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Microwave breast imaging with
prior ultrasound information

Yingying Qin, Thomas Rodet, Marc Lambert, and Dominique Lesselier Senior Member IEEE

Abstract—Aiming at early detection of tumors, microwave
breast imaging is investigated with a priori information on
tissue boundaries yielded from ultrasound reflection data. A
regularization term is to incorporate the information that two
neighboring pixels should exhibit similar dielectric properties
when not on a boundary while a jump would be allowed
otherwise. This regularization is enforced in the distorted Born
iterative method and in the contrast source inversion method.
Comprehensive numerical experiments are carried out, involving
a simple synthetic model and on two anatomically-realistic MRI-
derived numerical breast phantoms. Imaging quality appears
greatly improved with this regularization when tissue boundaries
are indeed provided. Improvement is observed also when real
parts and imaginary parts are retrieved in separate fashion.

Index Terms—breast imaging, microwave, ultrasound pri-
ors, distorted Born iterative method, contrast source inversion
method, tissue boundary regularization

I. INTRODUCTION

Breast tumors are some of the most common tumors among
women. Early detection is critical at an early stage of cancer
progression [1]. Therefore, to develop technologies to image a
small tumor at low cost and with low risk is an important issue.
Currently, X-ray mammography is still the gold standard for
this detection. Despite of the high-resolution of imaging result,
X-ray mammography has a number of limitations including
low sensitivity, ionizing radiation, discomfort from breast
compression, and detection quite affected by breast density.

Microwave imaging has been investigated as an alternative
or at least a complementary imaging modality. Several inves-
tigations on the electromagnetic (EM) properties in different
types of tissue have been led, e.g., [2], [3]. Based on the
difference in dielectric properties between tumorous and nor-
mal tissues, the contrast appears relatively higher than the one
associated to X-ray. Also, microwave imaging is non-ionizing,
low-cost, and enables easy examination. The techniques pro-
posed for microwave imaging can be roughly divided into
two groups: radar and tomography. Radar techniques [4]–[6]
rely on ultrawide-band pulse illuminations to identify regions

Correspondance author: dominique.lesselier@l2s.centralesupelec.fr
Yingying Qin is with Université Paris-Saclay, ENS Paris-Saclay, CNRS,

Systèmes et Applications des Technologies de l’Information et de l’Energie,
94235, Cachan, France, and Université Paris-Saclay, CNRS, CentraleSupélec,
Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France.

Thomas Rodet is with Université Paris-Saclay, ENS Paris-Saclay, CNRS,
Systèmes et Applications des Technologies de l’Information et de l’Energie,
94235, Cachan, France.

Marc Lambert is with Université Paris-Saclay, CentraleSupélec, CNRS,
Laboratoire de Génie Electrique et Electronique de Paris, 91192, Gif-sur-
Yvette, France.

Dominique Lesselier is with Université Paris-Saclay, CNRS, Centrale-
Supélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France.

with high contrast from backscattered signals. This is efficient
and indeed indicates the location of strongly scattering parts.
However, less detailed information about the breast is made
available [7]. To achieve a possibly better retrieval of the
distribution of EM parameters within the breast, tomographic
microwave imaging is widely used, refer to [8]–[10] among
many others. In this approach, several transmitting and receiv-
ing antennas are set around the breast. The transmitting ones
illuminate it sequentially and scattered fields1 are acquired by
the receiving ones. Simulation is usually needed to get the
scattered field when breast geometry and EM parameters are
known, which is a forward problem linear w.r.t. the incident
field. To reconstruct the contrast given the scattered field is
an inverse problem and it is as well-known nonlinear due to
multiple scattering.

This inverse problem can be cast into an optimization prob-
lem where the misfit between measurements and simulation
results from a numerical model is minimized. Under some
conditions, it can be solved without iteration, e.g., a weak scat-
terer the size of which is no much larger than the wavelength,
within the framework of the Born approximation (the total
field being replaced by the incident one). In practice, these
assumptions are usually not valid and imaging results remain
unsatisfactory. This can be overcome by correcting the misfit
iteratively. The Born Iterative Method [11], Distorted Iterative
Method (DBIM) [12], Contrast Source Inversion (CSI) method
[13], and Subspace-based Optimization Method (SOM) and its
several variants [14]–[17], work this way. Recently, convolu-
tional neural netwoks (CNN) has been investigated as a tool to
solve the inverse scattering problem [18]–[20]. A well-trained
network can provide the complex permittivity of the object
given the scattered fields or the preliminary results of some
traditional inversion algorithms.

It is also well-known that the inverse problem is ill-posed.
To alleviate ill-posedness and stabilize the inversion, regular-
ization is usually applied in additive or multiplicative fashion.
In DBIM, Tikhonov regularization is standardly enforced to
reach a robust estimation. Further, a priori information can
be incorporated into the regularization term. Two-fold SOM
(TSOM) confines the reconstruction within a low-dimension
subspace. Huber regularization [8], [21] and weighted L2-
norm total variation (TV) [22] smoothen small-scale noise
while trying to preserve discontinuities. For piecewise constant
profiles, value picking (VP) [23] regularization can be applied.
Level set is also a regularization technique suitable for binary

1In practice, one should extract them from total fields as collected, and also
field values are not observed but antenna-related S-parameters.
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cases [24] though it now adresses a broad range of cases [25].
The main drawback of microwave imaging is the relative

low resolution due to the long wavelength. To achieve higher
spatial resolution, a higher frequency is needed [26]. However,
the dimension of the scatterer gets correspondingly larger
compared to this wavelength and the inverse problem more
difficult to solve while the penetration depth may be affected
also. Besides, tissue heterogeneity and the fact that geometries
and EM parameters vary from person to person may render the
challenge quite complicated. Then, additional model-specific
information from other imaging modalities can be very useful.

The structural region information can be extracted from
images provided by the high-resolution modality as prior infor-
mation. As an example, in [27], MRI-derived horizontal and
vertical boundaries are incorporated into a Bayesian frame-
work for functional image reconstruction. In [28], different
tissue clusters are extracted from ultrasound (US) images by
K-means to get a better distribution of dielectric properties
which results into more accurate tissue-specific time-delays
in Delay and Sum algorithm in EM reconstruction. In [29],
the structural information is extracted from MRI and Dif-
fuse Optical Tomography (DOT) involving a finite element
method (FEM) is considered. In [30], a smaller regularization
parameter is distributed in a Tikhonov regularization scheme
to pixels identified as part of tumor from X-ray images in
DOT breast imaging. In [31], MRI images are segmented into
different regions to provide a FEM mesh and a Laplacian-type
regularization follows to minimize variation in each region
in near infrared (NIR) tomography. In [32], the structural
information is extracted from US reconstruction with K-means
clustering algorithm. Tissue permittivity values are assigned to
these regions to form an inhomogeneous background and assist
the EM reconstruction by the FEM-CSI algorithm. In [33],
high-resolution images are segmented into different regions
and pixels in the same region are constrained to have similar
dielectric parameters in EM reconstruction.

Considering US imaging can offer high-resolution images
with interior tissue boundaries from reflection algorithms when
the travel time of the acoustic signal is recorded and an average
sound speed is assumed, being emphasized that US data can be
acquired simultaneously with EM ones so that no registration
is needed (the hypothesis is the one of a pending breast). US
imaging is chosen to offer the additional information in the
present work. The tissue boundary information is incorporated
into a traditional method for microwave breast imaging with a
regularization term, which imposes on two adjacent pixels that
the EM properties are the same when not on the boundaries
and only undergo changes at interfaces of tissues. Then, one
incorporates the US-information-guided regularization term
into DBIM and CSI. Besides, CSI with separate constraints on
real and imaginary parts is developed. For comparison, results
of DBIM with Tikhonov regularization and CSI with Huber
regularization are also shown. A synthetic breast model is used
to validate the algorithm, then two anatomically-realistic MRI-
derived numerical breast phantoms are considered.

The contribution is organized as follows. The forward
problem is described in Section II. Regularization as well as
inversion algorithms are considered in Section III. Experiments

on breast phantoms are discussed in Section IV. One concludes
about present results and outlines ways ahead involving fusion
procedures in Section V.

II. FORWARD PROBLEM

One henceforth considers a two-dimensional non-magnetic
case with transverse magnetic (TM) polarization. Time-
harmonic waves are assumed with dependence exp(−iωt).
The breast is located inside a domain of interest (DoI) D.
The known background medium is characterized by a complex
relative permittivity εb, permeability µb and wavenumber kb =
ω
√
ε0εbµb. The unknown scatterers (of same permeability µb)

have complex relative permittivity εr (r) and wavenumber
k (r) functions of position. Ni transmitters illuminate the
DoI successively and the scattered fields are collected by Nr

receivers evenly located on an exterior circle S.
The problem can be associated to two integral equations

Et (r) = Ei (r) +

∫
D
(k2 (r′)− k2b )g (r, r′)Et (r′) dr′, r ∈ D

(1)

Es (r) =

∫
D
(k2 (r′)− k2b )g (r, r′)Et (r′) dr′, r ∈ S (2)

where incident field Ei (r) and total field Et (r) represent the
electric field inside D, object absent or present, resp. Es is the
scattered field collected by the receivers. The scalar Green’s
function is g (r, r′) = i

4 H
(1)
0 (kb|r − r′|), H(1)

0 1st-kind 0th-
order Hankel function. Denote the contrast as

χ (r) =
k2 (r)− k2b

k2b
(3)

and integral operators

Gd[x] (r) = k2b

∫
D
g (r, r′)x (r′) dr′, r ∈ D (4)

Gs[x] (r) = k2b

∫
D
g (r, r′)x (r′) dr′, r ∈ S (5)

The equations above simplify into

Et (r) = Ei (r) +Gd[χE
t] (r) , r ∈ D (6)

Es (r) = Gs[χE
t] (r) , r ∈ S (7)

To handle the problem numerically, discrete forms of the
equations have to be derived, here via a pulse-basis point-
matching Method of Moments (MoM). The DoI is discretized
into M = Nx × Ny subwavelength cells with centers at rm,
m = 1, 2, . . . ,M . The dielectric properties are considered
homogeneous in each cell. Every square cell is approximated
by a small disk with same area and with equivalent radius R
whether needed. The equations above become

Et = Ei +Gddiag(χ)E
t (8)

Es = Gsdiag(χ)E
t (9)

In this form, χ is a M × 1 vector. The M ×M matrix Gd is

Gd(m,m
′) =


ikbπR

2
J1(kbR)H

(1)
0 (kb|rm − rm′ |),m 6= m′

ikbπR

2
H
{1}
1 (kbR)− 1, otherwise

(10)
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where J1 is the 1st-kind Bessel function and H
(1)
1 the 1st-kind

1st-order Hankel function. The Nr ×M matrix Gs is

Gs(s,m) =
ikbπR

2
J1(kbR)H

(1)
0 (kb|rs − rm|) (11)

where rs is the position of receiver s.
A source-type framework is widely used. Consider the

contrast current J (r) = χ (r)Et (r), the formulation becomes

J (r) = χ
(
Ei (r) +Gd[J ] (r)

)
, r ∈ D (12)

Es (r) = Gs[J ] (r) , r ∈ S (13)

The discrete form reads as

J = diag(χ)Ei + diag(χ)GdJ (14)
Es = GsJ (15)

III. INVERSION ALGORITHMS

Due to the large wavelength, resolution in microwave
imaging is expected to be poor. Ultrasound imaging with
its high resolution is employed to assist it. An ultrasound-
guided smoothness (UGS) regularization term is proposed
to incorporate a priori information. This regularization is
introduced first and then its implementation into DBIM and
CSI is shown. DBIM with Tikhonov regularization and CSI
with Huber regularization are presented in parallel.

A. Smoothness constraint

Assume that interior boundaries of the breast model fol-
low from US imaging. For easier incorporation, the tissue
boundaries are depicted via two images to show discontinuities
in vertical and horizontal directions, resp., where dielectric
properties also change. The principle is quite intuitive, two
vertically or horizontally adjacent pixels should exhibit similar
parameters when none lies at the boundaries. Otherwise,
regularization is imposed. This constraint is expressed as

FUGS =
∑
i

∑
j

bv(i, j) ‖χ̃(i, j)− χ̃(i, j + 1)‖2

+
∑
i

∑
j

bh(i, j) ‖χ̃(i, j)− χ̃(i+ 1, j)‖2
(16)

Notice that χ̃ is a Nx×Ny matrix and χ = vec(χ̃). bv and bh
are included in the prior information and indicate if the pixel
is at a boundary as

bv(i, j) =

{
0, (i, j) on horizontal boundaries
1, else

(17)

bh(i, j) =

{
0, (i, j) on vertical boundaries
1, else

(18)

Similarly with other smoothness constraints, the regulariza-
tion term is based on the module of the gradient of the contrast,
coefficients bv and bh guiding the smoothness while preserving
edges with US information. Compared with other methods of
incorporating US prior into EM inversion, the boundary is
directly used but not the tissue region from segmentation.

This regularization term can be written in matrix form as

FUGS(χ) = ‖Dvχ‖2 + ‖Dhχ‖2 (19)

with matrices Dv and Dh providing the difference of two
adjacent pixels in vertical and horizontal directions. Take Dv

as an example, it can be written as

Dv =



1 −1
1 −1

. . . . . .
0 0

. . . . . .
1 −1

1


(20)

Notice that the diagonal elements are 1 only when correspond-
ing to pixels not at the boundaries, otherwise the value is zero,
no constraint is imposed, and a jump is allowed.

This regularization term is quadratic and incorporated in an
additive way, thus it will not introduce additional nonlinearity.

B. Distorted Born Iterative Method

Consider the contrast χ as a small perturbation δχ w.r.t.
an inhomogeneous background χn; one has χ = χn + δχ
[12]. The secondary incident field by this inhomogeneous
background is

Ebac = (IM −Gddiag(χn))
−1Ei (21)

where IM is the M -dimensional identity matrix, with this
background, the scattered field is

Es = Gsdiag(χn)E
bac +Gχn

s diag(δχ)Et (22)

Here, Gχn
s is the inhomogeneous background Green’s func-

tion. The cost functional is the sum of the difference between
measured and calculated data and a regularization term

F (δχ) =

Ni∑
p=1

∥∥Es
p −Gsdiag(χn)E

bac
p −Gχn

s diag(δχ)Ebac
p

∥∥2
+ αFr(δχ)

(23)
within which Et is replaced by Ebac with the Born approxi-
mation. The optimization procedure is summarized below.

At each iteration, update Gχn
s by

Gχn
s = Gs(IM − diag(χn)Gd)

−1 (24)

Solve the forward problem

Ebac
p,n = Ei

p +Gddiag(χn)E
bac
p,n (25)

Calculate the scattered field

Es
p,n = Gsdiag(χn)E

bac
p,n (26)

Solve the optimization problem with 0th-order Tikhonov reg-
ularization

min : F (δχ) =

Ni∑
p=1

∥∥Es
p − Es

p,n −Gχn
s diag(δχ)Ebac

p,n

∥∥2
+ α ‖δχ‖2

(27)
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or with UGS regularization

min : F (δχ) =

Ni∑
p=1

∥∥Es
p − Es

p,n −Gχn
s diag(δχ)Ebac

p,n

∥∥2
+ α

(
‖Dvδχ‖2 + ‖Dhδχ‖2

)
(28)

It can be dealt with directly as

δχ = [K∗K+ αD]−1K∗b, (29)

D = IM for Tikhonov regularization, D = D∗hDh +D∗vDv

for the UGS one. K is a (NiNr) ×M matrix and element
K(i+Nr(p−1), j) = Gχn

s (i, j)Ebac
p,n(j) and b is a (NiNr)×1

vector with b(i + Nr(p − 1)) = Es
p(i) − Es

p,n(i). K
∗ is the

conjugate transpose of K. To conclude, update the contrast as

χn+1 = χn + δχ (30)

Considering the imaginary part of the contrast contributes
less due to the high difference in magnitude with the real
part; consequently, one can separate them and the UGS
regularization term becomes

FUGS(δχ) = FUGS (<{δχ}) + βFUGS (={δχ}) (31)

A larger regularization parameter (β > 1) can be assigned
to the imaginary part based on the prior information of the
magnitude of real and imaginary parts of contrast. To update
δχ, the linear equation[

Kd + αrD Km

−Km Kd + αiD

] [
<{δχ}
={δχ}

]
=

[
yr
yi

]
(32)

needs to be solved, with yr = <{K∗b}, yi = ={K∗b},
Kd = K∗rKr +K∗iKi, Km = K∗iKr −K∗rKi, Kr = <{K}
and Ki = ={K}. The regularization parameters are αr = α
and αi = αβ.

C. Contrast Source Inversion

The contrast source inversion method is based on the source-
type integral equations wherein the contrast source is regarded
as an independent parameter. The cost function is a sum of
normalized mismatches in data and state equations

F (J1, . . . , JNi
,χ) =

∑Ni

p=1

∥∥Es
p −GsJp

∥∥2∑Ni

p=1

∥∥Es
p

∥∥2
+

∑Ni

p=1

∥∥diag(χ)Ei
p + diag(χ)GdJp − Jp

∥∥2∑Ni

p=1

∥∥Ei
p

∥∥2
(33)

Notice that in the classical CSI [13] the second term
normalization is

∑Ni

p=1

∥∥diag(χ)Ei
p

∥∥2, one simplifies it as∑Ni

p=1

∥∥Ei
p

∥∥2 [16]. To improve the quality of the reconstruc-
tion and incorporate high frequency components of the image,
one introduces prior information. Inspired by [8], [21], one
incorporates Huber regularization into CSI.

The Huber function can be expressed as

h(x) =

{
|x|2, |x| 6 γ
2γ|x| − γ2, else

(34)

with γ as the threshold. This function is used to estimate the
difference in dielectric properties between the pixel and its
neighborhood. The total difference is measured by

FHB =
∑
v

∑
v′∈Nv

h(χv − χv′) (35)

where Nv represents the neighborhood of v. Eight neighbors
are used for one pixel.2 The first derivative of Huber regular-
ization w.r.t. the contrast is

gχHB =
∑

v′∈Nv

ωv′ (36)

with

ωv′ =

{
χv − χv′ , |χv − χv′ | 6 γ
γ(χv − χv′)/|χv − χv′ |, else

(37)

Another regularization term is the smoothness constraint
guided by US information described in Section III-A. The first
derivative of UGS regularization is

gχUGS = (D∗vDv +D∗hDh)χ (38)

With these regularizations, the criterion becomes

F (J1, . . . , JNi
,χ) =

∑Ni

p=1

∥∥Es
p −GsJp

∥∥2∑Ni

p=1

∥∥Es
p

∥∥2
+

∑Ni

p=1

∥∥diag(χ)Ei
p + diag(χ)GdJp − Jp

∥∥2 + αFr(χ)∑Ni

p=1

∥∥Ei
p

∥∥2
(39)

There is no need to solve the forward problem at each iter-
ation, so it is more efficient. With function F (J1, . . . , JNi

,χ),
it is difficult to optimize contrast current and contrast simul-
taneously due to their dependence. Here one follows [34] to
optimize them alternately by minimizing the cost functional
w.r.t. J, assuming known χ, and update χ, assuming known
J. The optimization procedure is in Algorithm.

Similarly, the regularization term can also be enforced on
the real and imaginary parts separately as

Fr(χ) = Fr (<{χ}) + βFr (={χ}) (40)

During update of the contrast, the gradients of the cost
functional w.r.t. to real and imaginary parts are

g<{χ}n =
∑
p

<
{
(χn−1E

t
p,n − Jp,n)(E

t
p,n)
∗}

+ αrg
<{χ}
Fr

(<{χ})

g={χ}n =
∑
p

=
{
(χn−1E

t
p,n − Jp,n)(E

t
p,n)
∗}

+ αig
={χ}
Fr

(={χ})

(41)

with αr = α and αi = αβ.

2In [8], there is a coefficient 0.5 since the difference between two neigh-
boring pixels is calculated twice. Here it is in the regularization parameter.
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Algorithm CSI with HB/UGS regularization

Input: Es, Ei, Gs, Gd

Output: χ
Initialize χ0 and J by back propagation [35] with

Jp,0 =

∥∥G∗sEs
p

∥∥2∥∥GsG∗sE
s
p

∥∥2G∗sEs
p and χ0 =

∑Ni

p=1 Jp,0E
∗
p,0∑Ni

p=1 ‖Ep,0‖2
for n = 1 : itermax do

Calculate data equation error
ρp,n−1 = Es

p −GsJp,n−1
Calculate state equation error
rp,n−1 = diag(χn−1)E

t
p,n−1 − Jp,n−1

Update contrast current:
Gradient gJp,n = −G∗sρp,n−1/

∑
p

∥∥Es
p

∥∥2
−rp,n−1 −G∗ddiag(χn−1)

∗rp,n−1∑Ni

p=1

∥∥Ei
p

∥∥2
Polak-Ribière conjugate gradient search direction

vp,n = gJp,n +
<〈gJp,n, gJp,n − gJp,n−1〉
〈gJp,n−1, gJp,n−1〉

vp,n−1

Update J by Jp,n = Jp,n−1 + βp,nvp,n
Update total field by Et

p,n = Ei
p +GdJp,n

Update contrast:
Gradient

gχn =
∑

p(χn−1E
t
p,n − Jp,n)(E

t
p,n)
∗ + αgχHB/UGS(χ)

Polak-Ribière conjugate gradient search direction

dn = gχn +
<〈gχn , gχn − gχn−1〉
〈gχn−1, g

χ
n−1〉

dn−1

Contrast
χn = χn−1 + αndn

end for

IV. NUMERICAL SIMULATIONS

In this section, one considers numerical experiments on
three breast models: a synthetic one, Model 1, to validate
algorithms, and two realistic breast phantoms, Models 2 and
3. As mentioned, in US imaging, reflective boundaries where
acoustic impedance changes can be detected by reflection
algorithms when the travel time t of acoustic signals is
recorded and an average sound speed c assumed. Here, tissue
boundary information is not derived from carrying out these
methods in full but from simpler simulations: three sources
are put around the object; each one emits ultrasonic pulses in
different directions (from −45◦ to 45◦ towards the center); the
position of the boundary along each direction is calculated as
d = ct/2; based on the angle of acoustic wave it is decided
whether the boundary is vertical or horizontal and the images
subsequently follow. The experiments are conducted at a single
frequency of 1GHz.

A. Reconstruction of synthetic breast model

This simple synthetic breast model consists of skin, fatty,
fibroconnective/glandular and tumorous tissues. Each tissue
type is of regular shape and has uniform permittivity. The skin
is 2mm thick and the tumor of 6mm-diameter. The immersion
medium is chosen from [8], letting εb = 10 + 4i. Relative
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Fig. 1: Real (a) and imaginary (b) parts of synthetic Model 1.

permittivities of tissues at 1GHz are 39.89 + 15.64i, 4.80 +
0.82i, 48.82 + 15.89i, 56.27 + 17.96i, resp.. Figure 1 depicts
the distribution of real and imaginary parts. The DoI is of
size 0.1m × 0.1m. 40 antennas are distributed evenly on a
circle of 0.057m radius, operated as sources and receivers
simultaneously. For the forward problem, the DoI is discretized
into 200×200 pixels and the problem tackled by a conjugate-
gradient fast Fourier transform (CG-FFT) algorithm. Additive
Gaussian noise is added to the synthetic data with SNR =
30dB.

For inversion, the domain is discretized into 80×80 pixels.
One assumes that the breast is in a circle with 0.045m
radius (the radius of outer boundary of the breast model is
0.042m). The reconstruction is confined within the region and
pixels outside it restricted to same dielectric properties as the
coupling medium. Retrieved real and imaginary parts of the
relative permittivity are bounded by 1 6 <{εr} 6 70 and
0 6 ={εr} 6 40 at each iteration.

The regularization parameter α can be chosen by L-curve
[36], generalized cross-validation [37], or other methods.
When it is determined, it can be chosen as αr in separate
inversion. β, as the ratio of regularization parameter of imagi-
nary part to real part, is chosen based on the relative magnitude
of these two parts. γ in Huber regularization is the threshold
below which a quadratic cost is used to smooth noise and
above which a linearly-varying cost is added to penalize it in
a lesser extent for edge-preserving. It is selected as the smallest
difference in the contrast (a margin can be left).

First, one experiments on DBIM with Tikhonov regulariza-
tion (DBIM-TK) and CSI with separate Huber regularization
(CSI-HB-S). The DBIM regularization parameter is α = 0.05.
With Huber, the threshold is γ = 0.5 and the regularization
parameter αi = 0.1 for the imaginary part, αr = 0.001 for the
real part. CSI with no regularization is run also in comparison
and its results shown.

Results are in Figure 2. The glandular part is reconstructed
as a ring with relatively higher relative permittivity but is
still recognized. The contrast value of the center part is
usually underestimated. Dielectric properties are not smooth
in each region and the small tumor is not found. Now, one
incorporates the prior information from US imaging by UGS
regularization. The tissue boundary information incorporated
is in Figure 3. As explained, these two images show the
discontinuities in vertical and horizontal directions.

The regularization parameter is set to 1 in DBIM, 0.01 in
CSI. Besides, one separates real and imaginary parts in DBIM-
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Fig. 2: Retrieved real (left) and imaginary (right) parts of
Model 1 with. (a),(b) DBIM-TK reconstruction; (c),(d) CSI
reconstruction; (e),(f) CSI-HB-S reconstruction.
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Fig. 3: Boundary information in vertical (a) and horizontal (b)
directions.

UGS (DBIM-UGS-S) and CSI-UGS algorithm (CSI-UGS-S).
The regularization parameters are αr = 1 and αi = 10 for
DBIM-UGS-S and αr = 0.01 and αi = 10 for CSI-UGS-S.
Results are in Figure 4.

With this US information guided regularization, the results
are smoother, while edges are well preserved with both algo-
rithms. Besides, the tumor is well distinguished within the
glandular part in the reconstruction of the real part. Upon
separation of real and imaginary part reconstructions and
assigning a large regularization parameter to the imaginary
part, one sees obvious improvement in its retrieval.

To evaluate the imaging results quantitatively, one computes
the relative error of the permittivity as

Err(ζ) =
‖ζest − ζtrue‖2
‖ζtrue‖2

(42)
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Fig. 4: Retrieved real (left) and imaginary (right) parts of
Model 1. (a),(b) DBIM-UGS; (c),(d) DBIM-UGS-S; (e),(f)
CSI-UGS; (g),(h) CSI-UGS-S.

TABLE I: Relative error with Model 1 with SNR = 30dB

Method DBIM-TK DBIM-UGS CSI CSI-HB-S CSI-UGS CSI-UGS-S
Err(<{εr}) 0.385 0.335 0.370 0.345 0.342 0.322
Err(={εr}) 0.674 0.483 0.596 0.389 0.469 0.385
Err(εr) 0.4245 0.353 0.400 0.350 0.358 0.329

where ζ is the parameter to evaluate and subscripts "true" and
"est" represent true value and estimation result, resp. The er-
rors with the algorithms above are in Table I. Reconstructions
are more accurate than those with the algorithms without prior
information. Also, one sees a small decrease in the error result
of the real part and a large one in the imaginary part when
the two parts of contrast are retrieved separately.

The CPU time is also compared between the cases whether
the real and imaginary parts are reconstructed separately. In
average, it takes 13.89 seconds for one iteration in DBIM-
UGS,14.38 in DBIM-UGS-S, 1.79 in CSI-UGS, and 0.73 in
CSI-UGS-S, performed on Intel Core i7-8850H CPU (2.60
GHz) with 32 GByte memory. Considering both computation
cost and imaging quality, DBIM-UGS and CSI-UGS-S are
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Fig. 5: Inexact boundaries tested in experiments with Model
1: (a),(b) fake tumor; (c),(d) incomplete boundary.
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Fig. 6: Retrieved real (left) and imaginary (right) parts of
Model 1. (a),(b) case with a fake tumor; (c),(d) case with
incomplete boundary.

henceforth used to incorporate US information in the following
experiments.

Robustness of the algorithm is tested based on DBIM-
UGS. Here the reflective boundaries are assumed to have
been obtained from some reflection mode imaging methods,
however, in fact, those cannot be perfect. The acoustic signal
may bounce between two interfaces so there will be artifacts
and some boundaries may be missing due to a small variation
in acoustic impedance. So, it is worthwhile to discuss the
effects of inexact boundaries.

One has carried out several experiments with two kinds of
inexact boundaries, which are shown in Figure 5. In the first
kind, there is a fake tumor, and in the second one, interfaces
between tumor and glandular part are incomplete. With these
boundaries, retrievals are depicted in Figure 6. Since the
regularization term is intended to suppress the discontinuity

TABLE II: Relative error with Model 1 with SNR = 10dB

Method DBIM-TK DBIM-UGS CSI-HB-S CSI-UGS-S
Err(<{εr}) 0.436 0.351 0.352 0.325
Err(={εr}) 0.857 0.584 0.4015 0.396
Err(εr) 0.497 0.3825 0.358 0.333
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Fig. 7: Real (a) and imaginary (b) parts of Model 2.

between two adjacent pixels not at a border, it has no constraint
otherwise. That is more severe when boundaries are not
complete. This is consistent with the experiments. If a fake
tumor in the US information, it appears in the map with lower
contrast, while the real one still has higher permittivity and
one can detect it. When the boundaries are incomplete, the
tumor has no evident border and is difficult to find. Thus, if
the boundary information cannot yield the interface between
tumor and other tissues, it is hard to image it with microwaves.

Now, a higher level of noise is considered with SNR =
10dB. Experiments are conducted on DBIM-TK, DBIM-
UGS, CSI-HB-S and CSI-UGS-S with the same regularization
parameters. The relative errors are summarized in Table II.
Due to the high level of noise, the quality of the imaging is
degraded for all algorithms yet the one proposed is affected
to a lesser extent.

B. Reconstruction of realistic breast phantoms

To better validate the approach, one tests it on two more
realistic breast phantoms as slices extracted from breast phan-
toms of the UWCEM repository [38], categorized in different
classes according to radiographic density.

1) Class 2 breast phantom: Model 2 (ID 070604) has a
scattered fibroglandular density. Debye parameters are from
[9]. Figure 7 shows the phantom.

The cell size is 0.5mm and one uses this grid to solve the
forward problem. 40 antennas are set evenly on a circle of
0.08m radius. Additive Gaussian noise of 30 dB is added to
the data. For inversion, one adopts a 2mm cell size, resulting
in 88 × 77 pixels. Other configurations are the same as with
experiments before. The reconstruction results of DBIM-TK
and CSI-HB-S are in Figure 8. The regularization parameter
is α = 0.05 for DBIM and one sets αr = 0.001 and αi = 0.1
in CSI for Huber regularization, its threshold being γ = 0.5.

The main glandular part is well retrieved by both algorithms,
yet with a smaller size. Both fail in imaging the fine structure
in the phantom. Yet, imaging is satisfactory as one can at least
see the main structure.

Figure 9 shows the vertical and horizontal boundaries for
the experiments next. As observed, discontinuities occur more
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Fig. 8: Retrieved real (left) and imaginary (right) parts of
Model 2. (a),(b) DBIM-TK; (c),(d) CSI-HB-S.
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Fig. 9: Tissue boundaries of Model 2.

frequently in the breast phantom and several points presenting
discontinuities are adjacent in the same direction with null
corresponding diagonal elements in D∗hDh +D∗vDv. As a
result, in DBIM, even with regularization term FUGS =
α
(
‖ Dvδχ ‖2 + ‖ Dhδχ ‖2

)
, the problem may remain ill-

conditioned.
This can be tackled by adding a small penalty term on the

points where discontinuity shows in prior information. One
sets bv/h(i, j) = γt when the point is on a boundary and
Dv/h also changes accordingly. γt is chosen as a small value
meanwhile keeping matrix K∗K + α(D∗vDv +D∗hDh) well-
conditioned.Regularization parameters are chosen as α = 10
and γt = 0.1 for UGS regularization in DBIM-UGS. In CSI-
UGS-S, they are set as αr = 0.01 and αi = 1 for the real and
imaginary parts.

Results of DBIM-UGS and CSI-UGS-S are in Figure 10.
The results improve and finer structures are imaged when the
boundary information is incorporated. The relative errors of
results above are proposed in Table III. From this error calcu-
lation, one observes that imaging quality is indeed enhanced
when US high-resolution information is incorporated.

2) Class 3 breast phantom: Model 3 (ID 080304) is het-
erogeneously dense and its structure is quite complicated, see
Figure 11. In Model 3, one inserts a synthetic 1 cm-diameter
tumor at position (1.2 cm, −0.5 cm). Its relative permittivity
is 59.98 + 19.83i, corresponding to the 75th percentile curve
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Fig. 10: Retrieved real (left) and imaginary (right) parts of
Model 2. (a),(b) DBIM-UGS; (c), (d) CSI-UGS-S.

TABLE III: Relative error with Model 2

Method DBIM-TK DBIM-UGS CSI-HB-S CSI-UGS-S
Err(<{εr}) 0.465 0.385 0.443 0.383
Err(={εr}) 0.591 0.447 0.473 0.455
Err(εr) 0.481 0.393 0.447 0.392

at 1GHz in [3]. Configurations are as with Model 2. Cell size
remains 2mm for inversion and the DoI has 83× 51 pixels.

One chooses α = 0.001 for the Tikhonov regularization,
αr = 0.001 and αi = 0.1 for the Huber regularization. Figure
12 displays the reconstruction results. Those by CSI-HB-S are
smoother than those by DBIM-TK since the latter enforces
no constraint on the spatial gradient of the contrast. Neither
algorithm however can image the glandular part well and both
fail in detecting the tumor.

Boundaries now used are shown in Figure 13. For DBIM,
one sets γt = 0.2 and the other parameter values are like in
the Model 2 experiment.
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Fig. 11: Real (a) and imaginary (b) parts of Model 3.
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Fig. 12: Retrieved real (left) and imaginary (right) parts of
Model 3. (a),(b) DBIM-TK; (c),(d) CSI-HB-S.
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Fig. 13: Tissue boundaries of Model 3
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Fig. 14: Retrieved real (left) and imaginary (right) parts of
Model 3. (a),(b) DBIM-UGS; (c),(d) CSI-UGS-S.

When boundary information is incorporated, results im-
prove. Glandular and tumorous tissues are retrieved well. The
small tumor can be distinguished from the glandular part, i.e.,
can be detected. Yet, singular points emerge with higher value.
The regularization parameter γt must be properly chosen: too
small, one may see those singular pixels, too large, the result
may be too smooth to detect the tumor. The relative error of
Model 3 is in Table IV, showing improvement of imaging.

TABLE IV: Relative error with Model 3

Method DBIM-TK DBIM-UGS CSI-HB-S CSI-UGS-S
Err(<{εr}) 0.486 0.427 0.4675 0.413
Err(={εr}) 0.683 0.515 0.511 0.537
Err(εr) 0.510 0.437 0.472 0.4275

V. CONCLUSION

In the present work, one has proposed a regularization term
to incorporate US information into microwave imaging. The
regularizer tries to smoothen the dielectric properties between
two adjacent pixels when none is on the tissue boundaries
indicated by the US information, thus there is no need to
segment US images to decide whether or not two pixels
belong to the same tissue region, only tissue boundaries where
reflection occurs in US imaging are used. Thus, it is easier to
implement. One concludes that with microwave data only, it
is quite difficult to image a small tumor inside the breast.

Adding high resolution information enables to well estimate
its location and shape. One has also tested the robustness of
the algorithm. Since the algorithm is imposed on pixels not on
boundaries, this has more influence on the result when some
boundaries are missing. If the interface of a small tumor and
normal tissue is not detected by US imaging, it is hard to find
it by microwave imaging. One has also shown that to retrieve
real and imaginary parts in separate fashion can improve the
results. Now, further attention should be on presentation of
the boundary information from US imaging and attempting to
find a way for a better exploitation.

As for joint (fused) inversion of electromagnetic and acous-
tic data for breast imaging, it is of good potential. Edge-
preserving regularization [39] can be performed by introducing
auxiliary variables indicating whether or not a pixel is on an
edge. Edge markers could be obtained from the last parameter
profile and guide the next optimization as regularization term.
Alternate minimization would be used to update acoustic con-
trast, edge markers and dielectric contrast. Also, increasingly
popular convolutional neural netwoks (CNN), now involving
a two-stream CNN [40], combining feature maps at a certain
level, should produce tissue types, the last CNN layer being
a classifier (this is expected to be easier than outputting EM
and US parameters at each pixel).
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