (13). This
means that one must to know a priori the information about
6m (i.e., value of φm), for all m = 1, 2, · · · ,M . Moreover,
since φm depends both z and rm, selecting an optimal range of
observation directions is difficult. Fortunately, if the range of
the observation directions is wider than π , it will be possible
to obtain a good result, as depicted in Figures 1 and 2.

IV. SIMULATION RESULTS: SINGLE-FREQUENCY CASE
Now,we validate the theoretical results by conducting various
numerical simulations using both synthetic and experimental
data. To compare the performances of the approaches, the
Jaccard index [62], which measures the similarity of two
finite sample sets A and B, is chosen. It is defined as follows:

JIND(A,B)(%) =
|A ∩ B|
|A ∪ B|

× 100. (14)
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FIGURE 1. (Example 1) Maps of FDSM(z) and Jaccard index with
f = 1 GHz, where the red points represent θn.

Herein, the Jaccard index can be computed using FEXACT(z)
as a reference and the index map Fκ (z) defined as a threshold,
for κ ∈ [0, 1], as follows:

FEXACT(z) =

{
1 for z ∈ 6
0 for z ∈ R2

\6

and

Fκ (z) =

{
FDSM(z) if FDSM(z) ≥ κ
0 if FDSM(z) < κ,

respectively. The Jaccard index JIND(FEXACT,Fκ ) can be
drawn as a function of the threshold level, κ .

A. SIMULATION RESULTS FROM SYNTHETIC DATA
A fixed frequency, f = c/λ = 1GHz, is considered where
c = 1/

√
εbµb denotes the speed of light and λ ≈ 0.3m. The

far-field patterns are measured at N observation directions
that are uniformly distributed on S1obs for the single incident
direction d = (−1, 0).

The range and the number of observation directions are
defined by θ1, θN , and N . The angle between two adjacent
directions is given by 1θ = (θN − θ1)/(N − 1). The various
acquisition configurations are presented in Table 1.

The ROI, �, is a square of side length 20λ/3 = 2m
uniformly discretized in 51×51 pixels. The far-field patterns
u∞(θn,d), for n = 1, 2, · · · ,N , are generated by FEld-
berechnung für Körper mit beliebiger Oberfläche (FEKO)
and a 20 dB white Gaussian random noise is added using
the MATLAB function awgn included in signal processing
package.
Example 1 (Imaging of a Small Disk): First, we consider

a single small dielectric disk with radius α ≡ 0.1λ =
0.03m and permittivity ε ≡ 5εb. It is located at r =
(−0.3333λ, 0.6667λ) = (−0.1m, 0.2m)
All the results obtained by combining the configurations

presented in Table 1 are illustrated in Figure 2. Note that we
cannot identify the inhomogeneities when there is only one
receiver even if the number of sources is large and small.

TABLE 1. Values of θ1, θN , and N used to obtained the synthetic data.

FIGURE 2. (Example 2) Maps of FDSM(z) and Jaccard index with
f0 = 1 GHz, where the red points represent θn.

Additionally, all inhomogeneities cannot be identified if the
observation range is too narrow as demonstrated in cases A1
andA2. In cases A3, A4, and A5which satisfy π ≤ θN−θ1 ≤
2π , the inhomogeneities,6m, can be identified via the map of
FDSM(z). Based on the Jaccard index (bottom row), it can be
shown, as expected, that the larger the range of observation
directions is, the better the results are.
Example 2 (Three Small Dielectric Disks With the Same

Size and Permittivity): Here, we consider a group of three
small dielectric disks 6m with αm ≡ 0.1λ0 = 0.03m
and εm ≡ 5ε0, m = 1, 2, 3. Their locations are r1 =
(−8λ0/3, 0) = (−0.8m, 0), r2 = (4λ0/3,−2λ0) =
(0.4m,−0.6m), and r3 = (λ0/3, 2λ0) = (0.1m, 0.6m).

Figure 2 illustrates the results concerning the configura-
tions presented in Table 1. Even though more oscillations are
observed in the map of FDSM(z) because of the interaction
between inhomogeneities, the results are almost similar to
those of Example 1.
Example 3 (Large Dielectric Disk): In this example,

we investigate the feasibility of employing the DSM for
imaging of a large target. Thus, we consider the imaging of a
large disk located at r = (−λ0,−λ0) with radius αm ≡ λ0.
The dielectric permittivity is given by ε ≡ 5ε0.
As shown in Figure 3, contrary to the results of Example 2,

we cannot identify the exact shape and location from the
map of FDSM(z) with broad (i.e., θN − θ1 ≥ π ) ranges
of observation directions but with narrow range of incident
directions. Hence, further improvement is required.

B. SIMULATION RESULTS FROM REAL DATA
In this subsection, we present some results from the Fres-
nel experimental data [53] to validate theoretical results.
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FIGURE 3. (Example 3) Maps of FDSM(z) and Jaccard index with
f = 1 GHz, where the red points represent θn.

TABLE 2. Vales of θ1 and θN , and N are utilized for the numerical
simulations with experimental data.

We consider the imaging of two dielectric cylinders at
f = 4GHz. The ROI, �, is set to a square of side length
4λ ≈ 0.3m which is uniformly discretized with 51 × 51
pixels. We note the following:

• the full-aperture setting is not available due to the exper-
imental configuration. In particular, the maximum range
of observation directions is θ1 = 60◦ and θN = 300◦ for
N = 49.

• the scattered field was measured within the near-field
configuration and cannot be approximated by the
far-field pattern.

We refer to [53] for the additional details regarding the
employed experimental set-up and various cases presented in
Table 2.
Example 4 (Two Small Dielectric Disks With the Same

Size and Permittivity): The locations of the targets are
(−0.012m,−0.045m) and (0m, 0.045m). The radius and
the dielectric permittivity are 0.015m and ε ∝ 3εb, where
εb denotes the background permittivity, respectively.

As depicted in Figure 4, the imaging performance of the
DSM increases with respect to the range of the acquisition
angle, verifying again our theoretical results and the related
discussion in the Observation 3.

V. MDSM IN LIMITED-APERTURE PROBLEM
From the theory and simulation results above, we observe that
it is possible to identify location6m through the DSMbut fur-
ther improvements are still required because the imaging per-
formance significantly depends on the range of observation

FIGURE 4. (Example 4) Maps of FDSM(z) and Jaccard index with
f = 4 GHz, where the red points represent θn.

directions. In numerous previously conducted studies [28],
[49], [63], [64], the application of multiple frequencies yields
results that are better than those obtained through the appli-
cation of a single frequency. To obtain better results, we cor-
respondingly consider the multi-frequency direct sampling
method (MDSM). For this, we introduce an indicator function
operated at numerous frequencies, fp, p = 1, 2, · · · ,P,
as follows:

FMDSM(z)

=

∣∣∣∣∣∣ 1P
P∑
p=1

〈u∞(θn,d; kp), e−ikpθn·z〉L2(S1obs)
||u∞(θn,d; kp)||L2(S1obs)||e

−ikpθn·z||L2(S1obs)

∣∣∣∣∣∣ , (15)

where u∞(θ ,d; kp) denotes the far-field pattern defined in
equation (1) at kp, p = 1, 2, · · · ,P. Here, we set k1 <

k2 < · · · < kP, and let Fp denote the set of measurement
data

Fp =
{
u∞(θn,d; kp) : p = 1, 2, · · · ,P, θn ∈ S1obs

}
.

Notice that the improvement of multi-frequency based tech-
niques has been validated on the basis of statistical hypothesis
testing [28], [65], [66]. However, most of these are considered
multi-static measurement configurations, so it is difficult to
explain the improvement of FMDSM(z). Instead, based on the
fact that reducing the oscillating pattern of the Bessel function
is a method of improvement, we explain why FMDSM(z) is an
improved version of FDSM(z).

A. ANALYSIS OF IMAGING FUNCTION: SINGLE
INHOMOGENEITY
For the sake of simplicity, let us consider the imaging of
a single inhomogeneity 6 = r + αD with permittivity ε.
We discuss the result in Theorem 2.
Theorem 2 (Single Inhomogeneity Case): Assume that

the total number of applied frequencies, P, and observa-
tion directions, N , are large enough. Let r − z = |r −
z|(cosφ, sinφ). Then, FMDSM(z) can be represented as
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follows:

FMDSM(z) ≈
|82(z)+32(z)|

max
z∈�
|82(z)+32(z)|

, (16)

where

82(z) =
1

kP − k1

(
S(z, kP)− S(z, k1)

)
and

32(z) =
P∑
p=1

3′1(z, kp) ≈
∫ kP

k1
3′1(z, k)dk.

Here,

S(z, k)

= kJ0(k|r− z|)+
kπ
2

×

(
J1(k|r− z|)S0(k|r− z|)− J0(k|r− z|)S1(k|r− z|)

)
and

3′1(z, k) =
4

θN − θ1

∞∑
s=1

is

s
Js(k|rm − z|)

× cos
s (θN + θ1 − 2φm)

2
sin

s(θN − θ1)
2

,

where Sn denotes the Struve function of integer order n and
for sufficiently large N1 ∈ N,

32(z) = O
(

1
N1(θN − θ1)

)
. (17)

Proof: Based on Theorem 1, we have

〈u∞(θn,d, kp), e−ikpθn·z〉L2(S1obs)

≈
k2p (1+ i)(θN − θ1)

4
√
kpπ

(
81(z, kp)+31(z, kp)

)
,

where 81(z, kp) and 31(z, kp) are defined in (8) and (9),
respectively. With this, we observe that

1
P

P∑
p=1

〈u∞(θn,d, kp), e−ikpθn·z〉L2(S1obs)
||u∞(θn,d, kp)||L2(S1obs)||e

−ikpθn·z||L2(S1obs)

=
1
P

P∑
p=1

(
J0(kp|r− z|)+3′1(z, kp)

)
.

Since P and N are sufficiently large, the following indefi-
nite integral of the Bessel function holds (see [67]):∫

J0(x)dx = xJ0(x)+
xπ
2

(
J1(x)H0(x)− J0(x)H1(x)

)
.

We can immediately observe that

1
P

P∑
p=1

J0(kp|r− z|) =
1

kP − k1

∫ kP

k1
J0(k|r− z|)dk

=
1

kP − k1

(
S(z, kP)− S(z, k1)

)
.

Based on the uniform convergence of Jacobi-Anger expan-
sion, 31(z, k) converges uniformly. Thus, for every positive
real number ε, there exists a sufficiently large natural number,
N1 ∈ N, such that∣∣∣∣∣∣3′1(z, kp)− 4

θN − θ1

N1∑
s=1

is

s
Js(kp|r− z|)

× sin
(
s(θN − θ1)

2

)
cos

(
s(θN + θ1 − 2φ)

2

)∣∣∣∣ < ε. (18)

This means that

1
P

P∑
p=1

3′1(z, kp)

≈

∫ kP

k1
3′1(z, k)dk

=
4

(θN − θ1)(kP − k1)

N1∑
s=1

is

s
sin
(
s(θN − θ1)

2

)
× cos

(
s(θN + θ1 − 2φ)

2

)∫ kP

k1
Js(k|r− z|)dk.

Now, assume that z approaches to r, then
Js(k|r − z|) −→ 0, for all s = 1, 2, · · · ,N1. Consequently,∑P

p=13
′

1(z, kp) becomes negligible. Assume that z is located
away from r such that k1|r − z| � N 2

1 − 0.25. Then, based
on (12),∫ kP

k1
|Js(k|r− z|)|dk �

√
2(kP − k1)√

(N 2
1 − 0.25)π

,

we obtain that∣∣∣∣∣∣
P∑
p=1

3′1(z, kp)

∣∣∣∣∣∣ � 4
√
2N1

(θN − θ1)
√
(N 2

1 − 0.25)π

≤
4
√
2

N1(θN − θ1)
√
π
= O

(
1

N1(θN − θ1)

)
.

Hence, we can obtain (16) and (17).

B. PROPERTIES OF INDICATOR FUNCTION
Now, we discuss some properties of the FMDSM(z), and com-
pare its imaging performance with the FDSM(z).
Observation 6: Since (S(z, kP)− S(z, k1))/(kP − k1) = 1

(see Figure 5) and 31(z, kp) = 0, for p = 1, 2, · · · ,P, when
z = r ∈ 6, then map of FMDSM(z) contains maximum
amplitude at z = r ∈ 6. However, some artifacts still exist in
themap ofFMDSM(z). Note that the appearance of unexpected
artifacts highly depends on the range of observation direc-
tions and total number of applied frequencies. For the detail,
if the range of observation directions is narrow or the total
number of applied frequencies, P, is small, then the artifacts
that show up can disturb the recognition of the location of
inhomogeneities, while good imaging results can be retrieved
if the range is wide and the total number is large enough.
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FIGURE 5. Two-dimensional plots of
∣∣J0(k|z|)

∣∣ for f = 1 GHz and∣∣(S(z,kP )−S(z,k1)
)
/(kP − k1)

∣∣ for f1 = 700 MHz and fP = 1.3 GHz.

Observation 7: Similar to the properties of a single-
frequency DSMdiscussed in the Observation 2, the contribut-
ing term of MDSM, (S(z, kP) − S(z, k1))/(kP − k1), is also
independent of the range of observation directions, whereas
the disturbing term

∫ kP
k1
31(z, k)dk is not. This implies that

we have to reduce the effect of
∫ kP
k1
31(z, k)dk to improve the

imaging performance.
Observation 8: In the full-aperture configuration (θN −

θ1 = 2π ), we can observe that

FDSM(z) ∝ |J0(k|r− z|)|

and

FMDSM(z) ∝ |S(z, kP)− S(z, k1)| .

This implies that MDSM exhibits a better imaging per-
formance than the single-frequency DSM due to oscilla-
tion patterns, as demonstrated in Figure 5. A similar phe-
nomenon can be examined in the case of limited-aperture
problem.

C. SIMULATION RESULTS
To validate the result of Theorem 2 and several properties
discussed above, we conduct several numerical simulations.
For multiple frequencies, we consider 7 frequencies ranging
from f1 = 700MHz to fP = 1.3GHz with step size 4f =
100MHz and 8 frequencies ranging from 1GHz to 8GHz
with a step size of 1GHz for synthetic and experimental data,
respectively.

The accuracies of the methods are compared using Jaccard
index (14) where F(z) represents FMDSM(z). For the con-
figuration, we recall Table 1 for Examples 5, 6, and 7 with
synthetic data.
Example 5 (Small Dielectric Disk): Here, we consider

the imaging of a small dielectric disk, 6, with radius α ≡
0.1λ0 = 0.03m and permittivity ε ≡ 5ε0. It is located at
r = (−0.3333λ0, 0.6667λ0) = (−0.1m, 0.2m).
By applying FMDSM(z), we obtain the imaging result

depicted in figure 6. This result shows that the location
of inhomogeneity, 6, is successfully identified by employ-
ing the map of FMDSM(z). Furthermore, the results of the
Jaccard index demonstrate that it is an improved version

FIGURE 6. (Example 5) Maps of FMDSM(z) and Jaccard index with
f = {700 MHz,800 GHz, · · · ,1.3 GHz}, where the red points represent θn.

FIGURE 7. (Example 6) Maps of FMDSM(z) and Jaccard index with
f = {700 MHz,800 GHz, · · · ,1.3 GHz}, where the red points represent θn.

of DSM (compare to Figure 1) as stated in the Observa-
tion 8. However, the result of FMDSM(z) is not significantly
improved since the total number and range of incident fields
are increased. On the other hand, when more numerous and
various incident fields are considered, the imaging perfor-
mance of FMDSM(z) can be improved.
Example 6 (Three Small Dielectric Disks With the Same

Size and Permittivity): Based on the information of inhomo-
geneities from Example 2, 6m with αm ≡ 0.1λ0 = 0.03m
and εm ≡ 5ε0, m = 1, 2, 3. The locations, rm, of 6m are
as follows: r1 = (−8λ0/3, 0) = (−0.8m, 0), r2 = (4λ0/
3,−2λ0) = (0.4m,−0.6m), and r2 = (λ0/3, 2λ0) =
(0.1m, 0.6m).

Based on Figure 7, we observe that FMDSM(z) cannot be
applied for imaging of multiple inhomogeneities even with a
wide range of incident directions. Sometimes, although the
multi-frequency based technique is known as an improved
version, it is impossible to identify the location of inhomo-
geneities via FMDSM(z). We can also examine similar result
in microwave imaging, refer to [50].
Example 7 (Large Dielectric Disk): The location and

size of a large inhomogeneity are r = (−λ0,−λ0) =
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FIGURE 8. (Example 7) Maps of FMDSM(z) and Jaccard index, where the
red points represent θn.

(−0.3m,−0.3m) and αm ≡ λ0 = 0.3m, respectively. The
dielectric permittivity is given by ε ≡ 5ε0.
As we already seen, a single small target can be visualized

in the map of FMDSM(z), whereas a large target cannot even
visualized with a wide range of incident directions (Figure 8).
This result shows the fundamental limitation of MDSM and
explains that an improvement is still needed.

D. ANALYSIS OF IMAGING FUNCTION: MULTIPLE
INHOMOGENEITIES
Based on the Example 6, some inhomogeneities cannot be
recognized via MDSM. This means that some phenomena
still cannot be explained by the Theorem 2. Thus, further
analysis of imaging function in the presence of multiple
inhomogeneities is required to explain the phenomena where
the location cannot be found. The theoretical reason is the
following.
Theorem 3 (Multiple Inhomogeneities Case): Assume that

there exists several inhomogeneities 6m and the total num-
bers of receivers, N , and frequencies, P, are sufficiently large.
Let d·rm = |rm| cosψm and rm−z = |rm−z|(cosφm, sinφm).
Then, FMDSM(z) can be represented as follows:

FMDSM(z) ≈
|83(z)|

max
z∈�
|83(z)|

,

where

83(z) =
M∑
m=1

α2m(εm − ε0)
(kP − k1)

√
εbµb

(
8

(1)
3 (z)+8(2)

3 (z)+8(3)
3 (z)

)
with

8
(2)
3 (z) = 2

∞∑
t=1

cos(tψm)
∫ kP

k1
J0(k|rm − z|)Jt (k|rm|)dk,

8
(3)
3 (z) =

1
kP − k1

∫ kP

k1
31(z, k)

×

(
J0(k|rm|)+ 2

∞∑
t=1

cos(tψm)Jt (k|rm|)

)
dk,

and
1) if |rm| = |rm − z| then

8
(1)
3 (z) = kP

(
J0(kP|rm − z|)2 + J1(kP|rm − z|)2

)
− k1

(
J0(k1|rm − z|)2 + J1(k1|rm − z|)2

)
+

∫ kP

k1
J0(k|rm − z|)dk, (19)

2) if |rm| > |rm − z| then

8
(1)
3 (z) = 92(|rm|, |rm − z|, kP)

−92(|rm|, |rm − z|, k1), (20)

3) if |rm| < |rm − z| then

8
(1)
3 (z) = 92(|rm − z|, |rm|, kP)

−92(|rm − z|, |rm|, k1). (21)

Here,

92(α, β, k) =
∞∑
s=1

(−1)s(α2 − β2)
(s!)24s(2s+ 1)

Ls

(
α2 + β2

α2 − β2

)
k2s+1

and Ls denotes a Legendre polynomial of order s. Further-
more, if 0 < kP|rm − z| �

√
2, then

1
kP − k1

∫ kP

k1
J1(k|rm − z|)2dk � O(1).

Additionally, for sufficiently large N ∈ N,

|8
(2)
3 (z)| = O

(
1

N (θN − θ1)

)
.

Proof: Based on the result in Theorem 1, we can observe
that
P∑
p=1

〈u∞(θn,d, kp), e−ikpθn·z〉L2(S1obs)
||u∞(θn,d, kp)||L2(S1obs)||e

−ikpθn·z||L2(S1obs)

≈
|83(z)|

max
z∈�
|83(z)|

,

where

83(z) =
M∑
m=1

α2m(εm − ε0)
(kP − k1)

√
εbµb

(
8

(1)
3 (z)+8(2)

3 (z)+8(3)
3 (z)

)
with

8
(1)
3 (z) =

1
P

P∑
p=1

J0(kp|rm|)J0(kp|rm − z|),

8
(2)
3 (z) = 2

∞∑
t=1

cos(tψm)

1
P

P∑
p=1

J0(kp|rm − z|)Jt (kp|rm|)

,
8

(3)
3 (z) =

1
P

P∑
p=1

31(z, kp)

×

(
J0(kp|rm|)+ 2

∞∑
t=1

cos(tψm)Jt (kp|rm|)

)
.
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Since P is sufficiently large, then the following relations hold
(see [67]):∫

J0(x)2dx = x
(
J0(x)2 + J1(x)2

)
+

∫
J1(x)2dx

and∫ x

0
J0(αt)J0(βt)dt =

∞∑
s=1

(−1)s(α2 − β2)
(s!)24s(2s+ 1)

×Ls

(
α2 + β2

α2 − β2

)
x2s+1, β < α.

Consequently, we can obtain (19), (20), and (21). Analo-
gously, since P is sufficiently large, it follows that

8
(2)
3 (z)=

2
kP−k1

∞∑
t=1

cos(tψm)
∫ kP

k1
J0(k|rm − z|)Jt (k|rm|)dk

and

8
(3)
3 (z) =

1
kP − k1

∫ kP

k1
31(z, k)

×

(
J0(k|rm|)+ 2

∞∑
t=1

cos(tψm)Jt (k|rm|)

)
dk.

Assume that 0 < kP|rm − z| �
√
2. Then, the following

asymptotic form holds, for small arguments 0 < x �
√
s+ 1:

Js(x) ≈
1

0(s+ 1)

(x
2

)s
, (22)

where 0(x) denotes the Gamma function. Therefore, we have
that ∫ kP

k1
J1(k|rm − z|)2dk � O(kP)

and, correspondingly

1
kP − k1

∫ kP

k1
J1(k|rm − z|)2dk � O(1).

Now, by utilizing inequality (18), then there exists a large
number, N? ∈ N, such that

1
kP − k1

∫ kP

k1
J0(k|rm|)31(z, k)dk

=
4

(kP − k1)(θN − θ1)

N?∑
s=1

is

s
cos

(
s(θN + θ1 − 2φm)

2

)
× sin

(
s(θN − θ1)

2

)∫ kP

k1
J0(k|rm|)Js(k|rm − z|)dk.

Assume that z is sufficiently close to rm, such that kP|z −
rm| �

√
N? + 1. Then, by using (22), we get that∫ kP

k1
J0(k|rm|)Js(k|rm − z|)dk

≤
|rm − z|s

2ss!

∫ kP

k1
|k|sdk

≤
(ks+1P − ks+11 )|rm − z|s

2s(s+ 1)!
�

kP
√
N? + 1

2s(s+ 1)!
.

According to [68, p. 362, 9.1.62], for x ∈ R, we have the
following inequality:

Js(x) ≤
|x|s

2ss!
, x ∈ R.

By applying Hölder’s inequality, we obtain that∫ kP

k1
J0(k|rm|)Js(k|rm − z)dk ≤

|rm − z|s

2ss!

∫ kP

k1
|k|sdk

≤
(ks+1P − ks+11 )|rm − z|s

2s(s+ 1)!
.

If z is far away from rm such that k1|z − rm| � N 2
? − 0.25,

then the application of (12) yields∫ kP

k1
J0(k|rm|)Js(k|rm − z|)dk

≤

∫ kP

k1

√
2

kπ |rm − z|
cos

(
k|rm − z| −

sπ
2
−
π

4

)
dk

≤

√
2

π |rm − z|
(
√
kP −

√
k1) ≤ kP

√
2

kPπ |rm − z|

≤ kP

√
2

π |N 2
? − 0.25|

.

Based on the uniform convergence of Jacobi-Anger expan-
sion, there exist large numbers, N1,N2 ∈ N, such that

1
P

P∑
p=1

31(z, kp)J0(kp|rm|) ≤ O
(

1
N1(θN − θ1)

)
and

2
P

P∑
p=1

31(z, kp)

(
∞∑
t=1

cos(tψm)Jt (kp|rm|)

)

≤ O
(

1
N2(θN − θ1)

)
.

Hence, by setting N = min{N1,N2} and applying Hölder’s
inequality (11), we obtain that

|8
(2)
3 (z)| = O

(
1

N (θN − θ1)

)
.

This completes the proof.
Now, based on our structure analysis verified in Theorem 3,

we elucidate the reason of the unexpected phenomena demon-
strated in Figure 7 as follows.
Remark 1 (Limitation of FMDSM(z) for Imaging of Multiple

Inhomogeneities): Contrary to the result of FMDSM(z) for
imaging a single inhomogeneity, FMDSM(z) comprises the
following three terms:8(1)

3 (z),8(2)
3 (z), and8(3)

3 (z). Note that
8

(3)
3 (z) = 0 if z = rm.
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Now, we focus on the behavior of8(1)
3 (z) and8(2)

3 (z) when
z = rm 6= 0. Since rm is fixed and |rm| > 0, it follows that

8
(1)
3 (z) =

∞∑
s=1

(−1)s

(s!)24s(2s+ 1)
|rm|2sLs(1)(k2s+1P − k2s+11 )

= 1F2

(
1
2
; 1,

3
2
;
|rm|2k2P

4

)
kP

− 1F2

(
1
2
; 1,

3
2
;
|rm|2k21

4

)
k1, (23)

where aFb denotes the generalized hypergeometric function
of orders a and b. Furthermore, based on the integral of Bessel
function (see [69]), 8(2)

3 (z) can be written as follows:

8
(2)
3 (z) = 2

∞∑
t=1

cos(tψm)
∫ kP

k1
Jt (k|rm|)dk

=

∞∑
t=1

cos(tψm)
2t−10(t + 2)

×

{
1F2

(
t + 1
2
; t + 1,

t + 3
2
;−

1
4
k2P|rm|

2
)
kP

− 1F2

(
t+1
2
; t+1,

t + 3
2
;−

1
4
k21 |rm|

2
)
k1

}
, (24)

Hence, by employing equations (23) and (24), and properties
of the hypergeometric functions, there exist m and m′ such
that for m 6= m′,

FMDSM(rm;d) 6= FMDSM(rm′;d).

Therefore, the map of FMDSM(z) has different amplitudes at
each of the locations of the inhomogeneities even if their
physical properties (e.g., permittivity, size, shape, etc) are
the same. This is the theoretical reason why sometimes we
cannot identify all the inhomogeneities by applying the map
of FMDSM(z).
Based on remark 1, we can conclude that one must apply

numerous incident fields to overcome this limitation.We refer
to [28], [52], [70], [71] for related works.

VI. CONCLUSION
This study considered the DSM with a single-incident field
in a limited-aperture inverse scattering problem. By utilizing
the asymptotic formula of far-field pattern, the mathematical
structure of the indicator functions for single- and MDSM
in the limited-aperture problem was identified. We explored
the fact that DSM is related to the infinite series of Bessel
function of integer orders, range of observation and inci-
dent directions, and physical information about targets (e.g.,
location, shape, size, and electrical permittivity). To improve
imaging performance, the indicator function of MDSM was
introduced and analyzed when only a single small homogene-
ity exists in the medium and theoretically proved that it can be
represented by an infinite series of Bessel functions of integer
order and Struve function. However, the indicator function
cannot be applied in the case of numerous well-separated

inhomogeneities. To elucidate this theory, the mathemati-
cal structure of indicator function of MDSM for multiple
inhomogeneities was analyzed by establishing a relationship
with an infinite series of the Bessel functions of integer
order, Legendre polynomial, and generalized hypergeometric
function. Various numerical simulations with synthetic and
experimental data were conducted to support our theoretical
results.

Throughout theoretical and simulation results, we cannot
say that the imaging results via DSM and MDSMwith single
incident field do not guarantee complete shaping of the inho-
mogeneities. However, we believe that they could be a good
initial guess of a standard iterative techniques as mentioned
in the introduction.

In this study, we considered the imaging of small and large
targets. In the future, we hope to study an application for the
imaging of arbitrarily shaped targets. Furthermore, real-world
applications still have some limitations. We believe that the
application of numerous incident fields can guarantee better
results. In future work, we hope to improve the DSM to obtain
better results.
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