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Abstract—We propose a beam alignment algorithm that
enables initial access establishment between two transceivers
equipped with hybrid digital-analog antenna arrays operating in
millimeter wave wireless channels. The proposed method builds
upon an active channel learning method based on hierarchical
posterior matching that was originally proposed for single-sided
beam alignment on single path dominant channels. We extend it
to the double-sided alignment problem and propose an estimation
framework based on variational Bayesian inference that accounts
for the uncertainties on the unknown channel complex gain and
noise variance. The proposed approach is numerically shown
to be resilient to the single path assumption and reaches near
optimal beamforming gains with a moderate training overhead,
even at low signal-to-noise ratios.

I. INTRODUCTION

Low power consumption and implementation complexity of
hybrid digital-analog transceiver architectures have accelerated
their adoption as a beamforming solution that can enable
efficient wireless communications over the harsh mmWave fre-
quency limited-scattering and blockage-prone wireless chan-
nels for 5G and beyond wireless cellular networks [1]. Also,
angular sparsity of such channels [1], [2] allows for the use
of adaptive sparsity-friendly techniques to ease the initial
alignment and channel state information (CSI) acquisition on
them, when using such transceiver designs [3]–[6].

In this study, we focus on hierarchical posterior matching
(HiePM), an initial access scheme introduced in [7] which
provably enables fast and reliable initial access establishment
between two wireless transceivers over wireless mmWave
channels with a single dominant path. Chiu et al. have shown
in that contribution that using posterior matching [8] together
with hierarchical beam search [4] can significantly reduce
the initial access acquisition time while keeping the corre-
sponding misalignment probability relatively low, provided
that the channel’s complex gain and operating signal-to-noise
ration (SNR) are fully known to the communicating devices.
These limiting constraints were relaxed in [9] by proposing
to augment HiePM with extra simplifying assumptions on
the statistical properties of the channel’s CSI and then to
use either a sampling scheme or a linear filtering scheme
(Kalman filter) to learn it in parallel to running HiePM.
Although this latter extension of the vanilla HiePM makes
it robust with respect to uncertainties on the channel’s CSI,

it still presents some limitations. First, it assumes perfect
knowledge of the operating SNR. Second, the assumptions
made on the statistical distribution of the channel’s complex
gain (needed to make HiePM able to run as we will see
later), are simplistic and not justified from a theoretical or
practical view. Third, the proposed methods that build on
such statistical assumption to overcome the CSI uncertainty
issue are either very restrictive and computationally heavy
(in the case of the sampling method) or show relatively
moderate to low performance (in the case of the Kalman
filter method). Finally, the overall tweaked setup assumes that
one of the communicating transceivers has a single antenna,
and the extension to the case where both communicating
devices use the hybrid digital-analog transceiver structure is
not straightforward.

Our contribution, in this work, which we dub “Variational
HiePM (V-HiePM)” will address shortcomings of proposals
in both of the aforementioned works [7], [9]. Specifically, we
will augment HiePM with a variational approximate inference
model [10] that will:

• make it robust against uncertainties of both CSI and
operating SNR,

• allow for a natural and theoretically grounded parametri-
sation of the statistical properties of the CSI and operating
SNR, in a way that will make HiePM run smoothly,

• make the overall setup performing very close to the
vanilla HiePM scheme with perfect SNR/CSI knowledge,

• allow for both communicating devices to be equipped
with hybrid digital-analog arrays.

II. SYSTEM MODEL

Our system is composed of two hybrid digital-analog an-
tenna array devices A and B, equipped with uniform linear
arrays (ULAs) of NA and NB antenna elements respectively.
The elements on the ULAs are separated by a distance
d = λ/2, where λ is the the mmWave wavelength of
interest. Device A (B respectively) digitally controls its ULA
with NRF

A (NRF
B respectively) RF chains. The two devices

communicate over a reciprocal static and narrowband wireless
mmWave MIMO channel, that is modeled as a NB × NA



complex matrix H , sampled from the finite scatterer channel
model [5] with a single dominant path as1:

H = αaB(φB)a
H
A(φA) (1)

where α is the complex fading channel gain. aA(φA) and
aB(φB) are the ULA array response vectors at devices A and
B with incidence angles φA and φB respectively, modeled
as aA (ωA) =

[
1, e−jωA , . . . , e−j(NA−1)ωA

]T
and aB (ωB) =[

1, e−jωB , . . . , e−j(NB−1)ωB
]T

, with ωA(φA) = 2π
λ d cos (φA)

and ωB(φB) = 2π
λ d cos (φB). The incidence angles φA and

φB are assumed to be sampled from the ranges [θA,1, θA,2]
and [θB,1, θB,2] respectively. 2

The two devices go through an initial access phase con-
sisting of a pilot based beam alignment procedure in order to
establish the wireless link between them. We assume in this
work that, during this initial access phase, the CSI learning
and beam search processes for the two devices are centralized,
i.e one of the devices, say B, is collecting measurements
based on device A’s pilot transmission, uses them to learn
the channel’s statistics and devises the beamformer it will
use for the next pilot reception occasion together with the
beamformer that device A should use in sending that pilot,
then communicates such information to device A through an
ideal, error-free control channel3. At time instant t, device A
sends a pilot symbol to B, which observes, after pilot removal:

yB,t =
√
PwH

B,tHfA,t +wH
B,tnB,t (2)

where fA,t ∈ CNA and wB,t ∈ CNB are the effective
beamformer and combiner used at time t by transceivers
A and B respectively. These are chosen from the hybrid
digital-analog codebooks detailed next. nB,t ∈ CNB is a
complex circularly-symmetric additive white Gaussian noise
vector with i.i.d elements with an unknown variance σ2

B ,
obtained after training sequence removal.

√
P is the average

transmit power of the pilot signal.
The adaptive beamforming strategy proposed herein utilizes

the hierarchical beamforming codebook of [4]. Such a code-
book, noted CS hereafter, is designed to have S levels of beam
patterns. We note Cl the collection of beams belonging to level
l. Then, Cl contains 2l beamforming vectors that divide the
sector [θ1, θ2] into 2l directions, each associated with a certain
range of incidence angles Rml , such that [θ1, θ2] = ∪2lm=1Rml .
We note each of such 2l vectors as either fA (Rml ) or
wB (Rml ), depending on the considered device.

III. SEQUENTIAL BEAM PAIR SEARCH VIA VARIATIONAL
HIERARCHICAL POSTERIOR MATCHING

We start this section by first reviewing the details of the
vanilla HiePM scheme [7], showing that knowledge of the

1This assumption is used only for the analytical derivation of our scheme.
In Section IV, we show numerically that the method is resilient to such a
limitation.

2No statistical assumptions on the distribution of the gain and the angles
are made here, we will later justify the choice of distributions we will use
during the inference process.

3Such channel can e.g. be established via a sub-6 GHz link in a non-
stand-alone deployment. Control feedback channel design details will not be
discussed here due to space constraints.

channel gain α as well as the noise variance σ2 is necessary to
make such a search strategy usable in practice. We then detail
our main contribution, which consists of augmenting HiePM
with a novel variational model comparison based approximate
inference framework [10] to account for the uncertainties about
α and σ2

B and thus overcome the shortcomings, as detailed in
the introduction, of the vanilla HiePM and modified HiePM
schemes proposed in [7] and [9] respectively.

A. Sequential Active Learning via the HiePM Strategy

We illustrate here the use of vanilla HiePM scheme [7]
for device A (an analogous strategy will be used for device
B). HiePM selects fA,t+1 based on the posterior at time t of
the incidence angle φA. We discretize4 the noisy beam search
problem above by assuming that the beam search resolution
δA

5 is an integer power of two and that the AoA φA is of the
form:
φA ∈ {φA,1, . . . , φA,δA}, φA,i = θA,1+

(i− 1)

δA
(θA,2 − θA,1) (3)

With the above setup, the posterior distribution of φA given
all measurements up to time t (collected in vector yB,1:t), can
be written as a δA-dimensional vector πA (t) with entries

πA,i (t) := Pr (φA = φA,i|yB,1:t) , i = 1, . . . , δA. (4)

The posterior probability of φA being in a certain range,
say Rmi , can be computed as

πA,Rmi (t) :=
∑

φA,i∈Rmi

πA,i (t). (5)

The HiePM strategy examines the posterior probability
πA,Rmi (t) for all i = 1, . . . , SA and m = 1, . . . , 2i and
selects fA,t+1 ∈ CS to be the beamformer corresponding to
the angular range that satisfies:

(i∗t+1,m
∗
t+1) = argmin

(i,m)

∣∣∣∣πA,Rmi (t)− 1

2

∣∣∣∣ (6)

Doing so, it is guaranteed [7] to sequentially refine the width
of the beamformer around the true incidence angle φA.

Next we describe how the posterior bielief around φA is
updated once a new measurement is taken with the pair of
beamformers chosen previously with HiePM. Based on the
measurement model in (2), the posterior update at time instant
t+ 1 can be expressed using Bayes rule as

πA,i (t+ 1) ∝ πA,i (t) f (yB,t+1|φA = φA,i) ,

i = 1, . . . , δA
(7)

where f (yB,t+1|φA = φA,i) is the likelihood of φA from
measurement yB,t+1. Unfortunately, the likelihood term above
cannot be calculated in closed form due to the unknown
channel gain α, noise variance σ2

B and incidence angle φB .
We will show next, how “V-HiePM” is able, using the

variational model based approximate inference framework
described in [10], to infer all above unknowns and uses them

4Such discretization approaches the original problem of initial access as
δA → 0 [7].

5To support this level of resolution, the corresponding number of levels
of the hierarchical beamforming codebook at device A should be : SA =
log2 (δA).



efficiently to calculate the posterior update needed for HiePM,
in a consistent and elegant way6.

B. The V-HiePM Scheme

We explain first the variational model based approximate
inference framework used in its most general form, then show
how to apply it to our problem to derive posterior updates for
our parameters of interest.

1) Variational Model Comparison based Posterior Up-
date: We start by listing the different types of variables that
the variational model comparison based approximate inference
framework deals with:
• X is the observed data vector, in our case is yB,1:t+1.
• Z = (Z1,Z2, . . . ,ZL) denotes the L-dim vector of latent

variables that parameterize the measurement model (2).
In our case, Z = (α, σ2

B).
• m ∈ {1, 2, . . . , δA × δB} denotes the mth pair of

angles (φA,im , φB,jm), with im ∈ {1, . . . , δA}, and
jm ∈ {1, . . . , δB}. Choosing a certain label m is equiv-
alent to assuming that our measurement model in (2) is
parameterized by the the mth pair of angles.

The framework performs joint inference on the hidden
variables to find a set of distributions {q(Z|m), q(m)}1:m that
approximate the true posterior p(Z,m|X), by minimizing the
Kullback-Leibler (KL) divergence:

KL(q(Z|m)q(m), p(Z,m|X)). (8)
HiePM then uses the approximate incidence angle posterior

q(m) to decide which is the best measurement model can-
didate fitting the observed data vector X . Algorithm 1 lists
the steps required to perform such operations. We omit the
mathematical derivation because of space constrains and refer
to [10, Chapter 10.4] for such details.

Algorithm 1: Variational Model Comparison based
Posterior Update

1 for m = 1 : δAδB do
2 while (No convergence yet) do
3 for j = 1, 2, . . . , L do
4 q(Zj |m) ∝ Ei6=j(log(p(X|Z,m)))

5 Lm =
∫
Z
q(Z|m) log(

p(Z,m|X)
q(Z|m)

)

6 q(m) ∝ p(m) exp(Lm)

2) Posterior Update for our measurement Model and
the overall V-HiePM Algorithm: From our measurement
model (2), we have

p(X,Z,m) = p(yB,1:t|α, νB ,m)p(α)p(νB)p(m) (9)
where νB = σ−2B is the noise precision at
device B; p(X|Z,m) = p(yB,1:t|α, νB ,m) =∏t+1
i=1 CN(yB,i;

√
PαwH

B,iAmfA,i, σ
2
B) is the likelihood

6As it will be detailed below, such an inference framework lends itself
naturally in the HiePM context: we make the best use of the measurements
by first estimating posteriors over the channel gain and noise variance
and then use those to robustly update the angle of incidence posterior,
doing so allows V-HiePM to take the channel’s gain and noise variance
estimation uncertainties properly into account when deriving the posterior
of the incidence angles, thus making a robust HiePM based decision when
choosing the next precoder/combiner pair to use.

of our measurement model (we assume here that the
sequential noise samples are i.i.d); p(α) = CN(α;α0, β0)
is the prior belief over α, considered to be Gaussian
with a known initial mean α0 and initial precision β0

7;
p(νB) = Γ(νB ; a0, b0) is the non informative prior belief
over νB , with parameters a0 = 0 and b0 = 0; finally,
p(m) = 1

δAδB
is the prior belief over m, which is assumed to

be uniform to make it non informative as well8. In addition,
Am = aB(φB,jm)aH

A(φA,im) is the assumed unfaded channel
matrix under the mth pair of incidence angles.

The obtained approximate posteriors for α and νB , up to
the measurement iteration t, can be shown to keep the form of
their respective priors, but with parameters that depend on the
measurement vector yB,1:t: qt(α|m) has the form of complex
Gaussian pdf with mean αt,m and precision βt,m reading

βt,m =
at,m
bt,m

t∑
d=1

∣∣∣√PwH
B,tAmfA,t

∣∣∣2 + β0 (10a)

αt,m =
at,m

bt,mβt,m

t∑
d=1

(√
PwH

B,tAmfA,t

)∗
yB,d +

α0β0
βt,m

(10b)
and qt(νB |m)9follows a Gamma pdf with parameters shape
and rate parameters at,m and bt,m given by

at,m = a0 + t, (11a)

bt,m = b0−2Re
(∑t

d=1

(√
PwH

B,tAmfA,t

)∗
yB,dα

∗
t,m

)
+∑t

d=1

[
|yB,d|2 +

(
1

βt,m
+ |αt,m|2

) ∣∣∣√PwH
B,tAmfA,t

∣∣∣2]

(11b)
Note that the choice of our prior distributions is not ar-

bitrary, the priors chosen above correspond to the maximum
entropy distributions [11] that respect constraints that need
to be put on their respective parameters, namely α being a
complex variable having a known initial mean and variance,
νB being a non negative variable and m being a discrete
variable). Such a choice makes our proposal assume the least
information about our measurement model’s unknowns.

The posterior of the model, indexed by m, is then updated
following Lines 5 and 6 in Algorithm 1, where Lm reads

Lt,m = log(
1

β2
t,m

) + at,m (1− log(bt,m)) + log(Γ(at,m))

− b0
at,m
bt,m

−

(
t∑

d=1

|yB,d|2
at,m
bt,m

− βt,m |αt,m|2
)

(12)

7The first and second order moments of α are the only assumed known
values in our model.

8In the above, CN(·;µ, λ) denotes the complex Gaussian pdf with mean
µ and precision λ, Γ(·; a, b) denotes the Gamma pdf with shape and rate
parameters a and b.

9Note that (10) and (11) can be re-written, after performing some algebra,
in a recursive format w.r.t their terms involving summation over measurements
epochs. This results in a significant reduction of the algorithm’s memory and
computation complexity footprint.



The posteriors over φA,im and φB,jm are obtained from the
posterior qt(m) as

qA,t(i) =
∑

{m:im=i}

qt(m), i = 1, . . . , δA (13)

qB,t(j) =
∑

{m:jm=j}

qt(m), j = 1, . . . , δB (14)

The posterior probability of the incidence angles φA and
φB to be in a certain range RnA,i and RpB,j resp, read as:

qA,t(RnA,i) :=
∑

φA,i∈RnA,i

qA,t(i), (15)

qB,t(RpB,j) :=
∑

φB,j∈RpB,j

qB,t(i), (16)

The vanilla HierPM scheme is then applied separately to
qA,t(i) and qB,t(j), to choose the pair of beamformers to use
for the next measurement occasion.

The modes α̂t and ν̂Bt of the approximate posteriors
qt(α|m∗t ) and qt(νB |m∗t ), with m∗t = arg maxm(qt(m)), can
be seen as approximations of the MMSE estimates of α and
νB respectively. These estimates are given by:

α̂t = αt,m∗t , ν̂Bt = at,m∗t /bt,m∗t . (17)
Algorithm 2 runs all above operations in a loop, until the

measurement budget is exhausted: device B decides which
pair of beamformers devices A and B shall use to take the
next measurement by applying the HiePM scheme separately
to the current posteriors qA,t and qB,t, it then takes a new
measurement yB,t+1 with those latter, and finally run varia-
tional inference to derive approximate posteriors of νB = 1

σ2
B

,
α as well as of φA and φB .

IV. NUMERICAL RESULTS

To assess the effectiveness of V-HiePM, we run Monte Carlo
simulations on a setup with two hybrid digital-analog beam-
forming devices A and B. The channel matrix H ∈ CNB×NA
reads

H = αaB(φB)a
H
A(φA) +

L∑
l=1

αlaB(φB,l)a
H
A(φA,l) (18)

and contains one dominant multipath component and L scat-
tered components. All incidence angles are independently
drawn from a uniform distribution between 0 and π. The
channel gains are independently drawn from a a set of complex
Gaussian distribution with mean 0 and variances fulfilling
Var{α}+

∑
l Var{αl} = 1, so that the average SNR ρ between

the nth element of the array at A and the mth element of
the array at B equals E{|Hnm|2}/E{|σB |2}=1/σ2

B
10. In all

simulations below, the two devices are equipped with identical
arrays made of NA = NB = 32 elements, digitally controlled
with NRF

A = NRF
B = 8 RF chains. Device A uses a codebook

CA with a depth of SA = log2(δA), δA = 128. CA is built

10Hnm is the channel coefficient between device B’s nth array element
and device A’s mth array element, and E{} is the expectation operator.

using the orthogonal matching pursuit as described in [4]. A
similar codebook, CB , is used for device B.11

We benchmark our algorithm’s beamforming gain after t
measurements, defined as:

Gvh =
∣∣∣wH(φB,k̂t,B )Hf(φA,k̂t,A)

∣∣∣2 (19)
with different measurement budget sizes and under different
channel assumptions (note the the exhaustive search needs
NANB = 16384 measurements to settle), against that of the
different state of the art schemes listed below:

• Gph of the vanilla HiePM scheme of [7]. Here, such a
scheme assumes that most of the energy in the channel
is concentrated in the path corresponding to the known
gain α and all other gains αl are null, it also assumes
that σ2

B is known. In such case, the posterior update is
done, simply using Bayes rule as in equation (21) in [7],
on the beam pair corresponding to that main path, and
then HiePM is applied to the marginals over those angles
separately, similar to what V-HiePM does.

• Gbs of the noisy binary search algorithm of [4], which is
achieved by 4 log2(max{NA, NB}) = 28 measurements.

As a reference, we consider as well the best achievable
beamforming gain of the codebook, defined as

Gmax = max
{w∈CBSB ,f∈C

A
SA
}

∣∣wHHf
∣∣2 . (20)

11Note that the multi-RF chain setups are used solely to help build
acceptable RF codebooks [4], and are not used for multi-stream MIMO
operations.

Algorithm 2: V-HiePM
1 Input : Antenna Array Size NA and NB , The search resolution δA and δB ,

the codebooks CSA and CSB , Search time τ
2 Output : Estimates of φA, φB , α and νB
3 for t = 1, 2, . . . , τ − 1 do
4 #HierPM Based BF selection according to Eq.(6)

(fA,t+1,wB,t+1) =
(
fA
(
R
kA,t+1
A,lA,t+1

)
,wB

(
R
kB,t+1
B,lB,t+1

))
5 #Take next measurement
6 yB,t+1 =

√
PwH

B,t+1HfA,t+1 + wH
B,t+1nB,t+1,

7 #Variational Model Comparison Posterior Update
8 for m = 1 : δAδB do
9 while (No convergence yet) do

10 update qt+1(α|m) via (10) then qt+1(νB |m) via (11)
11 end
12 update qt+1(m) via (12)
13 end

14 #Angle and Angular Range Posterior Update
15 update qA,t+1(i) via (13) and qB,t+1(j) via (14)
16 update qA,t+1(RnA,i) via (15) and qB,t+1(RnB,j) via (16)

17 #Final Precoder/Combiner Vector design(
l̂t+1,A, k̂t+1,A

)
= (SA, argmaxk (qA,t+1(k)))

18
(
l̂t+1,B , k̂t+1,B

)
= (SB , argmaxk (qB,t+1(k)))

19 #Channel’s Gain and Noise Precision MAP Estimates update α̂t+1 and
ν̂Bt+1 via (17)

20 end
21 Output : φ̂A = φ̂A,k̂τ,A

, φ̂B = φ̂B,k̂τ,B
, α̂ = α̂τ , ν̂B = ν̂Bτ
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Figure 1: Beamforming loss of the different search schemes in a
channel with L = 0 scattered components.

We begin by assuming that only the dominant component
is present (i.e. L = 0). Fig. 1 shows the beamforming losses
of the benchmarked algorithms with respect to the optimum
pair of beamformers, defined as Lvh = Gvh/Gmax, Lph =
Gph/Gmax, and Lbs = Gbs/Gmax. The results show the
superiority of our scheme compared to the binary search of
[4], and that it achieves similar or even better performance
compared to vanilla HiePM with perfect CSI and operating
SNR knowledge. It can be observed that the vanilla HiePM
scheme with perfect channel gain knowledge saturates at high
SNR: this is an effect of the algorithm assuming that the
component’s incidence angle lies on a discrete grid of values,
whereas the actual angles are sampled from a continuous
distribution. Our proposed method is less sensitive to this
model mismatch, due to the estimation of the channel gain
and inverse noise variance: in practice, these estimates partly
account for the mismatch in the assumed values of the angles
and provide robustness to the overall procedure.

Next, we explore the robustness of the proposed method
against channels containing more than one multipath compo-
nent. For this, we consider a channel with L = 3 scattered
components with gains of equal variance, and with the power
ratio between the dominant and scattered components being
LOSR = E{α2}/(E{α2}+

∑
l E{α2

l }). Fig. 2 shows beam-
forming gains achieved by our algorithm after 100 measure-
ments compared to the maximum gains achievable Gmax.

As it can be observed, the maximum achievable beamform-
ing gain decreases as the power is more evenly distributed
among the channel’s components. Although V-HiePM assumes
the existence of a single component, it shows remarkable
resilience to the presence of other components. Even when
all components in the model have comparable power, our
proposed method is able to perform within 2 dB of the
optimum for sufficiently high SNR.

V. CONCLUSION AND FUTURE WORK

We proposed in this work a variational Bayesian online
learning scheme that enables initial access for hybrid digital-
analog enabled devices operating in mmWave wireless chan-
nels. When compared to state of the art beam acquisition
schemes, our method shows superiority, in terms of balancing
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Figure 2: V-HiePM performance in channels with different power
ratios between the dominant path and L = 3 scattered components.

the beam search time versus achieving higher beamforming
gain, in being able to properly do so while accounting for
uncertainties on the unknown CSI (gain and noise variance)
and in being very resilient to the dominant single path assump-
tion. Even though the scheme is derived based on a discretized
model of the angles of incidence of the channel’s main
component, it showed great robustness against off-grid angles
as well as working with a realistic codebook implementation.
Further research will focus on adapting the proposed online
learning algorithm to operating in time-varying channels.
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