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Introduction

Fossil energy crisis and environmental issues are challenges for automobile industry and urge necessity developing alternatives to fuel-driven vehicles.

Therefore, battery-driven electric and hybrid vehicles are becoming more and more attractive [START_REF] Bank | Lithium-ion cell requirements in a real-world 48 v system and implications for an extensive aging analysis[END_REF]. Thanks to their high energy/power density and extended life cycle, lithium-ion batteries (LIBs) are currently the state-of-the-art power sources for electrified powertrain systems [START_REF] Yue | Review on healthconscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies[END_REF].

Safety operation of LIBs is of vital importance for the development of electric vehicles (EVs). However, as resumed in [START_REF] Meng | On-line model-based short circuit diagnosis of lithium-ion batteries for electric vehicle application[END_REF], reliability and safety of electrified vehicle can be compromised due to overcharge (OC), overdischarge (OD), internal short circuit (ISC) or external short circuit (ESC) of the battery. They can cause irreversible battery damages, or even lead to battery thermal runaway (TR), which is a catastrophic failure of on-board batteries.

Therefore, fault diagnosis and mitigation strategies for EVs' battery are critical functions to prevent TR. To this end, EVs' battery, typically consisting of hundreds to thousands of cells, is monitored by a battery management system (BMS). Data measurement, State-of-Charge (SOC), State-of-Health (SOH) and State-of-Power (SOP) estimation and fault diagnosis are the main functions of BMS [START_REF] Feng | Detecting the internal short circuit in large-format lithium-ion battery using model-based faultdiagnosis algorithm[END_REF][START_REF] Shen | The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[END_REF]. Its main function is to avoid battery OC and OD, but also prevent occurrence of thermal hazard [START_REF] Shen | The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[END_REF][START_REF] Yue | Health-conscious energy management for fuel cell hybrid electric vehicles based on prognostics-enabled decisionmaking[END_REF][START_REF] Meng | A new cascaded framework for lithium-ion battery state and parameter estimation[END_REF][START_REF] Zhang | Aging characteristicsbased health diagnosis and remaining useful life prognostics for lithiumion batteries[END_REF]. Because BMS requires on-line calculation with limited embedded computation resources, analytical models are usually preferred to data-driven approaches [START_REF] Yang | An online soc and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency[END_REF]. Battery fault detection and diagnosis has become a hotspot research topic in terms of BMS recently [START_REF] Tanim | Advanced diagnostics to evaluate heterogeneity in lithium-ion battery modules[END_REF]. Battery short-circuit (external or internal) is a major concern as it is usually a precursor to thermal runaway. Hard shortcircuit (mΩ magnitude) will almost instantly lead to fire or explosion [START_REF] Ouyang | Internal short circuit detection for battery pack using equivalent parameter and consistency method[END_REF].

But in case of soft short-circuit (100/10/1 Ω) the thermal drift is going to be progressive. During this incubation period of the thermal runaway, no electrical or thermal thresholds are exceeded [START_REF] Kong | Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[END_REF][START_REF] Sidhu | Adaptive nonlinear model-based fault diagnosis of li-ion batteries[END_REF] for a long time before any thermal accidents [START_REF] Ouyang | Internal short circuit detection for battery pack using equivalent parameter and consistency method[END_REF][START_REF] Feng | Thermal runaway mechanism of lithium ion battery for electric vehicles: A review[END_REF]. So detection of soft short-circuit fault (denoted as incipient fault) at its earliest stage is meaningful as it can prevent battery failure. However soft short-circuit fault signature is weak as it may look like healthy operating conditions and fault features may be concealed in environmental nuisances. Therefore its detection is challenging.

Soft short-circuit (SC) detection can be, for instance, carried out by ther-mal analysis. In [START_REF] Feng | Online internal short circuit detection for a large format lithium ion battery[END_REF], a 3D electrochemical-thermal model is built to simulate various ISC scenarios and ISC detection is addressed from model parameterization and parameter estimation perspective. In [START_REF] Dey | Model-based real-time thermal fault diagnosis of lithium-ion batteries[END_REF], residual-based battery thermal fault detection is achieved based on non-linear observers and a twostate thermal model. In [START_REF] Feng | Detecting the internal short circuit in large-format lithium-ion battery using model-based faultdiagnosis algorithm[END_REF], with voltage and temperature, ISC resistance is estimated based on electrical and thermal models. However, from security point of view, temperature-aware level often means that TR has already started [START_REF] Kong | Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[END_REF]. Hence, battery SC diagnosis based on electrical signals, namely measured battery current and voltage, is more popular. In [START_REF] Kong | Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[END_REF], soft SC diagnosis is done with the help of remaining charging capacity variation inside battery pack. In [START_REF] Ouyang | Internal short circuit detection for battery pack using equivalent parameter and consistency method[END_REF], ISC detection method for battery pack is proposed by identifying difference between cell model's parameters. In [START_REF] Kong | Pseudo-two-dimensional model and impedance diagnosis of micro internal short circuit in lithium-ion cells[END_REF], a pseudo-twodimensional model of micro ISC cells is proposed. The electrochemical model allows micro ISC mechanism analysis and impedance identification method of micro ISC cells is proposed. In [START_REF] Xiong | Online fault diagnosis of external short circuit for lithium-ion battery pack[END_REF][START_REF] Chen | Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles[END_REF], physics-based model ESC detection scheme is proposed using different models for faulty and healthy conditions, which are obtained from experiments. In [START_REF] Reichl | Capacity detection of internal short circuit[END_REF], according to time dependence of the capacity evaluation, ISC detection is evaluated while the cell is being charged. Furthermore, soft SC quantitative analysis is developed with cell difference model and state estimation algorithm in [START_REF] Gao | Micro-shortcircuit diagnosis for series-connected lithium-ion battery packs using 35 mean-difference model[END_REF]. In [START_REF] Alavi | Fault detection and isolation in batteries power electronics and chargers[END_REF] and LFP (LiFePO 4 )) and configurations is a real challenge. An analytical model is usually adopted to develop control methods or/and monitoring techniques. This model should be flexible, parametrizable, and interoperable to cope with the diversity of batteries and the measurements (voltage, current, temperature) usually done at the battery (and not cell) level. Various experimental studies [START_REF] Sidhu | Adaptive nonlinear model-based fault diagnosis of li-ion batteries[END_REF][START_REF] Xiong | A robust state-of-charge estimator for multiple types of lithium-ion batteries using adaptive extended kalman filter[END_REF][START_REF] Chen | State of charge estimation of lithium-ion batteries in electric drive vehicles using extended kalman filtering[END_REF] have validated the Equivalent Circuit Model (ECM), commonly used for control and monitoring purposes. This model, when limited to 2 RC networks includes five parameters that can be identified with limited number of experiments. Besides, this model is interoperable because it can be combined with thermal and aging models that allow variations in these parameters to be taken into account. Therefore we have selected this 2 RC-network ECM to develop our incipient short-circuit detection method.

• Design generality: Design of incipient SC diagnosis method should not be constrained by experimental conditions. For example, with the effective battery fault diagnosis method proposed in [START_REF] Sidhu | Adaptive nonlinear model-based fault diagnosis of li-ion batteries[END_REF], early warning of TR can be obtained. However, the faulty model must be tuned for each fault type and severity level requiring repeated experiments.

Hence, we propose a soft SC diagnosis, taking advantage of the existing literature, which includes validated model and experimental information. This method is designed to be adapted to different technologies and copes with different fault types and severity levels.

• Implementation generality: During battery operation, BMS can only collect current, voltage and temperature at given sampling frequency and accuracy [START_REF] Waag | Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles[END_REF]. Hence, battery incipient SC fault features should be retrieved from this information. Besides, an easy-to-understand fault diagnosis structure is more attractive.

Therefore, the development of battery SC incipient diagnosis method presented in this paper relies on the three aforementioned criteria. The novelty and original contributions of this paper are:

• Based on battery ECM, battery incipient SC fault diagnosis is addressed from the perspective of fault estimation. Inspired by the concept of Takagi-Sugeno fuzzy system, we propose a weighting function self-regulating state and fault estimator that is designed for battery SC detection.

• Taking into account the slowly changing characteristic of battery SOC and using a genetic algorithm, we propose a systematic approach to construct the self-regulating mechanism to cope with the non-linear battery OCV (open circuit voltage)-SOC curve.

• To detect tiny changes in the fault feature, which are usually hidden in the environmental noise, we have combined statistical information (Cumulative Sum) with the model-based observer fault estimation.

The rest of the paper is structured as follows. Firstly, to model the shortcircuit (ISC or ESC), a resistance is connected in parallel to a healthy battery ECM. This faulty model is introduced in section II. Then, to achieve soft SC diagnosis from the perspective of control, a systematic way of designing the weighting function self-regulating battery fault estimator is proposed in section III. In addition, numerical simulations with real experimental data are presented in section IV. Furthermore, CUmulative SUM (CUSUM) is used to retrieve the fault information from the estimated fault. Finally, a conclusion ends the paper.

Battery ECM with SC resistance

As shown in Fig. 1, both internal SC (ISC) and external SC (ESC) are modelled as a healthy battery ECM connected in parallel with a resistance R sc [START_REF] Zhang | Real-time diagnosis of micro-short circuit for li-ion batteries utilizing low-pass filters[END_REF]. 

ECM description

1. The resistor R 0 stands for the ohmic resistance which includes resistance of contacts, electrodes as well as electrolytes [START_REF] Chen | State of charge estimation of lithium-ion batteries in electric drive vehicles using extended kalman filtering[END_REF].

2. The double pair RC characterizes charge transfer effect, diffusion effect and double-layer behavior inside LIBs. It simulates battery's transient response. Besides, the double RC-network is a good trade-off between model error and model complexity compared with single-RC and triple-RC structures [START_REF] Zhao | Observability analysis and state estimation of lithium-ion batteries in the presence of sensor biases[END_REF].

3. The voltage source V OC represents OCV, which mainly depends on battery SOC [START_REF] Meng | Comparative study of lithium-ion battery open-circuit-voltage online estimation methods[END_REF]. As shown in Fig. 2, its average value, V OC (soc), is usually a non-linear monotonically [START_REF] Rahimi-Eichi | Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[END_REF] increasing function of SOC. In each SOC interval, it can be approximated by V OCi (soc) = a i • soc + b i (a i and b i are constant in the i-th SOC interval). 

) (soc (i-1) • ∆soc i • ∆soc = a i •soc + b i i V OC Figure 2
: General shape of average OCV curve (example adapted from [START_REF] Chen | State of charge estimation of lithium-ion batteries in electric drive vehicles using extended kalman filtering[END_REF]).

4. V 1 and V 2 are voltages across capacitors C 1 and C 2 respectively. V batt is battery terminal voltage.

5. I batt is battery load current. According to its reference direction in Fig. 1, "+" means discharging process, while "-" means charging process.

6. I sc is SC current flowing into equivalent SC resistance R sc . It is unidirectional and obviously unknown. Furthermore, its value is

I sc = V batt Rsc .
7. According to Kirchhoff's circuit law, I in = I batt + I sc , is battery real input current with or without SC fault. If R sc approaches to infinity, then I sc ≈ 0 and I in ≈ I batt . Therefore, battery operates in healthy condition. Otherwise, battery is exposed to SC conditions, which could be induced by ISC or ESC.

Battery modelling

Firstly, battery SOC ∈ [0%, 100%] can be modelled by the classical Coulomb counting method [START_REF] Chen | State of charge estimation of lithium-ion batteries in electric drive vehicles using extended kalman filtering[END_REF]:

soc(t) = soc(t 0 ) -η t t 0 I batt (τ ) C n dτ (1)
where, soc is the operator of SOC; η is Columbic efficiency usually approximated to 1 for LIBs; C n (Ah: Ampere-hour) is battery nominal capacity; soc(t) is required SOC at time point t based on its initial value soc(t 0 ).

Therefore, using Kirchhoff's law, battery dynamic model can be described by the following discrete state-space representation:

      V 1 (k + 1) V 2 (k + 1) soc(k + 1)       = A       V 1 (k) V 2 (k) soc(k)       + BI in (k) V batt (k) = V OC (soc) -V 1 (k) -V 2 (k) -R 0 I in (k) (2) 
where,

A =      e -T R 1 C 1 0 0 0 e -T R 2 C 2 0 0 0 1      , B =      R 1 • (1 -e -T R 1 C 1 ) R 2 • (1 -e -T R 2 C 2 ) -ηT Cn     
Eq. ( 2) is obtained with the zero-order hold approximation under the assumption that I in is constant between two adjacent sampling points. The sampling period, T = 1 s in this study.

Weighting function self-regulating fault estimator

The OCV-SOC curve is non-linear. However the battery can be described as a linear time-invariant (LTI) model in each SOC interval. This assumption is supported with experimental verification conducted in [START_REF] Sidhu | Adaptive nonlinear model-based fault diagnosis of li-ion batteries[END_REF][START_REF] Chen | State of charge estimation of lithium-ion batteries in electric drive vehicles using extended kalman filtering[END_REF][START_REF] Zhao | Observability analysis and state estimation of lithium-ion batteries in the presence of sensor biases[END_REF][START_REF] Xia | Strong tracking of a h-infinity filter in lithium-ion battery state of charge estimation[END_REF].

Therefore, inspired by the concept of Takagi-Sugeno (TS) fuzzy system, a systematic way to blend the linear intervals of OCV-SOC curve and build the weighting function self-regulating fault estimator is proposed. The principle of TS fuzzy system, including modeling and observer/controller design process, is to study nonlinear systems by a set of local LTI models. These models are interpolated using non-linear weighting functions or membership functions (MFs). This mechanism allows the fusion of all the linear subsystems [START_REF] Zhang | Fuzzy unknown input observerbased robust fault estimation design for discrete-time fuzzy systems[END_REF]. The general design process is shown in Fig. 3, and details will be given in the following. 

Fuzzification of OCV-SOC curve

The flowchart presented in Fig. 4 illustrates the fuzzification process for battery OCV-SOC curve: 

V OCi (soc) = a i • soc + b i , (i = 1, . . . , g) (3) 
It is important to notice that the linear segments do not need to be contiguous. This approach has two main advantages. Firstly, the model is much simpler compared to the classical one which uses a small discretization step [START_REF] Rahimi-Eichi | Online adaptive parameter identification and state-of-charge coestimation for lithium-polymer battery cells[END_REF]. Secondly, the model is robust because it does not require a strong approximation of the linearity of the whole curve.

• Fig. 4(c): a MF should be distributed to each linear segment based on the main idea of TS fuzzy system. In other words, each linear segment contributes to the global nonlinear behavior of OCV-SOC curve through a weighting function π(soc). Furthermore, in order to have a smooth transition among different linear segments, π is selected as Gaussian type. As a result, π(soc) is determined by its mean µ and its variance σ 2 . Hence, for any value of SOC, it is supposed that π i (soc) ≥ 0 and g i=1 π i (soc) > 0, (i = 1, . . . , g)

• Fig. 4(d): after these two steps, OCV-SOC curve can be expressed as [START_REF] Feng | Detecting the internal short circuit in large-format lithium-ion battery using model-based faultdiagnosis algorithm[END_REF].

V OC-fuzzy (soc) = g i=1 h i (soc) • [a i • soc + b i ] (4) 
where, h i (soc) =

π i (soc) g i=1 π i (soc)
. Hence, for any value of SOC, h i (soc) satisfies

h i (soc) ≥ 0 and g i=1 h i (soc) = 1, (i = 1, . . . , g)
• Fig. 4(e): selecting the optimal pair (µ i , σ i 2 ) (i = 1, . . . , g) for each MF π i (i = 1, . . . , g) is necessary. This optimization problem is similar to curve fitting. Therefore, coefficient of determination, R 2 , used as the optimization criterion is formulated in [START_REF] Shen | The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles[END_REF].

R 2 = 1 - nocv i=1 [V OC (soc) -V OC-fuzzy (soc)] 2 nocv i=1 V OC (soc) -VOC (soc) 2 (5) 
where, VOC (soc

) = 1 nocv nocv i=1 [V OC (soc)]
; n ocv is the number of data points used in the optimization process; V OC (soc) is the original average OCV-SOC data as shown in Fig. 4(a). Finally, as indicated in Fig. 4(f), the obtained optimal membership functions after the optimization process will be used later for observer fusion.

Fuzzification of robust observers

Due to the relationship I in = I batt + I sc , the mathematical representation of the battery ECM with SC resistance in the i-th SOC interval can be arranged as:

x(k + 1) = Ax(k) + BI batt (k) + B f I sc (k) y(k) = Cx(k) + DI batt (k) + D f I sc (k) (6)
where,

B f = B; C = [-1 -1 a i ]; D = D f = -R 0 . State vector is x(k) = [V 1 (k), V 2 (k), soc(k)] ; model output is y(k) = V batt (k) -b i .
According to [START_REF] Yue | Health-conscious energy management for fuel cell hybrid electric vehicles based on prognostics-enabled decisionmaking[END_REF], the design process of battery fault estimator is discussed based on [START_REF] Zhang | A framework of robust fault estimation observer design for continuous-time/discrete-time systems[END_REF]. Firstly, considering modeling error and measurement noise, battery SC model ( 6) can be further generalized to [START_REF] Meng | A new cascaded framework for lithium-ion battery state and parameter estimation[END_REF], where both state equations and output equation will be studied with bounded disturbance.

x(k + 1) = Ax(k) + Bu(k) + B f f (k) + B d d(k) y(k) = Cx(k) + Du(k) + D f f (k) + D d d(k) (7)
where, x(k) ∈ R n is the state vector; y(k) ∈ R p is the output; u(k) ∈ R m is the known input, which corresponds to I batt ; f (k) ∈ R n f is the so-called fault, which corresponds to I sc ; d(k) ∈ R n d is the disturbance that belongs to l 2 [0, ∞]; B d and D d are constant real matrices of appropriate dimensions. Furthermore, fault estimator ( 8) is designed as a proportional-integral observer. Not only the integral term can guarantee a robust state estimation at fault occurrence, but it can also provide fault estimation simultaneously [START_REF] Shafai | Proportional-integral observer in robust control, fault detection, and decentralized control of dynamic systems[END_REF].

x(k + 1) = Ax(k) + Bu(k) + B f f (k) -L • (ŷ(k) -y(k)) f (k + 1) = f (k) -F • (ŷ(k) -y(k)) ŷ(k) = C x(k) + Du(k) + D f f (k) (8)
where x(k) ∈ R n is the estimated state vector; ŷ(k) ∈ R p is the observer

output; f (k) ∈ R n f is the estimated f (k); L ∈ R n×p and F ∈ R n f ×p are observer gains.
Therefore, the error dynamics between model [START_REF] Meng | A new cascaded framework for lithium-ion battery state and parameter estimation[END_REF] and observer (8) can be described as [START_REF] Yang | An online soc and capacity estimation method for aged lithium-ion battery pack considering cell inconsistency[END_REF],

ē(k + 1) = ( ĀD -L C)ē(k) + ( L Dd -Bd )ῡ D (k) (9) 
where ). I i is the symbol of unit matrix with i × i dimension. 0 is zero matrix with corresponding dimension.

ĀD =   A B f 0 n f ×n I n f   , Bd =   B d 0 n×n f 0 n f ×n d I n f   C = C D f , Dd = D d 0 p×n f ē(k) =   e x (k) e f (k)   , ῡD (k) =   d(k) ∆f (k)   and L = L F . e x (k) = x(k) -x(k), e f (k) = f (k) -f (k); ∆f (k) = f (k + 1) -f (k) belongs to l 2 [0, ∞
The design of the observer is how to determine L to make the error dynamics (9) satisfy the following two objectives [START_REF] Zhang | A framework of robust fault estimation observer design for continuous-time/discrete-time systems[END_REF]:

• ( ĀD -L C
) is Hurwitz stable. Its eigenvalues are inside the unit circle for discrete-time system.

• the fault estimation error e f (k) is insensitive to ῡD (k), namely, e f (k) is as small as possible.

In order to achieve the aforementioned objectives, a multi-constrained design method is proposed in [START_REF] Zhang | A framework of robust fault estimation observer design for continuous-time/discrete-time systems[END_REF]. The main results are shown directly in

Theorem, which will be used to design the fault estimator.

Theorem. Let a prescribed H ∞ performance level γ and a circular region D(α, r) be given. If there exist two symmetric positive definite matrices P 1 ,

P 2 ∈ R (n+n f )×(n+n f ) and two matrices S ∈ R (n+n f )×(n+n f ) , Ȳ ∈ R (n+n f )×p
such that the following conditions hold:

        M N Ȳ Dd -S Bd 0 * -P 1 0 Īn f * * -γI (n d +n f ) 0 * * * -γI n f         < 0 (10) and  
 -S -S + P 2 S ĀD -Ȳ C -α S * -r 2 P 2   < 0 ( 11 
)
where

Īn f =   0 n×n f I n f   , M = -S -S + P 1 ; N = S ĀD -Ȳ C; "*" rep-
resents the matrix's symmetric term. Then error dynamics (9) satisfies the

H ∞ performance index e f (k) 2 < γ ῡD 2 , the eigenvalues of ( ĀD -L C)
belong to D(α, r), and the gain matrix L is given by L = S-1 Ȳ .

To be short, the linear fault estimator design is subject to two linearmatrix-inequalities (LMIs). The H ∞ performance and regional pole constraint constitute the so-called multi-constrained design method [START_REF] Zhang | A framework of robust fault estimation observer design for continuous-time/discrete-time systems[END_REF]. The observer performance is adjusted by tuning the circular region D(α, r).

Hence, according to the previously presented method, at first a robust observer is built for each linear segment. Namely, the gain vector Li = L i F i (i = 1, . . . , g) for each sub-observer is determined. Then, based on (8), g linear robust observers can be blended directly as [START_REF] Kong | Fault diagnosis and quantitative analysis of micro-short circuits for lithium-ion batteries in battery packs[END_REF], where the subscript (•) fuzzy stands for elements of TS fuzzy observer.

xfuzzy (k + 1) = g i=1 h i ( soc fuzzy (k)) [A xfuzzy (k) + Bu(k) + B f ffuzzy (k) -L i • (ŷ fuzzy (k) -y(k))] ffuzzy (k + 1) = g i=1 h i ( soc fuzzy (k)) ffuzzy (k) -F i • (ŷ fuzzy (k) -y(k)) ŷfuzzy (k) = g i=1 h i ( soc fuzzy (k)) Cx fuzzy (k) + Du(k) + D f ffuzzy (k) (12) 
Two important points should be pointed out. Firstly, according to TS fuzzy system design method, the optimal MFs for the different linear observers are exactly the same ones as those in the fuzzification process of battery OCV-SOC curve [START_REF] Zhang | Fuzzy unknown input observerbased robust fault estimation design for discrete-time fuzzy systems[END_REF]. Secondly, dsoc dt ≈ 0 has been proven both in theory and practice [START_REF] Du | Design and assessment of an electric vehicle powertrain model based on real-world driving and charging cycles[END_REF][START_REF] Chiang | Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electric vehicles[END_REF]. Namely, the slowly changing characteristic of SOC makes soc fuzzy (k + 1) ≈ soc fuzzy (k), where soc fuzzy (k) is included in the estimated state vector xfuzzy (k). Therefore, soc fuzzy (k) is the so-called fuzzy variable in the TS fuzzy observer for battery ECM, and the obtained TS fuzzy observer is, in essence, a weighting function self-regulating robust observer. The obtained TS fuzzy observer is schematic diagram is represented in Fig. 5. 

Numerical simulations

Numerical simulations of TS fuzzy fault estimator will be given in this section based on SAMSUNG ICR 18650-22P LIB cell. Its basic electrical characteristics are summarized in Table 1 [START_REF] Xia | Strong tracking of a h-infinity filter in lithium-ion battery state of charge estimation[END_REF]. The details for parameter identification can be found in [START_REF] Xia | Strong tracking of a h-infinity filter in lithium-ion battery state of charge estimation[END_REF].

In addition, according to our research interest and the electrical charac- As it can be observed from Fig. 7, battery electrical behavior under soft SC conditions is almost similar to a healthy battery because both voltage and SOC are in normal operation ranges according to Table 1. But the underlying effects of incipient faults compromise battery's safety and reliability.

Especially when battery is controlled in closed-loop EV power supply system, battery SOC will be maintained in its normal range by the energy management strategy that ignores the actual battery status [START_REF] Yue | Health-conscious energy management for fuel cell hybrid electric vehicles based on prognostics-enabled decisionmaking[END_REF]. Therefore, battery condition will keep on deteriorating before TR. Hence, soft SC detection is critical, especially when it is hard to distinguish from the healthy situation.

Short-circuit current estimation

Following the design process presented in section III, the selected SOC ranges, the corresponding linear robust observer design results and the optimal MF parameters (mean and variance) are shown in Table 3. Furthermore, the shape of the optimized MFs and the fuzzification result of OCV-SOC curve are shown in Fig. 8. Especially after the abrupt fault occurrence, the estimator is able to track the dynamic change of the battery SOC. Furthermore, as it can be observed from Fig. 9(g), fault estimation is a valuable fault indicator. However, as shown in Fig. 10, when SC current amplitude is small, namely the SC fault is small, it is difficult to distinguish the healthy and faulty modes from the estimated I sc . Because fault signal is corrupted with noise.

Statistical analysis

As it can be observed from the intensive numerical simulations, fault information is concealed in the noise and it is worse when the fault is more and more incipient ( R sc > 100Ω). To assess fault occurrence based on probablities, we will use statistical analysis of the estimated signal. The randomness in the data is introduced through Monte-Carlo method with a high number of repetitive simulations with randomized noise samples but with the same distribution parameters. In the following, the I sc estimation is done 500 times for each condition (healthy or faulty). The first four statistical 

CUSUM fault detection

Based on the statistical analysis result in the previous section, Cumulative Sum (CUSUM) will be applied on the mean value on the estimated I sc to improve incipient SC fault detection performances.

Flowchart of battery soft SC detection method proposed in this paper is displayed in Fig. 12.

CUSUM is a well-known statistical technique [START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF] that has already been proved to be efficient in detecting abrupt changes [START_REF] Delpha | Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing[END_REF]. The CUSUM function, denoted S in the following, is a simple detection algorithm based on the likelihood process [START_REF] Delpha | Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing[END_REF]. Namely, the estimated SC current will be treated as time-series signal, and then, the CUSUM method is used to detect small changes in the signal due to the incipient fault. Theoretically, based on Gaussian distributed process, it is optimally derived as the sufficient statistics s k such as [START_REF] Delpha | Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing[END_REF]:

S N = N k=1 s k ( 13 
)
where N is the number of samples. And according to the statical analysis for the estimated I sc , s k is considered in the case of mean changes in ( 14) [START_REF] Delpha | Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing[END_REF]: where, µ f and µ h are the mean values of Îsc in healthy and faulty cases respectively. σ h is the standard deviation value of Îsc in the healthy condition.

s k = µ f -µ h σ h 2 × Îsc (k) - µ f + µ h 2 (14 
According to the previous simulation studies, µ f and µ h are selected as 0.03 and 0 respectively. σ h 2 = 0.006.

Furthermore, the CUSUM decision law can be computed as [START_REF] Delpha | Multiple incipient fault diagnosis in three-phase electrical systems using multivariate statistical signal processing[END_REF]:

D S N = S N k -min 1≤j≤k (S N j ) (15) 
Hence, fault detection method based on the flowchart in Fig. 12 is executed 500 times in healthy condition and 500 times for R sc = 100Ω, 75Ω, 50Ω, 25Ω respectively. As it can be seen from Fig. 13, the combination of fault estimator and CUSUM analysis is effective to carry out the incipient SC detection.

Threshold setting

Threshold 1

The first method for setting detection threshold T h is to select T h =0.99D S N max , where D S N max is the maximum value of D S N in the healthy case. If CUSUM decision value is higher than T h , a SC fault is detected [START_REF] Baghli | Threelevel npc inverter incipient fault detection and classification using output current statistical analysis[END_REF]. Hence, according to the 500 simulation results, T h =640.4445. Therefore, detection threshold T h can be set based on the empirical equation T h =µ cusum +3σ cusum [START_REF] Youssef | An optimal fault detection threshold for early detection using kullback-leibler divergence for unknown distribution data[END_REF]. In our case, µ cusum is the mean value of the 500's CUSUM decision mean value, σ cusum is the standard deviation of the 500's CUSUM decision mean value. Therefore, T h =55.2014 in this case.

Robustness of fault detection

Robustness of fault detection for R sc = 100Ω under different disturbance conditions is evaluated probabilistically with:

• The probability of detection (PD), which represents the ability to correctly detect fault occurrence [START_REF] Baghli | Threelevel npc inverter incipient fault detection and classification using output current statistical analysis[END_REF].

• The probability of false alarm (PFA), which measures the probability of considering a healthy situation as a fault [START_REF] Baghli | Threelevel npc inverter incipient fault detection and classification using output current statistical analysis[END_REF]. 

Conclusion

In this paper, battery SC fault detection is treated from the perspective of fault estimation based on an extended equivalent circuit model (ECM) to take into account the short-circuit (internal or external). Because the battery OCV-SOC curve is non linear, we have first proposed a systematic approach to design the self-regulating mechanism to cope with this non linearity thanks to TS fuzzy system modelling and optimized Gaussian membership functions in different SOC ranges where the OCV-SOC is linear. This approach has two main advantages. Firstly, the model is much simpler compared to classical one that uses a small discretization step. Secondly, the model is more robust because it does not require strong approximation on the linearity of OCV-SOC curve. Thanks to this model, the fault estimator is based on several linear observers combined through a TS fuzzification process. The proposed estimator can provide a reliable and accurate estimation of the battery state of charge even after SC fault occurrence. The mean value of the absolute estimation error for 100 Ω SC's current is equal to 8.66%. The estimated SC current has been treated as a time-series signal to extract fault feature.

We have applied CUSUM analysis on the estimated fault signal to improve fault detection when nuisance level increases. The proposed battery incipient SC detection method is flexible (the model can be adapted to different battery technologies), interoperable (it can be easily combined with thermal and aging models) and is based only on common available measurements (battery current and voltage). The obtained results are very promising with a probability of detection higher than 0.9 for all the cases.

In future work, experimental validation should be conducted to verify simulation results. And battery fault detection information should be included in the energy management strategy.

  , battery's multiple faults, including SC abuses, are isolated through battery chargers. Although the aforementioned research works have recently contributed to soft SC diagnosis and detection, the methods are limited to one technology or are strongly dependent from one experimental test bed. The development of generic fault detection methods based on analytical models is relevant. Generality of battery incipient SC detection method mainly refers to the following three points: • Model generality: The development of a model that considers multiphysical phenomena, diversity of scales (microscopic to macroscopic), and diversity of materials (LMO(LiMn 2 O 4 ), NMC (LiNi x Mn y Co 1-x-y O 2 )
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 1 Figure 1: Battery ECM with SC resistance.

Figure 3 :

 3 Figure 3: Flowchart for robust observer design.
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 4 Figure 4: Flowchart of fuzzification process for battery OCV-SOC curve
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 5 Figure 5: Weight function self-regulating fault estimator.
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 67 Figure 6: EV test cycle and the corresponding adapted EV battery cell current response.

Figure 9

 9 Figure 9 displays estimation results of the proposed observer under 10 Ω's SC resistance with 24 cycles of WLTC2. The 10 Ω resistance modelling SC fault is introduced into the battery ECM at the 12th test cycle. The estimator converges although the initial value is smaller than the actual one.
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 78 Figure 7: Battery electrical response under different SC conditions

Figure 9 :

 9 Figure 9: (a) SOC estimation result; (b) enlargement of the beginning; (c) dynamic estimation performance after fault occurrence; (d)/(e)/(f) estimation error corresponding to (a)/(b)/(c); (g) SC current estimation result; (h) enlargement of the beginning; (i) dynamic estimation performance after fault occurrence; (j)/(k)/(l) estimation error corresponding to (g)/(h)/(i).
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 10 Figure 10: I sc estimation result under different SC conditions
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 11 Figure 11: First four statistical moments of the estimated I sc with 100 Ω's SC resistance
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 12 Figure 12: Flowchart of battery SC detection.

  (a) CUSUM detection results under R sc = 100Ω (b) CUSUM detection results under different SC conditions.
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 13 Figure 13: CUSUM detection results
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 14 Figure 14: PDF of mean value of estimated I sc (R sc = 100Ω)

Finally, receiver operating 1 )Figure 15 :

 115 Figure 15: Performance of CUSUM under different disturbance conditions (R sc = 100Ω)

Table 1 :

 1 Electrical characteristics of SAMSUNG ICR 18650-22P cell

	Nominal capacity	2150 mAh
	Nominal voltage	3.6 V
	Charging cut-off voltage (100% SOC) 4.2±0.05 V
	Discharging cut-off voltage (0% SOC) 2.75 V
	Maximum charge current	2150 mA
	Maximum discharge current	10 A
	Battery ECM parameters are shown in Table 2. All the parameters are
	obtained at 20	

o C.

Table 2

 2 

				: SAMSUNG ICR 18650-22P LIB cell parameters
				R 0 (Ω)	0.0395
				R 1 (Ω)	0.0107
				R 2 (Ω)	0.0031
				C 1 (F)	4721.2
				C 2 (F)	17288
				C n	2150
				(mAh)
					-0.6195soc 4 + 1.0899soc 3 -
				V OC (soc)	0.3539soc 2 + 0.6196soc + 3.2354
	Vel. (km/h)	50 100	WLTC class 2 (85 Km/h speed limitation)
		0 0			500	1000	1477
					time (s)
		2		
	batt (A)	0		
	I			
		-2	I batt	under WLTC class 2
		0			500	1000	1477
					time (s)

Table 3 :

 3 Linear robust SOC observer design and MF optimization results

	Term	Linearization	L	γ	D(α, r)	(µ, σ 2 )
	SOC Range					
	[0, 0.2]	0.5841*soc+3.2362 [-0.0013, 0.0024, 0.0024, -10.1235] 2.5046 (0.8, 0.2) (0.19999, 0.09753)
	[0.65, 0.85]	0.8779*soc+3.1064 [-0.0020, 0.0017, 0.0023, -10.1241] 2.5046 (0.8, 0.2) (0.8499, 0.05767)
	[0.98, 1]	0.7190*soc+3.2525 [-0.0017, 0.0020, 0.0024, -10.1233] 2.5046 (0.8, 0.2) (0.99999, 0.11031)