
HAL Id: hal-02908249
https://centralesupelec.hal.science/hal-02908249

Submitted on 22 Aug 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Incipient short-circuit fault diagnosis of lithium-ion
batteries

Jianwen Meng, Moussa Boukhnifer, Claude Delpha, Demba Diallo

To cite this version:
Jianwen Meng, Moussa Boukhnifer, Claude Delpha, Demba Diallo. Incipient short-circuit
fault diagnosis of lithium-ion batteries. Journal of Energy Storage, 2020, 31, pp.101658.
�10.1016/j.est.2020.101658�. �hal-02908249�

https://centralesupelec.hal.science/hal-02908249
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Abstract

Diagnosing incipient short circuit (SC) of on-board lithium-ion cells is of

great importance for safety operation, because it can prevent further de-

terioration such as spontaneous thermal runaway. Considering equivalent

circuit models (ECMs) are currently the most used models for executing on-

line battery state and parameter estimation, hence the purpose of this study

is to propose a general battery incipient SC detection method through the

commonly used ECMs. Model generality, design generality and implemen-

tation generality are the main design criteria. In this paper, inspired by the

concept of Takagi-Sugeno fuzzy system, a weighting function self-regulating

non-linear robust state and fault estimator that is designed for battery SC

detection is proposed. Namely, the slowly changing characteristic of battery
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state of charge (SOC) is fully taken into account to construct a weighting

function self-regulating mechanism among different design segments. Genetic

algorithm has been used for the membership function tuning. Therefore, in-

cipient SC detection is addressed from the perspective of fault estimation.

The absolute estimation error of battery SOC after the SC fault occurrence

is smaller than 0.01 regardless of the SC resistance values. Furthermore, con-

sidering the estimated fault signal is usually corrupted with noise in reality, a

statistical technique, namely Cumulative Sum, is employed to detect the tiny

change of the signal due to the incipient fault. Theoretical and methodologi-

cal contributions are the main aims of this research work. Intensive numerical

simulations with real experimental data have verified the effectiveness of the

proposed incipient SC detection method.

Keywords: Lithium-ion batteries, soft short circuit, incipient fault

diagnosis, genetic algorithm (GA), cumulated sum (CUSUM)

1. Introduction

Fossil energy crisis and environmental issues are challenges for automobile

industry and urge necessity developing alternatives to fuel-driven vehicles.

Therefore, battery-driven electric and hybrid vehicles are becoming more and

more attractive [1]. Thanks to their high energy/power density and extended

life cycle, lithium-ion batteries (LIBs) are currently the state-of-the-art power

sources for electrified powertrain systems [2].

Safety operation of LIBs is of vital importance for the development of

electric vehicles (EVs). However, as resumed in [3], reliability and safety of

electrified vehicle can be compromised due to overcharge (OC), overdischarge

2



(OD), internal short circuit (ISC) or external short circuit (ESC) of the

battery. They can cause irreversible battery damages, or even lead to battery

thermal runaway (TR), which is a catastrophic failure of on-board batteries.

Therefore, fault diagnosis and mitigation strategies for EVs’ battery are

critical functions to prevent TR. To this end, EVs’ battery, typically consist-

ing of hundreds to thousands of cells, is monitored by a battery management

system (BMS). Data measurement, State-of-Charge (SOC), State-of-Health

(SOH) and State-of-Power (SOP) estimation and fault diagnosis are the main

functions of BMS [4, 5]. Its main function is to avoid battery OC and OD,

but also prevent occurrence of thermal hazard [5, 6, 7, 8]. Because BMS

requires on-line calculation with limited embedded computation resources,

analytical models are usually preferred to data-driven approaches [9]. Bat-

tery fault detection and diagnosis has become a hotspot research topic in

terms of BMS recently [10]. Battery short-circuit (external or internal) is a

major concern as it is usually a precursor to thermal runaway. Hard short-

circuit (mΩ magnitude) will almost instantly lead to fire or explosion [11].

But in case of soft short-circuit (100/10/1 Ω) the thermal drift is going to

be progressive. During this incubation period of the thermal runaway, no

electrical or thermal thresholds are exceeded [12, 13] for a long time before

any thermal accidents [11, 14]. So detection of soft short-circuit fault (de-

noted as incipient fault) at its earliest stage is meaningful as it can prevent

battery failure. However soft short-circuit fault signature is weak as it may

look like healthy operating conditions and fault features may be concealed

in environmental nuisances. Therefore its detection is challenging.

Soft short-circuit (SC) detection can be, for instance, carried out by ther-
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mal analysis. In [15], a 3D electrochemical-thermal model is built to simulate

various ISC scenarios and ISC detection is addressed from model parameter-

ization and parameter estimation perspective. In [16], residual-based battery

thermal fault detection is achieved based on non-linear observers and a two-

state thermal model. In [4], with voltage and temperature, ISC resistance

is estimated based on electrical and thermal models. However, from secu-

rity point of view, temperature-aware level often means that TR has already

started [12]. Hence, battery SC diagnosis based on electrical signals, namely

measured battery current and voltage, is more popular. In [12], soft SC di-

agnosis is done with the help of remaining charging capacity variation inside

battery pack. In [11], ISC detection method for battery pack is proposed by

identifying difference between cell model’s parameters. In [17], a pseudo-two-

dimensional model of micro ISC cells is proposed. The electrochemical model

allows micro ISC mechanism analysis and impedance identification method of

micro ISC cells is proposed. In [18, 19], physics-based model ESC detection

scheme is proposed using different models for faulty and healthy conditions,

which are obtained from experiments. In [20], according to time dependence

of the capacity evaluation, ISC detection is evaluated while the cell is being

charged. Furthermore, soft SC quantitative analysis is developed with cell

difference model and state estimation algorithm in [21]. In [22], battery’s

multiple faults, including SC abuses, are isolated through battery chargers.

Although the aforementioned research works have recently contributed to

soft SC diagnosis and detection, the methods are limited to one technology

or are strongly dependent from one experimental test bed. The development

of generic fault detection methods based on analytical models is relevant.
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Generality of battery incipient SC detection method mainly refers to the

following three points:

• Model generality : The development of a model that considers multi-

physical phenomena, diversity of scales (microscopic to macroscopic),

and diversity of materials (LMO(LiMn2O4), NMC (LiNixMnyCo1−x−yO2)

and LFP (LiFePO4)) and configurations is a real challenge. An ana-

lytical model is usually adopted to develop control methods or/and

monitoring techniques. This model should be flexible, parametrizable,

and interoperable to cope with the diversity of batteries and the mea-

surements (voltage, current, temperature) usually done at the battery

(and not cell) level. Various experimental studies [13, 23, 24] have vali-

dated the Equivalent Circuit Model (ECM), commonly used for control

and monitoring purposes. This model, when limited to 2 RC networks

includes five parameters that can be identified with limited number

of experiments. Besides, this model is interoperable because it can

be combined with thermal and aging models that allow variations in

these parameters to be taken into account. Therefore we have selected

this 2 RC-network ECM to develop our incipient short-circuit detection

method.

• Design generality : Design of incipient SC diagnosis method should not

be constrained by experimental conditions. For example, with the ef-

fective battery fault diagnosis method proposed in [13], early warning

of TR can be obtained. However, the faulty model must be tuned

for each fault type and severity level requiring repeated experiments.

Hence, we propose a soft SC diagnosis, taking advantage of the existing
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literature, which includes validated model and experimental informa-

tion. This method is designed to be adapted to different technologies

and copes with different fault types and severity levels.

• Implementation generality : During battery operation, BMS can only

collect current, voltage and temperature at given sampling frequency

and accuracy[25]. Hence, battery incipient SC fault features should be

retrieved from this information. Besides, an easy-to-understand fault

diagnosis structure is more attractive.

Therefore, the development of battery SC incipient diagnosis method pre-

sented in this paper relies on the three aforementioned criteria. The novelty

and original contributions of this paper are:

• Based on battery ECM, battery incipient SC fault diagnosis is ad-

dressed from the perspective of fault estimation. Inspired by the con-

cept of Takagi-Sugeno fuzzy system, we propose a weighting function

self-regulating state and fault estimator that is designed for battery SC

detection.

• Taking into account the slowly changing characteristic of battery SOC

and using a genetic algorithm, we propose a systematic approach to

construct the self-regulating mechanism to cope with the non-linear

battery OCV (open circuit voltage)-SOC curve.

• To detect tiny changes in the fault feature, which are usually hidden

in the environmental noise, we have combined statistical information

(Cumulative Sum) with the model-based observer fault estimation.

6



The rest of the paper is structured as follows. Firstly, to model the short-

circuit (ISC or ESC), a resistance is connected in parallel to a healthy battery

ECM. This faulty model is introduced in section II. Then, to achieve soft

SC diagnosis from the perspective of control, a systematic way of designing

the weighting function self-regulating battery fault estimator is proposed in

section III. In addition, numerical simulations with real experimental data

are presented in section IV. Furthermore, CUmulative SUM (CUSUM) is

used to retrieve the fault information from the estimated fault. Finally, a

conclusion ends the paper.

2. Battery ECM with SC resistance

As shown in Fig. 1, both internal SC (ISC) and external SC (ESC) are

modelled as a healthy battery ECM connected in parallel with a resistance

Rsc [26].

Figure 1: Battery ECM with SC resistance.
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2.1. ECM description

1. The resistor R0 stands for the ohmic resistance which includes resis-

tance of contacts, electrodes as well as electrolytes [24].

2. The double pair RC characterizes charge transfer effect, diffusion effect

and double-layer behavior inside LIBs. It simulates battery’s transient

response. Besides, the double RC-network is a good trade-off between

model error and model complexity compared with single-RC and triple-

RC structures [27].

3. The voltage source VOC represents OCV, which mainly depends on

battery SOC [28]. As shown in Fig. 2, its average value, VOC(soc), is

usually a non-linear monotonically [29] increasing function of SOC. In

each SOC interval, it can be approximated by VOCi(soc) = ai · soc+ bi

(ai and bi are constant in the i-th SOC interval).
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Figure 2: General shape of average OCV curve (example adapted from [24]).
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4. V1 and V2 are voltages across capacitors C1 and C2 respectively. Vbatt

is battery terminal voltage.

5. Ibatt is battery load current. According to its reference direction in Fig.

1, “+” means discharging process, while “-” means charging process.

6. Isc is SC current flowing into equivalent SC resistance Rsc. It is unidi-

rectional and obviously unknown. Furthermore, its value is Isc = Vbatt
Rsc

.

7. According to Kirchhoff’s circuit law, Iin = Ibatt + Isc, is battery real

input current with or without SC fault. If Rsc approaches to infinity,

then Isc ≈ 0 and Iin ≈ Ibatt. Therefore, battery operates in healthy

condition. Otherwise, battery is exposed to SC conditions, which could

be induced by ISC or ESC.

2.2. Battery modelling

Firstly, battery SOC ∈ [0%, 100%] can be modelled by the classical

Coulomb counting method [24]:

soc(t) = soc(t0)− η
t∫

t0

Ibatt(τ)

Cn
dτ (1)

where, soc is the operator of SOC; η is Columbic efficiency usually approx-

imated to 1 for LIBs; Cn (Ah: Ampere-hour) is battery nominal capacity;

soc(t) is required SOC at time point t based on its initial value soc(t0).

Therefore, using Kirchhoff’s law, battery dynamic model can be described

by the following discrete state-space representation:
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
V1(k + 1)

V2(k + 1)

soc(k + 1)

 = A


V1(k)

V2(k)

soc(k)

+ BIin(k)

Vbatt(k) = VOC(soc)− V1(k)− V2(k)− R0Iin(k)

(2)

where,

A =


e

−T
R1C1 0 0

0 e
−T

R2C2 0

0 0 1

 , B =


R1 · (1− e

−T
R1C1 )

R2 · (1− e
−T

R2C2 )

−ηT
Cn


Eq. (2) is obtained with the zero-order hold approximation under the

assumption that Iin is constant between two adjacent sampling points. The

sampling period, T = 1 s in this study.

3. Weighting function self-regulating fault estimator

The OCV-SOC curve is non-linear. However the battery can be described

as a linear time-invariant (LTI) model in each SOC interval. This assump-

tion is supported with experimental verification conducted in [13, 24, 27, 30].

Therefore, inspired by the concept of Takagi-Sugeno (TS) fuzzy system, a

systematic way to blend the linear intervals of OCV-SOC curve and build

the weighting function self-regulating fault estimator is proposed. The prin-

ciple of TS fuzzy system, including modeling and observer/controller design

process, is to study nonlinear systems by a set of local LTI models. These

models are interpolated using non-linear weighting functions or membership
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functions (MFs). This mechanism allows the fusion of all the linear subsys-

tems [31]. The general design process is shown in Fig. 3, and details will be

given in the following.

Figure 3: Flowchart for robust observer design.

3.1. Fuzzification of OCV-SOC curve

The flowchart presented in Fig. 4 illustrates the fuzzification process for

battery OCV-SOC curve:
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Figure 4: Flowchart of fuzzification process for battery OCV-SOC curve

• Fig. 4(b): we consider g (g ∈ N and g ≥ 2) linear segments from the

OCV-SOC curve and fit the corresponding mathematical expression for

each linear segment as (3). Note that determination of g depends on

the nonlinearity level of OCV-SOC curve.

VOCi(soc) = ai · soc+ bi, (i = 1, . . . , g) (3)

It is important to notice that the linear segments do not need to be con-

tiguous. This approach has two main advantages. Firstly, the model

is much simpler compared to the classical one which uses a small dis-

cretization step [29]. Secondly, the model is robust because it does not

require a strong approximation of the linearity of the whole curve.

• Fig. 4(c): a MF should be distributed to each linear segment based

on the main idea of TS fuzzy system. In other words, each linear seg-

ment contributes to the global nonlinear behavior of OCV-SOC curve

through a weighting function π(soc). Furthermore, in order to have

a smooth transition among different linear segments, π is selected as
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Gaussian type. As a result, π(soc) is determined by its mean µ and its

variance σ2. Hence, for any value of SOC, it is supposed that

πi(soc) ≥ 0 and

g∑
i=1

πi(soc) > 0, (i = 1, . . . , g)

• Fig. 4(d): after these two steps, OCV-SOC curve can be expressed as

(4).

VOC-fuzzy(soc) =

g∑
i=1

hi(soc) · [ai · soc+ bi] (4)

where, hi(soc) = πi(soc)∑g
i=1 πi(soc)

. Hence, for any value of SOC, hi(soc)

satisfies

hi(soc) ≥ 0 and

g∑
i=1

hi(soc) = 1, (i = 1, . . . , g)

• Fig. 4(e): selecting the optimal pair (µi, σi
2) (i = 1, . . . , g) for each MF

πi (i = 1, . . . , g) is necessary. This optimization problem is similar to

curve fitting. Therefore, coefficient of determination, R2, used as the

optimization criterion is formulated in (5).

R2 = 1−
∑nocv

i=1 [VOC(soc)− VOC-fuzzy(soc)]
2∑nocv

i=1

[
VOC(soc)− V̄OC(soc)

]2 (5)

where, V̄OC(soc) = 1
nocv

∑nocv

i=1 [VOC(soc)]; nocv is the number of data

points used in the optimization process; VOC(soc) is the original average

OCV-SOC data as shown in Fig. 4(a). Finally, as indicated in Fig.

4(f), the obtained optimal membership functions after the optimization

process will be used later for observer fusion.
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3.2. Fuzzification of robust observers

Due to the relationship Iin = Ibatt + Isc, the mathematical representation

of the battery ECM with SC resistance in the i-th SOC interval can be

arranged as:

x(k + 1) = Ax(k) + BIbatt(k) + B fIsc(k)

y(k) = Cx(k) +DIbatt(k) +DfIsc(k)

(6)

where, B f = B; C = [−1 − 1 ai]; D = Df = −R0. State vector is

x(k) = [V1(k), V2(k), soc(k)]′; model output is y(k) = Vbatt(k)− bi.
According to (6), the design process of battery fault estimator is discussed

based on [32]. Firstly, considering modeling error and measurement noise,

battery SC model (6) can be further generalized to (7), where both state

equations and output equation will be studied with bounded disturbance.

x(k + 1) = Ax(k) + Bu(k) + B ff(k) + Bdd(k)

y(k) = Cx(k) +Du(k) +Dff(k) +Ddd(k)

(7)

where, x(k) ∈ Rn is the state vector; y(k) ∈ Rp is the output; u(k) ∈ Rm

is the known input, which corresponds to Ibatt; f(k) ∈ Rnf is the so-called

fault, which corresponds to Isc; d(k) ∈ Rnd is the disturbance that belongs

to l2[0,∞]; Bd and Dd are constant real matrices of appropriate dimensions.

Furthermore, fault estimator (8) is designed as a proportional-integral

observer. Not only the integral term can guarantee a robust state estimation

at fault occurrence, but it can also provide fault estimation simultaneously

[33].

x̂(k + 1) = Ax̂(k) + Bu(k) + B f f̂(k)− L · (ŷ(k)− y(k))

f̂(k + 1) = f̂(k)− F · (ŷ(k)− y(k))

ŷ(k) = C x̂(k) +Du(k) +Df f̂(k)

(8)
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where x̂(k) ∈ Rn is the estimated state vector; ŷ(k) ∈ Rp is the observer

output; f̂(k) ∈ Rnf is the estimated f(k); L ∈ Rn×p and F ∈ Rnf×p are

observer gains.

Therefore, the error dynamics between model (7) and observer (8) can be

described as (9),

ē(k + 1) = (ĀD − L̄C̄)ē(k) + (L̄D̄d − B̄d)ῡD(k) (9)

where

ĀD =

 A B f

0nf×n Inf

 , B̄d =

 Bd 0n×nf

0nf×nd
Inf



C̄ =
[
C Df

]
, D̄d =

[
Dd 0p×nf

]

ē(k) =

 ex(k)

ef (k)

 , ῡD(k) =

 d(k)

∆f(k)


and L̄ =

[
L F

]′
. ex(k) = x̂(k) − x(k), ef (k) = f̂(k) − f(k); ∆f(k) =

f(k+ 1)− f(k) belongs to l2[0,∞). Ii is the symbol of unit matrix with i× i

dimension. 0 is zero matrix with corresponding dimension.

The design of the observer is how to determine L̄ to make the error

dynamics (9) satisfy the following two objectives [32]:

• (ĀD − L̄C̄) is Hurwitz stable. Its eigenvalues are inside the unit circle

for discrete-time system.

• the fault estimation error ef (k) is insensitive to ῡD(k), namely, ef (k)

is as small as possible.
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In order to achieve the aforementioned objectives, a multi-constrained

design method is proposed in [32]. The main results are shown directly in

Theorem, which will be used to design the fault estimator.

Theorem. Let a prescribed H∞ performance level γ and a circular region

D(α, r) be given. If there exist two symmetric positive definite matrices P̄ 1,

P̄ 2 ∈ R(n+nf )×(n+nf ) and two matrices S̄ ∈ R(n+nf )×(n+nf ), Ȳ ∈ R(n+nf )×p

such that the following conditions hold:


M̄ N̄ Ȳ D̄d − S̄B̄d 0

∗ −P̄ 1 0 Īnf

∗ ∗ −γI(nd+nf ) 0

∗ ∗ ∗ −γInf

 < 0 (10)

and

 −S̄ − S̄′ + P̄ 2 S̄ĀD − Ȳ C̄ − αS̄

∗ −r2P̄ 2

 < 0 (11)

where Īnf
=

 0n×nf

Inf

, M̄ = −S̄ − S̄′ + P̄ 1; N̄ = S̄ĀD − Ȳ C̄; “*” rep-

resents the matrix’s symmetric term. Then error dynamics (9) satisfies the

H∞ performance index ‖ef (k)‖2 < γ‖ῡD‖2, the eigenvalues of (ĀD − L̄C̄)

belong to D(α, r), and the gain matrix L̄ is given by L̄ = S̄
−1
Ȳ .

To be short, the linear fault estimator design is subject to two linear-

matrix-inequalities (LMIs). The H∞ performance and regional pole con-

straint constitute the so-called multi-constrained design method [32]. The

observer performance is adjusted by tuning the circular region D(α, r).
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Hence, according to the previously presented method, at first a robust

observer is built for each linear segment. Namely, the gain vector L̄i =[
Li Fi

]′
(i = 1, . . . , g) for each sub-observer is determined. Then, based

on (8), g linear robust observers can be blended directly as (12), where the

subscript (·)fuzzy stands for elements of TS fuzzy observer.

x̂fuzzy(k + 1) =
∑g

i=1 hi(ŝocfuzzy(k)) [A x̂fuzzy(k) + Bu(k) + B ff̂fuzzy(k)

−Li · (ŷfuzzy(k)− y(k))]

f̂fuzzy(k + 1) =
∑g

i=1 hi(ŝocfuzzy(k))
[
f̂fuzzy(k)− Fi · (ŷfuzzy(k)− y(k))

]
ŷfuzzy(k) =

∑g
i=1 hi(ŝocfuzzy(k))

[
Cx̂fuzzy(k) +Du(k) +Df f̂fuzzy(k)

]
(12)

Two important points should be pointed out. Firstly, according to TS

fuzzy system design method, the optimal MFs for the different linear ob-

servers are exactly the same ones as those in the fuzzification process of

battery OCV-SOC curve [31]. Secondly, dsoc
dt
≈ 0 has been proven both in

theory and practice [34, 35]. Namely, the slowly changing characteristic of

SOC makes ŝocfuzzy(k + 1) ≈ ŝocfuzzy(k), where ŝocfuzzy(k) is included in the

estimated state vector x̂fuzzy(k). Therefore, ŝocfuzzy(k) is the so-called fuzzy

variable in the TS fuzzy observer for battery ECM, and the obtained TS

fuzzy observer is, in essence, a weighting function self-regulating robust ob-

server. The obtained TS fuzzy observer is schematic diagram is represented

in Fig. 5.
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Figure 5: Weight function self-regulating fault estimator.

4. Numerical simulations

Numerical simulations of TS fuzzy fault estimator will be given in this

section based on SAMSUNG ICR 18650-22P LIB cell. Its basic electrical

characteristics are summarized in Table 1 [30].

Table 1: Electrical characteristics of SAMSUNG ICR 18650-22P cell

Nominal capacity 2150 mAh

Nominal voltage 3.6 V

Charging cut-off voltage (100% SOC) 4.2±0.05 V

Discharging cut-off voltage (0% SOC) 2.75 V

Maximum charge current 2150 mA

Maximum discharge current 10 A

Battery ECM parameters are shown in Table 2. All the parameters are

obtained at 20 oC. The details for parameter identification can be found in

[30].

In addition, according to our research interest and the electrical charac-
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Table 2: SAMSUNG ICR 18650-22P LIB cell parameters

R0 (Ω) 0.0395

R1 (Ω) 0.0107

R2 (Ω) 0.0031

C1 (F) 4721.2

C2 (F) 17288

Cn

(mAh)

2150

VOC(soc)
−0.6195soc4 + 1.0899soc3 −

0.3539soc2 + 0.6196soc+ 3.2354

0 500 1000 1477

time (s)

0

50

100

V
e
l.
 (

k
m

/h
) WLTC class 2 (85 Km/h speed limitation)

0 500 1000 1477
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Figure 6: EV test cycle and the corresponding adapted EV battery cell current response.
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teristics of SAMSUNG ICR 18650-22P LIB cell, the input current for battery

ECM is adapted from real experimental Tazzari Zero EV of university of Lille

1 in France [36]. It is a fuel cell/battery hybrid EV with a maximum speed of

85 km/h. Ignoring its fuel cell/battery architecture and energy management

strategy, we only focus on the battery current response.

Therefore, in order to simulate battery typical operating condition, WLTC2

(Worldwide harmonized Light-duty vehicles Test Cycle: class 2) is selected

as test cycle. Speed profile and corresponding battery response adapted to

SAMSUNG ICR 18650-22P LIB cell are shown in Fig. 6.

Statistical information on the disturbance refers to [27]. Process and mea-

surement nuisances are assumed to be independent additive white Gaussian

noises (AWGN). Their variances are 1 × 10−8 and 3.6 × 10−5 respectively.

Therefore, in order to determine the disturbance mapping matrices Bd and

Dd, the disturbance term d is supposed to follow a standard normal distribu-

tion with a variance of 1. Hence, Bd =
[
1× 10−4, 1× 10−4, 1× 10−4

]′
and

Dd = 0.006 consequently.

4.1. Short-circuit effect

Firstly, with 24 cycles of WLTC 2, healthy battery electrical response and

battery electrical response under different soft SC conditions are shown in

Fig. 7. Different soft SC resistances, 10 Ω, 50 Ω and 100 Ω, are respectively

introduced into the battery ECM in the middle of the total test time.

As it can be observed from Fig. 7, battery electrical behavior under soft

SC conditions is almost similar to a healthy battery because both voltage

and SOC are in normal operation ranges according to Table 1. But the un-

derlying effects of incipient faults compromise battery’s safety and reliability.
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Especially when battery is controlled in closed-loop EV power supply system,

battery SOC will be maintained in its normal range by the energy manage-

ment strategy that ignores the actual battery status [6]. Therefore, battery

condition will keep on deteriorating before TR. Hence, soft SC detection is

critical, especially when it is hard to distinguish from the healthy situation.

4.2. Short-circuit current estimation

Following the design process presented in section III, the selected SOC

ranges, the corresponding linear robust observer design results and the opti-

mal MF parameters (mean and variance) are shown in Table 3. Furthermore,

the shape of the optimized MFs and the fuzzification result of OCV-SOC

curve are shown in Fig. 8.

Figure 9 displays estimation results of the proposed observer under 10

Ω’s SC resistance with 24 cycles of WLTC2. The 10 Ω resistance modelling

SC fault is introduced into the battery ECM at the 12th test cycle. The

estimator converges although the initial value is smaller than the actual one.

Especially after the abrupt fault occurrence, the estimator is able to track

the dynamic change of the battery SOC. Furthermore, as it can be observed

from Fig. 9(g), fault estimation is a valuable fault indicator.

Table 3: Linear robust SOC observer design and MF optimization results

SOC Range

Term
Linearization L̄ γ D(α, r) (µ, σ2)

[0, 0.2] 0.5841*soc+3.2362 [−0.0013, 0.0024, 0.0024,−10.1235]′ 2.5046 (0.8, 0.2) (0.19999, 0.09753)

[0.65, 0.85] 0.8779*soc+3.1064 [−0.0020, 0.0017, 0.0023,−10.1241]′ 2.5046 (0.8, 0.2) (0.8499, 0.05767)

[0.98, 1] 0.7190*soc+3.2525 [−0.0017, 0.0020, 0.0024,−10.1233]′ 2.5046 (0.8, 0.2) (0.99999, 0.11031)
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Figure 8: (a) Optimized MF for each linear segment; (b) Fuzzification result of the OCV-

SOC curve.

However, as shown in Fig. 10, when SC current amplitude is small,

namely the SC fault is small, it is difficult to distinguish the healthy and

faulty modes from the estimated Isc. Because fault signal is corrupted with

noise.

5. Statistical analysis

As it can be observed from the intensive numerical simulations, fault

information is concealed in the noise and it is worse when the fault is more

and more incipient ( Rsc > 100Ω). To assess fault occurrence based on

probablities, we will use statistical analysis of the estimated signal. The

randomness in the data is introduced through Monte-Carlo method with a

high number of repetitive simulations with randomized noise samples but

with the same distribution parameters. In the following, the Isc estimation is

done 500 times for each condition (healthy or faulty). The first four statistical
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Figure 9: (a) SOC estimation result; (b) enlargement of the beginning; (c) dynamic es-

timation performance after fault occurrence; (d)/(e)/(f) estimation error corresponding

to (a)/(b)/(c); (g) SC current estimation result; (h) enlargement of the beginning; (i)
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Figure 10: Isc estimation result under different SC conditions
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moments namely mean, variance, skewness and kurtosis of Îsc, are calculated

both for healthy and faulty cases. As it can be observed from Fig. 11, only

the mean value exhibits significant change after fault occurrence.

5.1. CUSUM fault detection

Based on the statistical analysis result in the previous section, Cumulative

Sum (CUSUM) will be applied on the mean value on the estimated Isc to

improve incipient SC fault detection performances.

Flowchart of battery soft SC detection method proposed in this paper is

displayed in Fig. 12.

CUSUM is a well-known statistical technique [37] that has already been

proved to be efficient in detecting abrupt changes [38]. The CUSUM function,

denoted S in the following, is a simple detection algorithm based on the

likelihood process [38]. Namely, the estimated SC current will be treated

as time-series signal, and then, the CUSUM method is used to detect small

changes in the signal due to the incipient fault. Theoretically, based on

Gaussian distributed process, it is optimally derived as the sufficient statistics

sk such as [38]:

SN =
N∑
k=1

sk (13)

where N is the number of samples. And according to the statical analysis for

the estimated Isc, sk is considered in the case of mean changes in (14) [38]:

sk =

(
µf − µh
σh2

)
×
(
Îsc(k)− µf + µh

2

)
(14)
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Figure 12: Flowchart of battery SC detection.

where, µf and µh are the mean values of Îsc in healthy and faulty cases

respectively. σh is the standard deviation value of Îsc in the healthy condition.

According to the previous simulation studies, µf and µh are selected as 0.03

and 0 respectively. σh
2 = 0.006.

Furthermore, the CUSUM decision law can be computed as [38]:

DSN
=

(
SNk
− min

1≤j≤k
(SNj

)

)
(15)

Hence, fault detection method based on the flowchart in Fig. 12 is exe-

cuted 500 times in healthy condition and 500 times for Rsc = 100Ω, 75Ω, 50Ω, 25Ω

respectively. As it can be seen from Fig. 13, the combination of fault estima-

tor and CUSUM analysis is effective to carry out the incipient SC detection.

5.2. Threshold setting

5.2.1. Threshold 1

The first method for setting detection threshold Th is to select Th=0.99DSNmax,

where DSNmax is the maximum value of DSN
in the healthy case. If CUSUM

decision value is higher than Th, a SC fault is detected [39]. Hence, according

to the 500 simulation results, Th=640.4445.
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(a) CUSUM detection results under Rsc = 100Ω

(b) CUSUM detection results under different SC conditions.

Figure 13: CUSUM detection results
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5.2.2. Threshold 2

Furthermore, to take advantage of the optimality of CUSUM algorithm,

probability density function (PDF) of the mean Îsc with and without 100Ω’s

resistance is shown in Fig. 14. Besides, Kolmogorov-Smirnov test is pro-

cessed to assess the PDF of Îsc is Gaussian. Hence, the CUSUM can be the

applied optimally [37].
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Figure 14: PDF of mean value of estimated Isc (Rsc = 100Ω)

Therefore, detection threshold Th can be set based on the empirical equa-

tion Th=µcusum+3σcusum [40]. In our case, µcusum is the mean value of the

500’s CUSUM decision mean value, σcusum is the standard deviation of the

500’s CUSUM decision mean value. Therefore, Th=55.2014 in this case.

5.3. Robustness of fault detection

Robustness of fault detection for Rsc = 100Ω under different disturbance

conditions is evaluated probabilistically with:
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• The probability of detection (PD), which represents the ability to cor-

rectly detect fault occurrence [39].

• The probability of false alarm (PFA), which measures the probability

of considering a healthy situation as a fault [39].

Finally, receiver operating characteristics (ROC) curve can be plotted

based on PD and PFA. It is used to demonstrate fault detection method

performance under different disturbance conditions. The variance of the

disturbance term d is changed in order to simulate the different disturbance

conditions. As shown in Fig. 15, for the different levels of nuisances, CUSUM

can detect incipient SC occurrence with a PD > 0.9.
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Figure 15: Performance of CUSUM under different disturbance conditions (Rsc = 100Ω)

6. Conclusion

In this paper, battery SC fault detection is treated from the perspective

of fault estimation based on an extended equivalent circuit model (ECM) to

31



take into account the short-circuit (internal or external). Because the battery

OCV-SOC curve is non linear, we have first proposed a systematic approach

to design the self-regulating mechanism to cope with this non linearity thanks

to TS fuzzy system modelling and optimized Gaussian membership functions

in different SOC ranges where the OCV-SOC is linear. This approach has two

main advantages. Firstly, the model is much simpler compared to classical

one that uses a small discretization step. Secondly, the model is more robust

because it does not require strong approximation on the linearity of OCV-

SOC curve. Thanks to this model, the fault estimator is based on several

linear observers combined through a TS fuzzification process. The proposed

estimator can provide a reliable and accurate estimation of the battery state

of charge even after SC fault occurrence. The mean value of the absolute

estimation error for 100 Ω SC’s current is equal to 8.66%. The estimated

SC current has been treated as a time-series signal to extract fault feature.

We have applied CUSUM analysis on the estimated fault signal to improve

fault detection when nuisance level increases. The proposed battery incipi-

ent SC detection method is flexible (the model can be adapted to different

battery technologies), interoperable (it can be easily combined with thermal

and aging models) and is based only on common available measurements

(battery current and voltage). The obtained results are very promising with

a probability of detection higher than 0.9 for all the cases.

In future work, experimental validation should be conducted to verify sim-

ulation results. And battery fault detection information should be included

in the energy management strategy.
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