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Abstract

Most data-driven diagnosis methods that are designed to detect faults, rely
on measuring the mean and variation shifts. However, for incipient fault
detection, these statistical criteria are slightly varying and are difficult to
be accurately evaluated to reach good performances. Indeed, such faults are
more likely to induce slight changes on the probability distribution rather
than particular parametric changes. Therefore, the Jensen-Shannon Diver-
gence(JSD), characterized by high sensitivity in measuring minor changes
between probability distributions, is proposed in this paper. Its efficiency
for detection and estimation is theoretically studied and validated by simu-
lated data considering an auto-regressive (AR) system designing a multivari-
ate data-driven process. The superior detection performances are demon-
strated and compared with other more traditional statistical tests such as
the Hotelling’s T2 and the Squared Prediction Error (SPE) in the Princi-
pal Component Analysis (PCA) framework. Minor crack detection based on
eddy-currents testing (ECT) experimental data are evaluated to highlight
the performances of our proposal. The results show that JSD can detect
minor cracks (0.01mm2 to 0.04mm2) which were not possible when using the
baseline impedance signal measurement. For the fault severity estimation,
the accuracy of the theoretical model derived for Gaussian distributed sig-
nals is shown with an AR system. The maximum relative estimation error
obtained in the worst faults severity conditions is smaller than 2.75% when
the Signal to Noise Ratio (SNR) is larger than 25dB and smaller than 2.15%
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when the Fault to Noise Ratio (FNR) is larger than −21dB. Application for
the fault severity estimation on the ECT data validates the effectiveness of
this fault estimation model.

Keywords: Incipient fault, Fault detection and estimation, Jensen Shannon
Divergence, Data-driven process, Principal Component Analysis.

1. Introduction1

Incipient fault diagnosis plays a key role in the automation of inspection2

procedure and minimization of maintenance activities and costs [1, 2]. An3

incipient fault is mainly characterized by its slowly developing behavior and4

its barely noticeable effects [3, 4, 5]. Besides this type of defect is difficult to5

detect, it is dangerous for a system if its severity is underestimated. The early6

detection of the incipient fault can help to schedule preventive maintenance7

and prevent more serious failures [6]. For quantifying the fault severity, the8

estimation of the incipient fault is necessary.9

The existing methods of fault detection and estimation can be generally10

classified as model-based and data-driven-based solutions [7, 8]. The model-11

based approach is related to the theoretical derivation of the system behavior.12

Its performances widely depend on the accuracy of the mathematical model13

which is degraded due to uncertainties, evolution of operating conditions,14

environmental changes, etc [9]. In contrast to the model-based approach, the15

process-history-based methods are based on the availability of a sufficient16

amount of historical process data to perfectly describe the process behav-17

ior using well-chosen descriptive features [5, 10, 11]. Basically, techniques18

that are often used for data-driven approaches are linked to the evaluation19

of statistical moments with order 1 to 4 (sample mean, variance, skewness,20

and kurtosis), Hotelling’s T2, squared prediction error (SPE), Cumulative21

Sum (CUSUM), ... [7, 12, 13]. These methods are efficient in measuring22

the parameter change of the data but are not accurate enough for incipient23

fault detection. These later seem more likely to cause a change of the prob-24

ability distribution rather than obvious parameter change [14]. Particular25

techniques based on specific distance measures have then to be considered to26

detect such faults [15, 16]. Jensen-Shannon divergence (JSD) is a particular27

symmetrical operation of Kullback-Leibler information. It is a well-known28

tool for detecting the dissimilarities between probability distributions [17, 18].29

It has been used in many domains such as image processing, text categoriza-30
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tion, and subject recognition. Its superior change detection capability has31

been well observed in [19, 20, 21, 22] for particular contexts. Nevertheless,32

to the best of our knowledge, the efficiency of this technique has never been33

considered in the particular working conditions of incipient fault that can be34

masked by the noise environment.35

In this paper, JSD is proposed to detect incipient fault for different noise36

levels in a multivariate data-driven process. Firstly, a theoretical model is de-37

veloped to prove the detection efficiency of the technique. As a preprocessing38

and feature extraction method, Principal Component Analysis (PCA), which39

effectiveness in fault detection and estimation is well known [23, 24, 25, 26],40

is used to reduce the dimensionality of the processed variables [27] and ex-41

tract the most informative feature. Meanwhile, the maximum information42

is kept in this new feature space and the probability density functions of43

the system in healthy and faulty conditions can be derived. The detection44

performances are evaluated considering JSD but also typical statistics algo-45

rithms (Hotelling’s T2 and SPE) with well-proved detection capabilities in46

process health monitoring [7, 26, 28, 29]. These performances are shown us-47

ing a simulated AR process and compared to each other. To experimentally48

validate this detection step, minor material cracks based on Eddy Current49

Testing (ECT) data are considered.50

The existence of material crack is harmful to the safety of an industrial51

system particularly in the transportation industry (planes, rockets, trains,52

vehicles, · · · ). In order to detect these cracks, a regular inspection of the53

system is required during all the production and maintenance process. Non-54

destructive evaluation (NDE) technique can be used to test the inside defects55

of materials and structures without affecting its operating conditions [30, 31].56

For conductive metallic materials, Eddy current based techniques such as57

Pulsed Eddy current (PEC) or Eddy Current Testing (ECT) are the main58

typical ones that are most often used as non-destructive testing methods59

for crack detection [32, 33, 34]. They are based on the principle that the60

inhomogeneity due to the defect will cause measurement shifts compared61

to the initial healthy conditions. To be applied in high-dimensional data62

conditions, fault feature extraction methods such as Principal Component63

Analysis (PCA) [35], Independent Component Analysis (ICA) [36], or Fisher64

Discriminant Analysis (FDA) [37] have been applied for the cracks diagnosis.65

Most of these works are focused on large cracks detection. This implies a66

significant visible signature due to the presence of the fault in the eddy67

current signals with a very low influence of the environmental noise. However,68

3



in the case of minor cracks, which can be considered as incipient faults,69

the measurement variation due to the fault is weak. The fault signature70

compared to the roughness leads to a measured signal that does not clearly71

indicate the presence of the crack. Particularly, the measurement accuracy is72

largely affected by external measurement environment, the roughness of the73

surface, internal and sensor noise sensitivity, · · · [33, 38]. Thus, the detection74

and diagnosis for these incipient cracks in a high noise level are more tricky.75

In this paper, Jensen-Shannon divergence is proposed and used for incipient76

cracks detection in a high noise level based on the experimental ECT data.77

With our proposal, we show that it is possible to detect smaller cracks than78

those that have already been evaluated in the literature to the best of our79

knowledge.80

The second aim of this paper concerns the fault severity estimation. Based81

on the JSD, we propose a theoretical model derived for Gaussian distributed82

data. The efficiency of this estimation process is validated using the simu-83

lated AR process and the experimental ECT data. As the incipient faults84

lead to very low fault severities they can be masked by the environmental85

noise of the process. Then, the accuracy of our estimation results is dis-86

cussed for several operating conditions corresponding to different Signal to87

Noise Ratio (SNR) and Fault to Noise Ratio (FNR). With our proposal this88

estimation is, to the best of our knowledge, the first that have been obtained89

for those crack size in noisy environment. Offering a slight overestimation of90

the fault severity and a very low error rate, this proposal allows to have a91

valuable safety margin in the health monitoring process.92

This paper is organized as follows. The detailed incipient fault diagno-93

sis process and main notations are described in Section 2. Section 3 and94

4 respectively presents the derived incipient fault detection and estimation95

models with the evaluation of their performances and their application to96

ECT data. The last section 5 concludes the paper.97

2. Incipient Fault Diagnosis Process98

2.1. Main notations and fault model99

Let’s first define the main notations used throughout the paper:100

• X[N×m] = (x1, · · · ,xj, · · · ,xk, · · · ,xm) represents original data matrix,101

in which m is the number of variables and N is the sample size. xk is the102

kth vector such as xk = [x1k, · · · , xik, · · · , xNk]ᵀ, where i = [1, · · · , N ]103
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is the sample number. xik is then the ith data sample of the kth vari-104

able. xj denotes the variable affected by the fault occurred within the105

sampling interval [b,N ], (ᵀ) is the transpose matrix operator.106

• S is the sample data covariance matrix,107

• X̄[N×m] is the centered and normalized matrix.108

• l corresponds to the dimension of the principal subspace, leading to109

the l first principal components. The m − l remaining ones give the110

dimension of the residual subspace.111

• P[m×m] is the eigenvectors matrix (also denoted the loadings matrix) of112

S associated to the eigenvalues Λ, such as diag(Λ) = [λ1, · · · , λk, · · · , λm].113

• DJS(.) denotes Jensen-Shannon Divergence, DJSAn
is the approximated114

theoretical equation of JSD derived for Gaussian distributed data.115

• l is the crack length, and d is crack depth.116

• pdf denotes the probability density function.117

• PFA refers to the probability of false alarm, and PD is the probability118

of detection.119

• The mark (∗) refers to faultless and noise-free data, mark (˜) mentions120

the faulty and noise-free data function, (˘) marks the faulty and noisy121

data, (ˆ) marks the estimated function.122

For our work, the fault model is based on the assumption that the fault123

severity is constant. The fault occurres at instant time b on the jth variable,124

whereas its last (N − b) observations are affected by the fault.125

A white Gaussian signal vk ∼ N (0, σ2
v) is used to simulate the noise in126

the environment. The noise matrix is then V[N×m] = (v1, · · · ,vk, · · · ,vm),127

where vj = [v1j, · · · , vij, · · · , vNj]ᵀ is the noise vector of N samples that128

affecting the jth variable. Thus, the faulty variable xj can be written as:129

xj = x∗j + fj + vj (1)

where fj is the fault and its structure is denoted as:130

fj = g × [0 . . . 0 . . . x∗bj . . . x
∗
Nj]

ᵀ (2)

where g is the fault severity amplitude.131
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2.2. Diagnosis process132

The diagnosis procedure proposed for fault detection and estimation of a133

multivariate data-driven process in the Principal Component Analysis frame-134

work is shown in Fig.1.135

Figure 1: Proposed fault diagnosis procedure

The main operations of the diagnosis procedure based on JSD, T2 and136

SPE are described in the following items:137

• The input data of PCA are first preprocessed and mean-centered. The138

PCA model is then established based on the reference healthy data.139

So, the eigenvalues and eigenvectors matrices Λ and P are derived140

respectively.141

• The reference score Th and the faulty score Tf are obtained from the142

data matrices using the same eigenvector matrix P.143

• The probability densities of each latent score of Th and each latent144

score of Tf are estimated using a normal kernel estimator.145

• The diagnosis using Jensen-Shannon divergence is based on the pdfs146

of the first principal component scores of Th and Tf . The diagnosis147

using Hotelling’s T2 is based on the principal component scores in the148

principal subspace, and SPE uses the scores of the residual one.149
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2.3. Materials and methods for our proposal150

2.3.1. Principal Component Analysis151

In fault detection process for multivariate systems, Principal Component152

Analysis (PCA) has been widely used as preprocessing (filtering and dimen-153

sion reduction) or feature extraction (fault feature, component selection, . . . )154

[24, 25, 26, 29, 30, 39]. In our study, PCA is used for dimension reduction155

and component selection. Its major steps can be summarized as follows.156

First, the covariance matrix S of sample data can be defined as:157

S =
1

N − 1
X̄ᵀX̄ (3)

where X̄[N×m] is the centered and normalized matrix. Each vector of this158

matrix X̄ is written as:159

x̄k =
xk − µk√

σ2
k

(4)

where µk and σ2
k are the mean and the variance for the kth variable (k =160

1, 2, · · · ,m). The Principal Component scores matrix T[N×m] can be deter-161

mined using the linear transformation:162

T[N×m] = X̄[N×m]P[m×m] = (t1, · · · , tk · · · , tm) (5)

where P = (p1, · · · ,pl, · · · ,pm) is the eigenvectors matrix of S associated to163

the corresponding eigenvalues λ1, · · · , λl, · · · , λm.164

The principal subspace is defined by the first l principal components, and165

the residual one is determined by the remaining (m− l) components. In our166

paper, the number of principal components (PCs) l is obtained calculating167

the Cumulative Percent of Variance (cpv) [39, 40].168

cpv(l) =

∑l
1 λk∑m
1 λk

≥ 90% (6)

The number of PCs cumulatively contributing to more than 90 percent169

data variance will lead us to the principal subspace.170

2.3.2. Hotelling’s T2 and SPE171

Typical detection indices are distance-based, aiming at evaluating how172

much a new observation is away from each of the subspaces. The Hotelling’s173

T2 is the typical statistic test based on the principal subspace, and SPE is the174
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typical statistic criterion based on the residual subspace. The observations175

of T2 instant i is:176

T2 =
l∑

k=1

t2ik
λk

(7)

The threshold for T2 can be approximated by:177

T2
l,α =

l(N2 − 1)

N(N − l)
Fl,N−l,α (8)

where Fl,N−l,α is the Fisher distribution with two degrees of freedom, l and178

N − l.179

The observations of SPE at instant i is:180

SPE =
m∑

k=l+1

t2ik (9)

The theoretical threshold of SPE at significance level α is:181

δ2α = ξχ2
h,α (10)

where ξ = γ2/γ1, h = integer(γ21/γ2), integer(o) is the integer value of o and182

χh,α is the Chi-square distribution with h degrees of freedom. The constant183

γc is calculated as γc =
∑m

k=l+1 λ
c
k and λck is the kth eigenvalue to the cth184

power (c={1,2}).185

2.3.3. Jensen-Shannon divergence186

Jensen Shannon divergence (JSD) is a sensitive technique based on Shan-187

non entropy excess of a couple of distributions in regard to the mixture of188

their respective entropies and without assumptions on their types [41]. Con-189

sidering f(t) and q(t) are continuous probability density functions (pdfs)190

corresponding to the random variable t, JSD is the increment of the Shan-191

non entropy. It is defined by a function of the Shannon entropy (SE) and its192

value is denoted DJS such as:193

DJS(f ,q) = SE

[
f + q

2

]
− SE(f) + SE(q)

2
(11)

The JSD can be also written as the symmetric operation of the Kullback-194

Leibler information theoretical function denoted as:195

DJS(f ,q) =
1

2
I(f ||m) +

1

2
I(q||m) (12)
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where m = 1
2
(f + q) is a mixture distribution, I is the Kullback-Leibler196

information [42] defined as:197

I(f ||q) =

∫
f(t)log

f(t)

q(t)
dt (13)

As the divergence has no closed-form, the integral function (13) is numer-198

ically calculated using the Monte-Carlo approximation.199

Otherwise, when the divergence value is theoretically equal to zero, it200

means that the two considered probability density functions are exactly the201

same: the reference one and the tested one are both obtained in healthy202

condition. In real life applications and experimentally measured data, these203

two distributions won’t be exactly the same. Due to the environmental nui-204

sances, the two functions will be slightly different: this will lead to a low205

non-zero divergence due to the random noises. To proceed to an efficient206

decision and accurately highlight whether the incipient crack exists, the de-207

tection must be done with respect to a given threshold. This threshold is208

settled by evaluating the JSD on the pdfs for the process data in healthy209

conditions. Below this threshold, a minimized number of false alarms must210

be considered meaning that there will be a reduced number of false informa-211

tion about the presence of an incipient crack. At the same time, a maximized212

number of true detection of a considered incipient crack should be obtained.213

The evolution of this threshold is then carried out with the receiver operating214

curve representation highlighting the detection performances.215

3. Incipient Fault Detection216

3.1. Fault detection theoretical model217

As mentioned in the previous section 2, PCA is first applied as the pre-218

processing method and feature extraction method. Let’s denote qk and fk219

the pdfs of the first l principal score obtained in faulty and healthy con-220

ditions respectively. For Gaussian distributed signals, we can assume that221

the principal scores are Gaussian distributed. Then, fk ∼ N (µ1, σ
2
1) and222

qk ∼ N (µ2, σ
2
2), where µ1, µ2 are the means and σ2

1, σ2
2 are the variances.223

The mixture distribution mk is computed by mk = 1
2
(qk + fk).224

In the PCA’s model, the mean of the distribution is supposed unchanged225

after the incipient fault occurrence [25, 43] and described in (14).226

µ1 = µ2 (14)
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And for two normally distributed functions sharing the same mean, the com-227

bined distribution is unimodal [44]. In the particular case of incipient faut228

detection, the change on the pdf induced by the incipient fault is very slight.229

Thus, we can consider the assumption that the mixture distribution mk is230

still normally distributed, such as mk ∼ N (µm, σ
2
m). The mean µm and the231

variance σ2
m of mk can be calculated in (15) and (16):232

µm =
1

2
(µ1 + µ2) (15)

233

σ2
m = E(t2)− E(t)2 =

1

2
σ2
1 +

1

2
σ2
2 (16)

The expression of the JSD under the Gaussian distribution assumption234

is:235

DJSAn
(f ,q) =

1

4
[log

σ4
m

σ2
1σ

2
2

+
σ2
1 + σ2

2 + 1
2
(µ1 − µ2)

2

σ2
m

− 2] (17)

In the latter, the variances σ2
1 and σ2

2 in (17) can be rewritten considering236

the component data variance and the additive noise ones such as:237

σ2
1 = λ∗k + σ2

v σ2
2 = λ̃k + σ2

v (18)

where λ∗k and λ̃k are the eigenvalues of the kth latent score under healthy238

and faulty conditions without noise, respectively. σ2
v is the variance of the239

additive noise.240

We assume that there is a relation between λ̃k and λ∗k :241

λ̃k = λ∗k + ∆λk (19)

where ∆λk is the eigenvalue bias due to incipient the fault occurrence.242

Combining (16), (18) with (19), the variance of mk is obtained:243

σ2
m =

1

2
(2λ∗k + ∆λk + 2σ2

v) (20)

Based on (14), (16) and (20), equation (17) can be transformed into:244

DJSAn
(f ,q) =

1

4
log

(2λ∗k + ∆λk + 2σ2
v)

2

4(λ∗k + σ2
v)(λ

∗
k + ∆λk + σ2

v)
(21)

The obtained equation (21), clearly shows the relation between ∆λk and the245

JSD value.246
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3.2. Incipient fault detection performances results and discussion247

The traditional multivariate AR system with Gaussian distributed data248

is used as an example to evaluate the detection performance of T2, SPE and249

JSD. We consider:250

x(i) =

[
0.118 −0.191
0.847 0.264

]
x(i− 1) +

[
1 2
3 −4

]
u(i− 1) (22)

251

y(i) = x(i) + v(i) (23)

where u is the correlated input252

u(i) =

[
0.811 −0.226
0.477 0.415

]
u(i− 1) +

[
0.193 0.689
−0.320 −0.749

]
w(i− 1) (24)

w(i) = [w1(i) w2(i)]
ᵀ is the input vector built with two uncorrelated Gaus-253

sian signals with zero mean and unit variance. u(i) = [u1(i) u2(i)]
ᵀ is254

the measured input vector. y(i) = [y1(i) y2(i)]
ᵀ is the output vector and255

v(i) = [v1(i) v2(i)]
ᵀ is the noise vector which built with two uncorre-256

lated Gaussian noise signals with zero mean and variance σ2
v . The ma-257

trix X is formed with the AR measured inputs and outputs at instant i258

with i = 1 . . . N , i.e. X = [y1 y2 u1 u2]
ᵀ. Where each vectors yc259

and uc can be respectively written as yc = [yc(1), . . . , yc(i), . . . , yc(N)]ᵀ and260

uc = [uc(1), . . . , uc(i), . . . , uc(N)]ᵀ with c = {1, 2}.261

After the application of PCA, we obtain four principal components with262

the following eigenvalues diag(Λ) = [40.26, 4.9, 1.14, 0.17]. The correspond-263

ing percent of variance for the four PCs are then [86.64, 10.54, 2.45, 0.37]. So,264

the first PC contains 86.64% of the original data overall information and the265

cpv of the first two is 97.18%. With respect to equation (6), the principal266

subspace is then composed of the first two principal components and the267

residual one with the last two components. So, for this validation study, the268

detection process using T2 is then based on the first two principal component269

scores and SPE is evaluated using the last two components. For our proposal270

using JSD, we will focus only on the first principal component which contains271

a sufficiently significant part of the data information (86.64%).272

Based on the mentioned fault model, assuming that the fault affects the273

last 10% samples of y2, we have y2(i) = (1+g)x2(i)+v2(i). Thus, to highlight274

the detection capabilities, we have affected x2 with a fault corresponding to275

80% bias on the signal amplitude in the last 100 samples of x2 with N = 1000276
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and SNR = 40dB. For the T2 test and SPE, the detection is evaluated on277

each sample i but for JSD, the results are obtained by doing 900 realisations278

of the healthy conditions and 100 realisations of the faulty ones. The results279

are displayed in Fig.2. The obtained detection results can then be compared.280
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Figure 2: Fault detection performances of JSD, T2 and SPE

It is noted from this example that JSD is superior to the other criteria T2
281

and SPE. Even when the fault severity is very high, the detection with T2
282

and SPE reveals numerous false alarms and missed detections. For a given283

PFA = 0.05 the PD evaluated for T2, SPE and JSD are respectively 0.63,284

0.07 and 1. Indeed for smallest fault severities, T2 and SPE will exhibit285

poorer performances compared to JSD.286

According to equation (21), the detection performances of the proposed287

methodology are largely affected by the evolution of the noise level. To288

highlight this purpose, we propose to evaluate these performances considering289

the noise level compared to the original signal power (signal to noise ratio290

i.e. SNR) or the fault power (fault to noise ratio i.e. FNR) defined as:291

FNR = 10 · log10

σ2
f

σ2
v

(25)

SNR = 10 · log10

σ2
s

σ2
v

(26)

where σ2
f is the fault power, σ2

s is the signal power and σ2
v is the noise power.292
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Considering that the noise can mask the incipient fault, the comparative293

study is first done by setting the SNR to 40dB and varying the fault severity.294

The detection performances results for the incipient fault of T2, SPE, and295

JSD for different FNR are displayed in Fig.3.296

It is clear that the detection performances of T2 and SPE are widely297

degraded with the decrease of FNR (i.e. lower fault severity can be obtained298

at a given noise level).299

It is demonstrated that T2 and SPE are totally inefficient for incipient300

fault detection. Their detection performances are only acceptable for large301

FNR values (e.g. FNR is 65dB) that is corresponding to large fault severities.302

Conversely, JSD shows excellent performances for incipient faults detec-303

tion. The probability of detection is PD = 1 even when FNR = 5dB. For304

lower fault severities the performances are still good for FNR=−5dB but for305

FNR values lower than −10dB the detection is more tedious.306
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Figure 3: Fault detection performances considering different FNR with SNR=40dB for:
(a) T2, (b) SPE and (c) JSD

In order to show the impact of noise factors on the detection capabil-307

ities of JSD, we consider a fault severity g = 0.02. The detection results308

versus different SNR are given in Fig.4. JSD has high efficiency with 100%309

detection capability for the low noise levels (SNR>35dB) with a very low310

false alarm probability. For the high noise levels (SNR<30dB), the detection311

performances of JSD are affected by the noise. The fault detection perfor-312

mances of JSD decrease distinctly along with the SNR decreases (the noise313

levels increase).314
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Figure 4: Fault detection results of JSD for different SNR, g = 0.02

JSD is then efficient for the detection of incipient faults but its perfor-315

mances are clearly affected when the noise level is very important compared316

to the fault severity one.317

3.3. Application to nondestructive incipient cracks detection318

Material crack detection becomes more and more important for industrial319

system and structures. The Eddy Current Testing (ECT) technique is a320

widely used measurement approach. It is based on the measurement of the321

magnetic field effects (induced voltage and current flowing in an excitation322

coil) [31]. In Fig.5 we show an example of the change induced on the eddy323

currents trajectory in a conductive material with the presence of a surface324

crack.325

Figure 5: Effect of the presence of a crack on Eddy currents trajectory
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Then, from these measurements, the evolution of the impedance with the326

presence of the crack Zf is obtained and can be written as:327

Zf = Zh + δZ = Rf + jYf (27)

where the Rf and Yf are respectively the real and imaginary parts of the328

indexed impedance Zf . The remaining δZ is the evolution of the healthy329

impedance Zh due to the presence of the crack. As an example, Fig.6 repre-330

sents the evolution of the imaginary part of the impedance for a conductive331

material containing cracks with d = 400µm depth and 2 different lengths332

l = 400µm and l = 600µm with a 2 MHz excitation frequency. The presence333

of the crack is clearly visible through the variation of the impedance.334
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Figure 6: Imaginary part of the impedance of the ECT map for big cracks with sizes: (a)
l = 0.4mm and d = 0.4mm, (b) l = 0.6mm and d = 0.4mm

However, in the case of smaller cracks (incipient ones), these impedance335

variations can be partially masked by the presence of environmental nuisance.336

In Fig.7 we show the evolution of the imaginary part of the impedance in the337

case of cracks with length or depth equal to 100µm or 200µm. The evolution338

of the impedance value does not significantly disclose the presence of these339

minor cracks due to the nuisances. Therefore, we propose, in this work,340

to use of the Jensen-Shannon divergence to detect these incipient faults by341

analysing these slight impedance variation. These impedance variations will342

cause slight changes in the faulty probability distribution compared to the343

healthy reference one and are then evaluated by using the JSD.344
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Figure 7: Imaginary part of the impedance of the ECT map for minor crack sizes: (a)
l = 0.1mm and d = 0.1mm, (b) l = 0.1mm and d = 0.2mm, (c) l = 0.2mm and d = 0.1mm,
(d) l = 0.2mm and d = 0.2mm

In our work, we consider the complex impedance values obtained from an345

ECT experimental system.346

We mainly focus on incipient cracks such as their length (l) or depth (d)347

are equal to 100µm and 200µm in several combinations. The perturbation348

level will be considered using several SNR values in the range [0, 20dB]. The349

considered crack size for this study are then summarized in the following350

table:351
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Table 1: Considered crack sizes
Cracks length (l) depth (d)
C1 0.1mm 0.1mm
C2 0.1mm 0.2mm
C3 0.2mm 0.1mm
C4 0.2mm 0.2mm

To apply our diagnosis procedure, complex impedance data obtained in352

the healthy and the faulty conditions and considered as impedance maps353

with size 40 × 32. In our study, we focus only the imaginary part of the354

impedance that are known to be more sensitive to the presence of the cracks.355

These values of the ECT map are arranged into a single row vector (1×1280)356

and are then normalized. A reference map with healthy impedance values357

created. We enlarge each normalized ECT map (40 × 32) to a larger map358

(420×100) so that we can get the sufficient data and reduce the false alarms359

caused by the internal and external perturbations. For both healthy and360

faulty conditions 100 realisations were evaluated.361

In Fig.8, we present the evolution of the JSD and the mean of the nor-362

malized impedance in healthy and faulty conditions for the crack sizes C1363

and C2 in a 20dB SNR environment. The dashed red lines are the thresholds364

of the JSD and the mean calculated at 99% of their maximum values in the365

healthy conditions.366
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Figure 8: JSD and mean detection capabilities for the minor cracks size: (a) C1, (b) C2

This result confirms that the mean fails to detect the crack with size C1367

(PD = 0.24 and PFA = 0.01). For the crack size C2, lots of missed detections368
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are obtained (PD = 0.84 and PFA = 0.01). However, with the JSD, satisfying369

detection capabilities are obtained for both considered crack sizes (PD = 1370

and PFA = 0.03).371

In Fig.9 and Fig.10 we present the detection performances of JSD for the372

four considered incipient cracks sizes C1, C2, C3, C4 with different perturba-373

tion levels.374
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Figure 9: JSD detection performances for different perturbation level and for incipient
cracks sizes: (a) C1 and (b) C2
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Figure 10: JSD detection performances for different perturbation levels and incipient
cracks sizes: (c) C3 and (d) C4

The Figs clearly illustrate that the JSD has good detection performances375

for these incipient cracks when the SNR is larger than 10dB even when376

the crack size is l = 0.1mm, d = 0.1mm (C1). These detection capabilities377
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increase along with the SNR values. The JSD offers perfect detection perfor-378

mances (PD = 1 with PFA = 0) even for the smallest considered crack size379

(C1) when the SNR is 20dB. This particular SNR value corresponds to the380

condition that the plate is smooth and the environmental perturbations are381

well isolated.382

The perturbations that can be caused by internal or external factors (low383

SNR values) have a large effect on the JSD detection performances. It can be384

clearly noticed from Fig.9-a that the JSD is not efficient for the detection of385

the most incipient considered cracks size C1 when SNR=0dB. However, when386

the crack size increases, the detection capabilities of JSD at 0dB increases387

(see Fig.9-b, Fig.10-c and Fig.10-d).388

4. Incipient Fault Estimation389

4.1. Fault estimation theoretical model390

Based on equation (19) the fault severity g can be determined as a func-391

tion of λ̃k and it is infinitely derivable in the neighbourhood of g ≈ 0, The392

Taylor development of λ̃k can be written as:393

λ̃k = λ∗k +
∂λ̃k
∂g

(0)g +
1

2

∂2λ̃k
∂g2

(0)g2 + · · · (28)

In our study, the PCA is based on the covariance matrix S denoted as:394

S =
1

N − 1
X̄ᵀX̄ =

1

N − 1


x̄ᵀ
1x̄1 · · · x̄ᵀ

1x̄j · · · x̄ᵀ
1x̄m

...
...

...
x̄ᵀ
j x̄1 · · · x̄ᵀ

j x̄j · · · x̄ᵀ
j x̄m

...
...

...
x̄ᵀ
mx̄1 · · · x̄ᵀ

mx̄j · · · x̄ᵀ
mx̄m

 (29)

where:395

x̄j = xj − µ1
j = (x∗j − µ∗1j ) + (fj − g ×

1

N

N∑
i=b

x∗1ij ) + vj (30)

where 1 is a column vector of N ones.396
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The first order derivative of the eigenvalue λ̃k can be calculated as:397

∂λ̃k
∂g

= p∗k
ᵀ∂S

∂g
p∗k (31)

=
2

N − 1

(
pjk

m∑
r=1

prk

N∑
i=b

(x∗ir − µ∗r)x∗ij + p2jk

N∑
i=b

(x∗ij −
1

N

N∑
i=b

x∗ij)
2 × g

)

where p∗k is the eigenvector associated to λ∗k in faultless and noise-free con-398

dition.399

The second order derivative of λ̃k can be obtained as:400

∂2λ̃k
∂g2

= p∗k
ᵀ∂

2S

∂g2
p∗k =

2

N − 1

(
p2jk

N∑
i=b

(x∗ij −
1

N

N∑
i=b

x∗ij)
2

)
(32)

if we denote that:401

a1 = pjk

m∑
r=1

prk

(
N−1∑
i=b

(x∗ir − µ∗r)x∗ij

)
(33)

402

a2 = 3p2jk

N∑
i=b

(
x∗ij −

1

N

N∑
i=b

x∗ij

)2

(34)

Choosing the first two derivative order of the equation (28) we obtain the403

following equation:404

∆λk =
2

N − 1
a1 × g +

1

N − 1
a2 × g2 (35)

Then, the theoretical fault estimation expression can be obtained by find-405

ing the positive solution of (35):406

ĝ =
−a1 +

√
a21 + (N − 1)a2∆λk

a2
(36)

In order to obtain the fault amplitude estimation equation, we must cal-407

culate the equation of ∆λk corresponding to the JSD values. As equation408

(21) can be seen as a function of ∆λk and it is infinitely derivable in the409

neighborhood of zero, the Taylor development of DJS can be given following410

(37).411
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DJS(∆λk) = DJS(0)+
∂DJS(∆λk)

∂∆λk
(0)∆λk+

1

2

∂2DJS(∆λk)

∂∆λ2k
(0)∆λ2k+· · · (37)

We obtain its first order derivative (38) and second order derivative (39)412

based on (21).413

a3 =
∂DJS(∆λk)

∂∆λk
=

1

4

[
2

2λ∗k + ∆λk + 2σ2
v

− 1

λ∗k + ∆λk + σ2
v

]
(38)

a4 =
∂2DJS(∆λk)

∂∆λk
2 =

1

4

[
1

(λ∗k + ∆λk + σ2
v)

2
− 2

(2λ∗k + ∆λk + 2σ2
v)

2

]
(39)

Choosing the first two order derivatives of Taylor equation to establish414

a quadratic equation (40) from which the resolution can derive the approxi-415

mated value of ∆λk.416

DJS(∆λk) = DJS(0) + a3(0)∆λk +
1

2
a4(0)∆λ2k (40)

In healthy conditions, the variance change ∆λk is 0, and a3(0) and a4(0)417

can be simplified as in (41). Then we find the solution given in (42).418

a3(0) = 0 a4(0) =
1

4
[

1

(λ∗k + σ2
v)

2
− 2

(2λ∗k + 2σ2
v)

2
] (41)

419

∆λk =

√
2D̂JS

a4(0)
(42)

Finally, the approximated theoretical estimation of the fault severity ĝ420

can be obtained by combining (36) and (42) such as:421

ĝ =
−a1 +

√
a21 + (N − 1)a2(

√
2D̂JS

a4(0)
)

a2
(43)

where D̂JS in (43) is calculated using Monte Carlo Simulation. Based on422

this equation (43), the fault severity can be estimated using the JSD value.423
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4.2. Incipient Fault estimation performances results and discussion424

To verify the validity of the fault estimation model obtained in (43) for425

incipient fault, we plot in Fig.11 the estimated fault severity (ĝ) versus the426

real one (g) for different SNR values. For this work we have considered the427

same AR Model that has been used in the previous section 3.2.428

The results indicate that the fault estimation obtained with this model429

leads to a little overestimation of the fault severity. This can be considered430

as a safety margin in a sensible fault diagnosis context.431
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Figure 11: Fault estimation results at different noise levels
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Figure 12: Estimation relative error at different noise levels

The relative error εg is calculated as εg = ĝ−g
1+g

for quantifying the overes-432

timation level. The results for different SNR are presented in Fig.12. The433
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relative error decreases either while the fault severity or the SNR increases.434

For SNR = 25dB, the maximum error is 2.75%.435

-21 -15 -12 -9 -7 -5 -3 -1 1 3 5

FNR

0

0.005

0.01

0.015

0.02

0.025

Figure 13: Estimation relative error with SNR=25dB for different FNR

The relative error results for different FNR (with SNR set at 25dB) is436

displayed in Fig.13. The result highlights that the maximum error is 2.15%437

when FNR is −21dB. Such a value is sufficiently low to be acceptable con-438

sidering the incipient fault severity diagnosis context.439

4.3. Application to nondestructive incipient cracks severity estimation440

In order to validate the proposed estimation process, we have considered441

the evaluation of cracks based on experimental ECT data. The considered442

ECT cracks considered here are the same as those described in section 3. The443

fault estimation model is focused on the crack sizes given in Table 2 where the444

crack area increases along with the length or depth values. In this work only445

incipient cracks evaluation are considered. Then no cracks with an area larger446

than 0.24mm2 are evaluated here. These restrictions imply a more tedious447

evaluation. For the estimation model, considering such constraint, we have448

used the Taylor equation to be able to approximately derive some part of the449

equations. This leads to the assumption that the estimated value should be450

close to zero and not too far. While this assumption is not respected, the451

estimation accuracy is decreased.452

For each incipient crack size, we compute the FNR value. For this latter,453

the noise level is related to the internal and external sources. It is obtained454

considering the variance of the impedance signal in healthy conditions. As-455

suming that the fault is independent from the noise, the fault level is con-456

sidered as the main evolution between healthy and faulty signals. As shown457
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in Table 2, FNR for the smallest and biggest crack sizes are respectively458

−29.3dB and 0.21dB.459

Table 2: Crack sizes area and corresponding experimental FNR
Area (mm2) 0.01 0.02 0.04 0.08 0.16 0.24

length (l), depth (d) 0.1, 0.1 0.1, 0.2 0.2, 0.2 0.4, 0.2 0.4, 0.4 0.6, 0.4
Experimental FNR(dB) −29.3 −20.1 −16.8 −9.63 −4.5 0.21

For our study, we consider the reference healthy data as the ECT matrix460

Xh denoted as Xh = (zh1 , z
h
2 , z

h
3 , z

h
4), where zh is the enlarged imaginary part461

of the impedance signals acquired from the edge of the normalized map.462

The faulty ECT matrix Xf denoted as Xf = (zf1 , z
f
2 , z

f
3 , z

f
4), where zf is the463

enlarged imaginary impedance signals acquired from the faulty normalized464

map. The number of samples is N = 4.2 ∗ 104.465

The PCA is applied to Xh and Xf . Then the reference distribution and466

the faulty distribution of the first principal component scores are calculated.467

Fig.14 presents the probability distribution for the first principal component468

score t1 corresponding to the crack size C1. Twenty acquisitions of zf are469

done for each crack size. The Jensen-Shannon divergence values between a470

faulty distribution and the reference one are computed according to equation471

(12) using Monte carlo simulation. The estimated fault severities impedance472

values are obtained based on equation (43). In Fig.15 we plot the average473

estimation of the fault severity according to the crack size measured by FNR474

value.475
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Figure 14: Pdfs of t1 for the healthy and faulty component scores
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Figure 15: Fault severity estimation versus the FNR(dB)

Fig.15 clearly shows that the estimated fault severity grows monotonically476

with the FNR. This result validates the effectiveness of the proposed fault477

estimation model.478

5. Conclusion479

In this paper, we have proposed an incipient fault diagnosis scheme based480

on the Jensen-Shannon Divergence for fault detection and estimation. For481

both cases, a theoretical model is proposed and widely show the dependence482

of the fault with the JSD and the noise level.483

The effectiveness of the detection is first validated by using simulated484

data from an AR system. The detection performances of JSD for incipient485

fault are compared to the Hotelling’s test T2 and the SPE ones. Using ECT486

experimental data to detect incipient cracks in a conductive plate, JSD good487

performances have been obtained in terms of PD and PFA even with SNR as488

low as 20dB. The proposed approach allows to evaluate such incipient cracks489

that was not able to be detected in the literature with such noisy ECT data.490

Concerning the fault estimation, we prove, for Gaussian distributed data,491

the efficiency and the accuracy of the proposal. For low noise conditions,492

the estimation accuracy is good, the maximum relative error is 2.75% for493

SNR=25dB and low fault severities (the maximum relative error is 2.15% for494

FNR = −21dB). With our proposal, the fault severity is slightly overesti-495

mated particularly in high noise condition levels. This slight overestimation496

is a valuable safety margin in health monitoring process. Finally, the appli-497

cation for fault severity estimation on the ECT data proves the efficiency of498
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the derived model by providing an accurate estimation of the fault amplitude499

versus the FNR.500
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