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The Linear Constrained Control Problem for
Discrete-Time Systems: Regulation on the
Boundaries

Georges Bitsoris, Sorin Olaru and Marina Vassilaki

Abstract The chapter deals with the problem of regulation of linear systems around
an equilibrium lying on the boundary of a polyhedral domain where linear con-
straints on the control and/or the state vectors are satisfied. In the first part of the
chapter, the fundamental limitations for constrained control with active constraints
at equilibrium are exposed. Next, based on the invariance properties of polyhe-
dral and semi-ellipsoidal sets, design methods for guaranteeing convergence to the
equilibrium while respecting linear control constraints are proposed. To this end,
Lyapunov-like polyhedral functions, LMI methods and eigenstructure assignment
techniques are applied.

1 Introduction

The regulation of linear systems by linear state-feedback under linear state and/or
control constraints, called the Linear Constrained Regulation Problem (LCRP) [12],
has been the object of intensive research work since the early publications on this
subject [23], [31], [4], [5], [16]. The problem has been approached by applying
optimization methods [31], [17], [29], eigenstructure assignment approaches [14]
or Lyapunov methods [23], [4], [5], [16] using both quadratic [23] and polyhedral
Lyapunov functions [31], [15].
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An interpretation of the positive invariance in terms of geometric properties of
some subspaces has also been given [24] and eigenstructure assignment techniques
have been developed to solve other linear constrained regulation problems as the ca-
ses of linear systems with unbounded sets of state constraints [20]. Also, researches
about linear dynamical systems admitting positively invariant cones have been de-
veloped and used for some control designs [19]. Since then, this approach has been
used to solve related problems, as for instance: control in the presence of bounded
persistent disturbances, control of uncertain systems, the LCRP with regional pole-
placement, control by output feedback, among others. Furthermore, new approaches
based on the use of quadratic Lyapunov functions have been developed for the deter-
mination of contractive ellipsoidal domains as estimates of the domain of attraction
of the saturating closed-loop systems, mainly by applying LMI techniques. The vast
literature on this subject is reviewed in [15].

In all these works, the desired equilibrium state is situated in the interior of the re-
gion where the state constraints are respected. In many engineering problems howe-
ver, a regulation around an equilibrium lying on the boundary of this set is needed.
This is always the case when the desired equilibrium state has to optimize a linear
criterion or a norm in the state space. Such problems, for instance, are the regula-
tion at least or maximal admissible velocity of a vehicle, the regulation on the upper
admissible level of a tank system or the regulation at the nearest state from the boun-
dary of an admissible region as in the case of obstacle avoidance problems where
the goal is the regulation at an equilibrium situated as near as possible from a tar-
get point situated in the interior of a forbidden region. For this kind of problems the
classical methods cannot be applied and only for some special cases design methods
are available [19], [10]. The object of this chapter is to present the theoretical foun-
dations and systematic design approaches to the LCRP concerning the regulation
around an equilibrium situated on the boundary of the domain defined by the state
constraints. For the analysis and design of this kind of control problems techniques
based on the conditions of positive invariance of polyhedral sets, Lyapunov-like po-
lyhedral functions, LMI approaches and eigenstructure assignment methods will be
used.

The chapter is organized as follows: In Section 2, the notations adopted in this
chapter and the problem statement are introduced. In Section 3, conditions gua-
ranteeing the existence of a linear state-feedback control making the whole region
defined by the state constraints an admissible domain of attraction are established.
It is shown that if such a control exists then it can be determined by solving a li-
near programming problem. In the following sections, we investigate the case when
a control resulting to the maximal admissible domain of attraction does not exists.
Two particular cases are considered: in Section 4 we consider the case when the
cone on which the equilibrium is situated can be positively invariant and in Section
5 the case when no linear state-feedback control making this cone positively inva-
riant exists. For both cases, design techniques for the determination of a solution to
the LCRP are proposed.
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2 The linear constrained regulation problem

Throughout this chapter, capital letters denote real matrices, lower case letters de-
note column vectors or scalars, T denotes the time set T = {0,1,2, ...}, Rn deno-
tes the real n-space, Rp

+ (Rp
−) is the nonnegative orthant (non positive orthant) of

the real p-space, Rn×p the set of real n× p matrices. Ip denotes the p× p identity
matrix, 0s×q denotes the s× p matrix with zero elements and ep ∈ Rp is the vector
ep =

[
1 1 · · · 1

]T
. For two real vectors x = [x1 x2 ... xn]

T and y = [y1 y2 ... yn]
T ,

x < y (x≤ y) is equivalent to xi < yi (xi ≤ yi) i = 1,2, ...,n. Similar notation is
applied for real matrices. For square matrices P ∈ Rn×n, P � 0 (P � 0) means that
P is positive definite (positive semi-definite).

If G ∈ Rs×n and w ∈ Rs then P(G,wx) denotes the polyhedral set

P(G,w)
4
= {x ∈ R n : Gx≤ w}

and C (G) denotes the polyhedral proper cone

C (G)
4
= {x ∈ R n : Gx≤ 0}

In the case of a nonsingular square matrix G ∈Rn×n, C (G) is said to be a simplicial
proper cone.

Ellipsoidal sets are denoted by Q(G,d) and defined by the relation

Q(P,d)
4
= {x ∈ Rn : xT Px≤ d}

where P ∈ Rn×n is a positive definite matrix and d is a positive real number.
Finally, if v(x) is a continuous function v : Rn→ R+, and d ∈ R+, then R(v,d)

denotes the set
R(v,d)

4
= {x ∈ Rn : v(x)≤ d}

In this chapter, we consider linear discrete-time systems described by difference
equations

x(t +1) = Ax(t)+Bu(t) (1)

where x∈Rn is the state vector, u∈Rm is the input vector, t ∈ T is the time variable
and A ∈ Rn×n,B ∈ Rn×m.

The state vector is constrained to belong to a polyhedral set P(G,wx) defined
by the linear inequality

Gx≤ wx (2)

where G ∈ Rs×n and wx ∈ Rs
+.

The control input u must also respect linear constraints of the form

Du≤ ρ (3)

where D ∈ Rq×m and ρ ∈ Rq is a vector with positive components.



4 Georges Bitsoris, Sorin Olaru and Marina Vassilaki

In this chapter we investigate the Linear Constrained Regulation Problem (LCRP)
without a priori given domain of attraction [12]. This problem consists in the deter-
mination of a linear state feedback control law u = Fx and of a domain of attraction
D ⊆P(G,wx) such that for all initial states x0 ∈ D the corresponding trajectories
x(t;x0) of the resulting closed-loop system

x(t +1) = (A+BF)x(t) (4)

converge to the equilibrium asymptotically while respecting the linear state and/or
control constraints (2) and (3) respectively. Such a set D is said to be an admissible
domain of attraction.

As it is the case for most of the works on constrained control, the positively
invariant and linearly controlled invariant sets defined below play an important role
in the investigation of the LCRP.

Definition 1: The subset D ⊂ Rn of the state space of the autonomous system
x(t + 1) = Ax(t) is positively invariant if all trajectories x(t;x0) starting from D
remain in it, that is x(t;x0) ∈D for all x0 ∈D and t ∈ T .

Definition 2: The subset D ⊂Rn of the state space of system x(t +1) = Ax(t)+
Bu(t) is linearly controlled invariant if there exists a linear state-feedback control
u = Fx such that D is a positively invariant set of the resulting closed-loop system
x(t +1) = (A+BF)x(t).

In the following theorem, set conditions for a linear state feedback control law
together with a subset D ⊂Rn to be a solution to the LCRP are given:

Theorem 1 ([12]): A control law u = Fx is a solution of the LCRP if and only
if there exists a positively invariant set D ⊂ Rn of the resulting closed-loop system
(4) such that

a)
D ⊆P(G,wx) (5)

D ⊆P(DF,ρ) (6)

b) lim
t→∞

x(t;x0) = 0 for all x0 ∈D .
Then, D ⊂ Rn is an admissible domain of attraction. ut

The stabilizability of the pair (A,B) is a necessary and sufficient condition for
the existence of a solution to the LCRP if the origin is an interior point of set
P(G,wx), because any stabilizing linear state-feedback control together with a suf-
ficiently small positively invariant set (e.g. an ellipsoidal set D =Q(P,d)) constitute
a solution to the tis problem. Thus, in this case, the research interest is limited to
the determination of the control law u = Fx which results to the maximal admis-
sible domain of attraction D , or/and to an admissible domain of attraction D with
guaranteed performance [22], [15], [29], [27]. In the case, however, when the de-
sired equilibrium xe = 0 is on the boundary of the set P(G,wx), the stabilizability
of the pair (A,B) does not guarantee the existence of a solution to the LCRP and
the design methods for the regulation around an interior point cannot be applied for
the determination of such a solution. In this chapter, methods for solving the LCRP
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when the desired equilibrium xe = 0 is on a boundary hyperplane or on the vertex
of a of the state constraints set P(G,w) are developed.

3 Maximal admissible domains of attraction

If the equilibrium state xe = 0 to be regulated is on the boundary of the set P(G,w)
then at least one of the boundary hyperplanes gT

j x = wx j of the set P(G,wx) passes
through the origin, therefore w j = 0. In order to simplify the notation, we assume
that the equilibrium xe = 0 of the closed-loop system (4) is situated on the boundary
hyperplanes

gT
j x = wx j j = 1,2, ..., p p < s

Then
wx j = 0 j = 1,2, ..., p

wx j > 0 j = p+1, p+2, ...,s

and the inequality Gx ≤ wx which defines the polyhedral set P(G,wx) is written
as

G1x≤ 0

G2x≤ w2

with

G1
4
=


gT

11
gT

12
...

gT
1p

=


gT

1
gT

2
...

gT
p

 , G2
4
=


gT

21
gT

22
...

gT
2s

=


gT

p+1
gT

p+2
...

gT
s

 ,

w2
4
=


w21
w22

...
w2(s−p)

=


wx(p+1)
wx(p+2)

...
wxs


gT

i i = 1,2, ...,s being the rows of the matrix G.
Thus,

P(G,wx) = C (G1)∩P(G2,w2)

where C (G1) denotes the polyhedral proper cone defined by inequality G1x≤ 0. An
illustration of this set is given in Figure 1.

We first investigate the case when there exists a linear state-feedback control ma-
king the whole region P(G,wx) = C (G1)∩P(G2,w2) an admissible domain of
attraction. This is the maximal admissible domain of attraction that can be esta-
blished. According to Theorem 1, such a control law stabilizes the system and, in
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Fig. 1 Illustration of the composition of set P(G,wx) as P(G,wx) = C (G1)∩P(G2,w2)

addition, makes the polyhedral set P(G,wx) positively invariant with respect to the
resulting closed-loop system (4). Conditions for the positive invariance of this set
can be established by using the following result:

Lemma: The polyhedral set P(G,w) with G∈Rs×n and w∈Rs×n
+ is positively

invariant with respect to system x(t +1) = Ax(t) if and only if there exists a matrix
H ∈ Rs×s, such that

GA = HG

H ≥ 0

Hw≤ w

ut
This result is a special case of a more general result on the positive invariance of

sets defined by vector inequalities v(x)≤ w with respect to iterated systems defined
in partially ordered spaces [11]. Conditions for the special classes of polyhedral sets
having the origin as an interior point with respect to linear discrete-time systems
have been initially established by Bitsoris ([7],[9]) for bounded or unbounded po-
lyhedral sets and by Molchanov and Pyatninskii [25], Benjaouia and Burgat [4] and
Blanchini [16] for polytopes.

Using the result stated in the preceding lemma, we can establish necessary
and sufficient conditions for the positive invariance of polyhedral sets of the form
P(G,wx) = C (G1)∩P(G2,w2).

Theorem 2: The set P(G,wx) =C (G1)∩P(G2,w2) is positively invariant with
respect to system (4) if and only if there exist matrices H11 ∈Rp×p, H21 ∈R(s−p)×p

and H22 ∈ R(s−p)×(s−p) satisfying the relations

G1(A+BF) = H11G1 (7)

H11 ≥ 0 (8)
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G2(A+BF) = H21G1 +H22G2 (9)

H21 ≥ 0,H22 ≥ 0 (10)

H22w2 ≤ w2 (11)

Proof: By virtue of Lemma 1, the set P(G,wx) is positively invariant with re-
spect to system (4) if and only if there exist nonnegative matrices H11 ∈Rp×p,H12 ∈
Rp×(s−p), H21 ∈ R(s−p)×p and H22 ∈ R(s−p)×(s−p) such that

G1(A+BF) = H11G1 +H12G2 (12)

G2(A+BF) = H21G1 +H22G2 (13)

H11 ·0+H12w2 ≤ 0 (14)

H21 ·0+H22w2 ≤ w2 (15)

Since w2 > 0 and H12 ≥ 0, inequality (14) is satisfied if and only if H12 = 0. Thus,
conditions (12)-(15) are equivalent to relations (7)-(11). ut

Remark 1: The positive invariance of the proper cone C (G1) of the polyhedral
set P(G,wx) =C (G1)∩P(G2,w2) is a necessary condition for the positive invari-
ance of the polyhedral set P(G,wx) with respect to system (4). This is expressed by
conditions (7) and (8) of Theorem 2. If, in addition, rankG1 = n and the nonnega-
tive matrix H11 has all its eigenvalues in the interior of the unit disk of the complex
plane, then any gain matrix F that satisfies condition (7) is the gain matrix of a
stabilizing control law u = Fx for system (1).

Remark 2: If x0 ∈P(G,wx) then G1x0 ≤ 0 and G2x0 ≤ w2. Therefore, from
conditions (9)-(11) it follows that

G2(A+BF)x0 = H21G1x0 +H22G2x0

≤ H22G2x0

≤ w2

which means that x0 ∈ C (G1)∩P(G2,w2) implies x(t;x0) ∈P(G2,w2) for all
t ∈ T . These conditions, however, do not guarantee the positive invariance of the
polyhedral set P(G2,w2). Therefore, the positive invariance of the polyhedral sub-
set P(G2,w2) is not a necessary condition of the positive invariance of the set
P(G,wx) = C (G1)∩P(G2,w2) �

We are now in a position to establish conditions for a bounded set P(G,wx) =
C (G1)∩P(G2,w2) to be an admissible domain of attraction.

Theorem 3: If the set C (G1)∩P(G2,wx2) is bounded and for a matrix F ∈
Rm×n there exist a real number ε and matrices H11 ∈Rp×p, H21 ∈R(s−p)×p, H22 ∈
R(s−p)×(s−p) and L ∈ Rq×s satisfying relations (7)-(10) and

H22w2 ≤ εw2 (16)

ε < 1 (17)



8 Georges Bitsoris, Sorin Olaru and Marina Vassilaki

L
[

G1
G2

]
= DF (18)

L
[

0
w2

]
≤ ρ (19)

L≥ 0 (20)

then the set P(G,wx)= C (G1)∩P(G2,w2) is an admissible domain of attraction
of the resulting closed-loop system (4).

Proof:
a) Sufficiency: By virtue of Theorem 2, conditions (7)-(10) and (16)-(17) imply

the positive invariance of the set D = C (G1)∩P(G2,w2). Moreover, by virtue of
Farkas lemma, conditions (18)-(20) are equivalent to the set relation P(G1,0)∩
P(G2,w2)⊆P(DF,ρ) or, equivalently, to the set relation C (G1)∩P(G2,w2)⊆
P(DF,ρ). To complete the proof, we shall prove that u = Fx is a stabilizing control
in P(G,wx)= C (G1)∩P(G2,w2).

Let v(x) be the continuous function defined by relation

v(x)
4
= max

1≤i≤s−p

{
(G2x)i

w2i

}
4
= max

p+1≤i≤s

{
gT

i x
w2i

}
(21)

The function v(x) is positive definite in C (G1)∩P(G2,w2), that is v(0) = 0 and
v(x) > 0 for all x ∈ C (G1)∩P(G2,w2) and x 6= 0. The second property holds
because otherwise there would exist a x ∈ C (G1)∩P(G2,w2) , x 6= 0 such that
G2x≤ 0. Then for any r > 0 it would follow that

G1(rx)≤ 0

G2(rx)≤ 0 < w2

which would contradict the hypothesis that set C (G1)∩P(G2,w2) is bounded.
Furthermore, if x ∈ C (G1)∩P(G2,w2), that is if G1x≤ 0 and G2x≤w2, then from
(9)-(10) and (16)-(17) it follows that

v[(A+BF)x] = max
1≤i≤s−p

{
(G2(A+BF)x)i

w2i

}
= max

1≤i≤s−p

{
((H21G1 +H22G2)x)i

w2i

}
= max

1≤i≤s−p

{
(H22v(x)w2)i

w2i

}
≤ max

{
ε

w2i

w2i

}
v(x)

≤ εv(x) (22)

because G2x ≤ v(x)w2 Thus, v[(A+BF)x]− v(x) is negative definite in C (G1)∩
P(G2,w2) because, by (17), ε < 1. Therefore, lim

t→∞
x(t;x0) = 0 for all x0 ∈ C (G1)∩
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P(G2,w2) because the function v(x) is continuous. Thus, all the hypotheses of
Theorem 1 are satisfied. Consequently, the set C (G1)∩P(G2,w2) is an admissible
domain of attraction.

b)Necessity:According to Theorem 1, for the control law u = Fx to render the
bounded set D =C(G1)∩P(G2,w2) an admissible domain of attraction for system
(4) it is necessary that

a) D is positively invariant
b) D ⊆P(DF,ρu)
c) D is a domain of attraction.
By Theorem 2, for the set D =C(G1)∩P(G2,w2) to be positively invariant, it

is necessary that conditions (7)-(10) and (16) are satisfied for a ε ≤ 1. On the other
hand, by virtue of Farkas Lemma, for D ⊆P(DF,ρu) to be satisfied it is necessary
that there exists a nonnegative matrix L satisfying relations (18) and (19). ut

Remark 3: The scalar function v(x) defined by (21) cannot be viewed as a
Lyapunov function in the state space of the system because it is not positive de-
finite in Rn. This function, however, expresses the distance d(x,0) of a state
x ∈C(G1)∩P(G2,w2) from the origin, if the distance d(x,y) in this bounded set is
defined by the relation

d(x,y) =
{

0 i f x = y
v(x)+ v(y) i f x 6= y

The application of this result to the determination of a control law u = Fx re-
sulting to a maximal admissible domain of attraction D = C (G1)∩P(G2,w2) is
straightforward: such a control law is obtained by solving the linear programming
problem

min
H11,H21,H22,L,F,ε

{ε} (23)

under constraints (7)-(10), (16) and (18)-(20).
If argmin{ε}< 1 and the set C (G1)∩P(G2,w2) is bounded, then the so obtai-

ned control u = Fx is a stabilizing one and C (G1)∩P(G2,w2) is an admissible
domain of attraction. This is also true in the case when the set C (G1)∩P(G2,w2)
is unbounded provided that the resulting closed-loop matrix A+BF has all its ei-
genvalues in the interior of the unit disk of the complex plane. In both cases, due
to (22), the so obtained control law provides the greatest rate of convergence if the
distance from the origin of a state x∈C (G1)∩P(G2,w2) is measured by the scalar
function v(x) defined by (21).

If the result of the optimization problem (23) under constraints (7)-(10) and
(16)-(20) is ε̂ = 1 then, with the corresponding optimal control u = F̂x, the set
P(G,wx) = C (G1)∩P(G2,w2) is positively invariant. This set is also an admissi-
ble domain of attraction if, in addition, all eigenvalues of matrix A+BF are in the
interior of the unit disk of the complex plane.

Example 1: We consider a second order discrete-time linear system x(t + 1) =
Ax(t)+bu(t) with
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A =

[
0.25 0.25
−0.5 1

]
, b =

[
0.5
−1

]
(24)

and linear state constraints Gx≤ wx where

G =


−0.9
−0.95

1
0.07

0.5
−0.14
0.25
−0.53

 , wx =


0
1
1
1


The control input u is constrained to satisfy the linear inequality Du≤ ρ where

D =

[
10
−1

]
, ρ =

[
0.2
0.6

]
It is cleat that the origin is situated on the plane (degenerated cone) defined by the
inequality

−0.9x1 +0.5x2 ≤ 0

Solving the linear programming problem (23) under constraints (7)-(10) and (16)-
(20) with

G1 =
[
−0.9 0.5

]
, G2 =

 −0.95
1

0.07

−0.14
0.25
−0.53

 , w2 =

1
1
1


we determine the optimal values

ε̂ = 0.934 F̂ =
[
−0.245 0.1478

]
Since the set P(G,wx) is bounded and ε̂ < 1, by virtue of Theorem 3, with the
control law

u =−0.245x1 +0.1478x2

the origin is an asymptotically stable equilibrium of the resulting closed-loop system
(4) and the set P(G,wx) is an admissible domain of attraction. ut

Finally, if this optimization problem is not feasible or it is feasible but argmin{ε}>
1 then there does not exist any linear state-feedback control law making the set
P(G,wx) = C (G1)∩P(G2,w2) positively invariant and, as a result, neither an
admissible domain of attraction. This means that the set P(G,wx) cannot be an ad-
missible domain of attraction. In these cases, an admissible domain of attraction will
necessarily be a strict subset of the polyhedral set P(G,wx) =C (G1)∩P(G2,w2),
provided that the LCRP has a solution. These cases are investigated in the following
sections of the chapter.
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4 Domains of attraction of the form D = C (G1)∩D2

We first consider the case when the maximal set C (G1)∩P(G2,w2) cannot be a
positively invariant set, and as a result nor an admissible domain of attraction, but
a stabilizing control u = Fx rendering the cone C (G1) positively invariant exists.
Then a set of the form D = C (G1)∩D2 may be an admissible domain of attraction.

In the following theorem, we establish conditions for a linear state-feedback con-
trol to stabilize the system while rendering the cone C (G1) positively invariant:

Theorem 4: The linear state-feedback control u = Fx stabilizes the system (1)
and renders the cone C (G1) positively invariant if and only if there exist three ma-
trices H11 ∈ Rp×p, Q ∈ Rn×n and Y ∈ Rm×n, satisfying the relations

G1AQ+G1BY = H11G1Q (25)

H11 ≥ 0 (26)[
Q AQ+BY

(AQ+BY )T Q

]
� 0 (27)

Proof :
a) Sufficiency: If relation (27) is satisfied, then Q � 0 and consequently Q is

nonsingular. Thus, setting
F = Y Q−1 (28)

from (25) it follows that
G1(A+BF) = H11G1

which, together with (26), imply the positive invariance of the cone C (G1) with
respect to the closed-loop system x(t + 1) = (A+BF)x(t). Moreover, from (27) it
follows that the matrix Q is positive definite and

Q− (AQ+BY )T Q−1(AQ+BY )� 0

or, equivalently,

Q−Q(A+BY Q−1)T Q−1(A+BY Q−1)Q� 0

or, finally,
Q−1− (A+BY Q−1)T Q−1(A+BY Q−1)� 0

because the matrix Q−1 is also positive definite. Now, taking into account (28), this
relation is equivalently written as

Q−1− (A+BF)T Q−1(A+BF)� 0 (29)

which means that v(x) = xT Q−1x is a Lyapunov function for the system x(t +1) =
(A+BF)x(t). Therefore F = Y Q−1 is the gain matrix of a stabilizing linear state-
feedback control for system (1).
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b) Necessity: If there exists a stabilizing control u = Fx then there also exists a
symmetric positive definite matrix P that satisfies the Lyapunov matrix inequality

P− (A+BF)T P(A+BF)� 0 (30)

Since matrix P is positive definite their inverse exists and is also symmetric and
positive definite. Therefore, there exists a matrix Y such that F =Y P. Thus, relation
(30) is written as

P− (A+BY P)T P(A+BY P)� 0

or, equivalently,

P−P−1(AP−1 +BY )T P(AP−1 +BY )P� 0

or, finally,
P−1− (AP−1 +BY )T P(AP−1 +BY )� 0

Setting Q = P−1 we obtain

Q− (AQ+BY )T Q−1(AQ+BY )� 0

which, by virtue of the Schur complement theorem, is equivalent to condition (27).
If, in addition, the control law u = Y Px = Y Q−1x renders the cone C (G1) posi-

tively invariant, then, by virtue of Theorem 2, there exists a nonnegative matrix H11
such that

G1(A+BF) = H11G1

or
G1(A+BY P) = H11G1

or, finally,
G1(AQ+BY ) = H11G1Q

ut
A solution to the LCRP can be obtained by first solving relations (25), (27) to

determine a stabilizing control u = Y Q−1x rendering the cone C (G1) positively
invariant and then by determining an admissible domain of attraction D of the form

D = C (G1)∩D2

where D2 is positively invariant set of the resulting closed-loop system such that

C (G1)∩D2 ⊂ C (G1)∩P(G2,w2) (31)

and
C (G1)∩D2 ⊆ P(DF,ρ) (32)

This can be done by constructing a quadratic Lyapunov function v(x) = xT Px for
the closed-loop system and then by determining the maximal value of the positive
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constant d so that the set D2 = Q(P,d) satisfies set relations (31) and , (32). To
this end, one can use the quadratic Lyapunov function v(x) = xT Q−1x, Q being the
matrix obtained by solving relations (25), (27) to determine the stabilizing control
u = Y Q−1x. Any other quadratic Lyapunov function may also be used.

Admissible domains of attraction can also be obtained by simply determining a
polyhedral positively invariant set P(G∗2,w

∗
2) for the resulting closed-loop system

such that
C (G1)∩P(G∗2,w

∗
2)⊂ C (G1)∩P(G2,w2)

and
C (G1)∩P(G∗2,w

∗
2)⊆ P(DF,ρ)

These approaches, however, require the determination of a solution of the nonlinear
relations (25), (27). In the following subsection, we show how this difficult nonlinear
problem can be solved in the cases when the equilibrium is situated on one boundary
hyperplane of the state constraint set P(G,wx) or on the vertex of a proper cone.

4.1 Equilibrium on one boundary hyperplane

In the case when only one boundary hyperplane of the polyhedral set P(G,wx) =
C (G1)∩P(G2,w2) passes through the origin, the matrix G1 is a line vector gT

1
and thus C (G1) degenerates to a half space defined by relation gT

1 x ≤ 0. Then,
the necessary and sufficient conditions (25)-(27) for the existence of a stabilizing
control u = Y Q−1x rendering the half-space gT

1 x≤ 0 positively invariant become

gT
1 AQ+gT

1 BY = h1gT
1 Q (33)[

Q AQ+BY
(AQ+BY )T Q

]
� 0 (34)

h1 ≥ 0 (35)

Conditions (33) and (35) express the fact that gT
1 is a left eigenvector of matrix

A+BY Q−1 = A+BF associated with a nonnegative eigenvalue h1. Therefore, there
exists an admissible domain of attraction of the form C (gT

1 )∩D2 if and only if there
exists a stabilizing control that assigns gT

1 as a left eigenvector of the matrix A+BF .
associated with eigenvalue h1 such that

0≤ h1 < 1 (36)

Consequently, if there exists a stabilizing control u = Fx that assigns gT
1 as a left

eigenvector of matrix A+BF , then its gain matrix F =Y Q−1 can be determined by
solving the parametrized convex problem (33) and (35) with the scalar parameter h1
belonging to the interval [0,1).
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Having computed a stabilizing control making the half-space C (gT
1 ) positively

invariant, the next step is the determination of an admissible domain of attraction.
Two approaches are proposed:

4.1.1 Semi-ellipsoidal domains of attraction

As already mentioned, having computed a stabilizing control making the half-space
C (gT

1 ), if v(x) = xT Px is a Lyapunov function of the resulting closed-loop system,
then any set D = C (gT

1 )∩Q(P,d) satisfying the set relations

C (gT
1 )∩Q(P,d)⊂ C (gT

1 )∩P(G2,w2)

and
C (gT

1 )∩Q(P,d)⊆P(DF,ρ)

These relations are satisfied if

Q(P,d)⊂P(G2,w2)

and
Q(P,d)⊆P(DF,ρ)

or equivalently [18] if

dgT
2iP
−1g2i ≤ w2i i = 1,2, ...,s− p (37)

and
d(DF)T

i P−1(DF)i ≤ ρi i = 1,2, ...q (38)

Thus, by determining the maximal value d̂ of parameter d satisfying inequalities
(37) and (38) we determine the maximal hyperellipsoid Q(P,d) included in the sets
P(G2,w2) and P(DF,ρ). Since all sets Q(P,d) for d > 0 are attractive, the set
D = C (gT

1 )∩Q(P, d̂) is an admissible domain of attraction.
Example 2: We consider a discrete-time linear system x(t + 1) = Ax(t)+ bu(t)

with matrices

A =

[
−0.8 0.3
1.6 0

]
, b =

[
−0.5

2

]
and control constraints Du≤ ρ where

D =

[
−1
0.5

]
, ρ =

[
1
1

]
The state must satisfy linear constraints Gx≤ wx with
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G =


−0.9
−1
0.5
1.0

0.5
−0.25
−0.1667

0.25

 , wx =


0
1
1
1


The polyhedral set P(G,wx) can be written as P(G,wx) = C (gT

1 )∩P(G2,w2)
where

gT
1 =

[
−0.9 0.5

]
G2 =

−1 −0.25
0.5 −0.1667
1.0 0.25

 , w2 =

1
1
1



Fig. 2 The half-space C(gT
1 ), the unbounded polyhedral set P(G2,w2) and the semi-ellipsoidal

admissible set C(gT
1 )∩Q(P,d)⊂C(gT

1 )∩P(G2,w2) of the Example 2.

It is clear that the origin is situated on the edge gT
1 x = 0 of the polyhedron

P(G,wx). In can be easily verified that the linear programming problem (23) under
constraints (7)-(10) and (16)-(20) has no solution. Therefore, there does not exist
any linear state-feedback control rendering the maximal set C (gT

1 )∩P(G2,w2) an
admissible domain of attraction. Since, as it can be easily seen, there exists a control
law u = Fx such that gT

1 is a left eigenvector of the closed-loop matrix A+bF origin
we shall derive a stabilizing linear state-feedback control u = Fx making a set of
the form C (gT

1 )∩Q(P,d) an admissible domain of attraction set of the resulting
closed-loop system. To this end, we solve the parametrized convex problem (33)
and (35) with the scalar parameter h1 belonging to the interval [0,1). The optimal
values of the unknown parameters are

Q̂ =

[
0.2242
0.0996

0.0996
0.4694

]
, Ŷ =

[
−0.2502 0.0136

]
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ĥ1 = 0.33 F̂ = Ŷ Q̂−1 =
[
−1.2463 0.2935

]
Since ĥ1 < 1,

u = F̂x =−1.2463x1 +0.2935x2

is a stabilizing control law. Finally, we determine the maximal value d̂ = 3.297
of the parameter d that satisfies the inequalities (37)-(38). Thus, the set C (gT

1 )∩
Q(Q−1, d̂) is an admissible domain of attraction of the resulting closed-loop system.
ut

4.1.2 Polyhedral domains of attraction

The second approach consists in determining a polyhedral admissible domain of at-
traction of the form D = C (gT

1 )∩P(G∗2,w
∗
2), that is a domain of attraction which

is the intersection of the half-space C (gT
1 ) and of a polyhedral set P(G∗2,w

∗
2). We

can determine a polyhedral positively invariant set P(G∗2,ep∗), G∗2 ∈ Rp∗×n for the
resulting asymptotically stable system (4), by applying one of the well known met-
hods of construction of polyhedral positively invariant sets for stable linear systems
[8],[24],[29]. Since all polyhedral sets P(G∗2,rep∗) with r > 0, obtained by sca-
ling the set P(G∗2,ep∗), are also positively invariant, by virtue of Theorem 1, for
constructing an admissible domain of attraction it is sufficient to determine a r such
that

C (gT
1 )∩P(G∗2,rep∗)⊂ C (gT

1 )∩P(G2,w2) (39)

C (gT
1 )∩P(G∗2,rep∗)⊆P(DF,ρ). (40)

To this end, we can use the following result:
Theorem 5: The set relations (39) and (40) are satisfied if and only if there exist

matrices K1 ∈ R(s−p)×p, K2 ∈ R(s−p)×p∗ and L ∈ Rq×(1+p∗). such that

K1gT
1 +K2G∗2 = G2 (41)

rK2ep∗ ≤ w2 (42)

L
[

gT
1

G∗2

]
= DF (43)

L
[

0
rep∗

]
≤ ρ (44)

L≥ 0, Ki ≥ 0 i = 1,2 (45)

Proof : The set relations (39) and (40) are equivalently written as[
gT

1
G∗2

]
x≤

[
0

rep∗

]
⇒
[

gT
1

G2

]
x≤

[
0

w2

]
[

gT
1

G∗2

]
x≤

[
0

rep∗

]
⇒ DFx≤ ρ
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By Farkas Lemma, these relations are satisfied if and only there exist nonnegative
real matrices M ∈ Rs×(1+p∗) and L ∈ Rq×(1+p∗) such that

M
[

gT
1

G∗2

]
=

[
gT

1
G2

]
and M

[
0

rep∗

]
≤
[

0
w2

]
(46)

L
[

gT
1

G∗2

]
= DF and L

[
0

rep∗

]
≤ ρ (47)

Partitioning matrix M as follows

M =

[
M1 M2
M3 M4

]
with M1 ∈R, M2 ∈R1×p∗, M3 ∈Rp×p and M4 ∈Rp×p∗, relations (46) are equiva-
lently written as

M1gT
1 +M2G∗2 = gT

11

M3gT
1 +M4G∗2 = G2

rM2ep∗ ≤ 0

rM4ep∗ ≤ w2

These relations are satisfied for

M2 = 0,M1 = I

and
M3gT

1 +M4G∗2 = G2

rM4ep∗ ≤ w2

Thus, setting K1 = M3 and K2 = M4, we obtain conditions (41) and (42).ut
According to this theorem, starting from a positively invariant set P(G∗2,ep∗)

for the resulting closed-loop system, we construct an admissible polyhedral dom-
ain of attraction P(G∗2,rep∗) = P(G∗2, r̂

−1ep∗) by solving the linear programming
problem

min
L,K1,K2,r̂

{r̂} (48)

under constraints

K1gT
1 +K2G∗2 = G2 (49)

K2ep∗ ≤ r̂w2 (50)

L
[

gT
1

G∗2

]
= DF (51)
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L
[

0
ep∗

]
≤ r̂ρ (52)

Ki ≥ 0 i = 1,2, L≥ 0, (53)

It is clear that the so obtained admissible domain D = C (gT
1 )∩P(G∗2,rep∗) is

not unique because an asymptotically stable linear system possesses many positively
invariant polyhedral sets P(G∗2,ep∗). It is however possible to enlarge an initially
determined admissible domain of attraction not by scaling but using techniques of
determination of maximal positively invariant sets [22], [27] or by applying the re-
cently established approach of enlargement of positively invariant sets with specified
complexity [2], [3].

Example 3: We consider again the discrete-time linear system x(t+1) = Ax(t)+
bu(t) with matrices A and b given by (24) with the same control constraints but with
state constraints Gx≤ w with

G =

 −0.8821
−1
0.5

0.4712
−0.2500
−0.1667

 , w =

0
1
1


The control input u has also to satisfy the linear constraints Du≤ ρ where

D =

[
10
−1

]
, ρ =

[
0.2
0.6

]
Solving the parametrized convex problem (33)- (35) with

G1 =
[
−0.90 0.50

]
, G2 =

 −0.95
1

0.07

−0.14
0.25
−0.53

 ,w2 =

1
1
1


D =

[
10
−1

]
, ρ =

[
0.2
0.6

]
we obtained the optimal values

Q ==

[
−0.95

1
−0.14

0.25−0.53

]
, Y =

[
−0.245 0.1478

]
ε̂ = 0.934 F̂ = Y Q−1 =

[
−0.245 0.1478

]
Since ε̂ < 1 and the set P(G,w) is bounded, by virtue of Theorem 3, with the
control law

u =−0.245x1 +0.1478x2

the origin is an asymptotically stable equilibrium of the resulting closed-loop system
(4) and the set P(G,w) is an admissible domain of attraction.ut
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4.2 Equilibrium on the vertex of a proper cone

We consider now the case when G1 ∈ Rp×n and rankG1 = n. In this case, p, with
p ≥ n, boundary hyperplanes of the set P(G,wx) = C (G1) ∩P(G2,w2) pass
through the origin and C (G1) is a proper cone. For the existence of an admissi-
ble domain of attraction of the form D = C (G1)∩D2 it is necessary and sufficient
that there exists a stabilizing control law u = Fx making the proper cone C (G1)
positively invariant with respect to the resulting closed-loop system (4).

A control u = Fx makes the proper cone C (G1) with G1 ∈Rp×n and rankG1 = n
a positively invariant set of the closed-loop system x(t + 1) = (A+BF)x(t) if and
only if there exists a matrix H11 ∈ Rp×p such that

G1A+G1BF = H11G1 (54)

H11 ≥ 0 (55)

The control u = Fx is, in addition, a stabilizing one, if all the eigenvalues of the
resulting closed-loop matrix A+BF are in the interior of the unit disk of the com-
plex plane. If (λ ,v) is an eigenpair of matrix A+BF then λG1v = G1(A+BF)v =
H11G1v, that is (λ ,G1v) is an eigenpair of matrix system H11. Moreover, since all
the elements of matrix H11 are nonnegative, if 0 ≤ λ < 1 and Gv > 0, then all the
eigenvalues of matrix H11 are in the interior of the unit disk of the complex plane
because all its elements are nonnegative [21]. This, in turn, implies that all the ei-
genvalues of the closed-loop matrix A+BF are also in the interior of the unit disk
of the complex plane as a consequence of the assumption that rankG1 = n. There-
fore, a control law u = Fx assigning a positive eigenvalue λ < 1 with an associated
eigenvector v, G1v > 0 and satisfying relation (54) for a nonnegative matrix H11, is
a stabilizing control law that makes the proper cone C (G1) positively invariant.

Since the simultaneous assignment of an arbitrary eigenvalue and an eigenvec-
tor is not always possible, the determination of the control law u = Fx may be
achieved by replacing condition H11G1v = λG1v by the inequality H11G1v≤ λG1v,
because in this case also the eigenvalues of matrix H11 are in the open unit disk of
the complex plane [21]. Thus, the determination of such a control law u = Fx may
be achieved by solving the linear programming problem

min
F,H11,ε

{ε} (56)

under constraints
G1A+G1BF = H11G1 (57)

H11w∗ ≤ εw∗ (58)

H11 ≥ 0 (59)

where w∗ ∈ Rp is an arbitrarily chosen vector with positive components belonging
to the range of matrix G1. If argmin{ε} < 1 then the control u = Fx stabilizes the
system and makes the cone C (G1) positively invariant.
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Using this result we can establish an approach for the determination of a sta-
bilizing state-feedback control and of an admissible domain of attraction of the
form D = C (G1)∩D2. The first step is the determination of a stabilizing cont-
rol u = Fx making the cone C (G1) positively invariant. This can be done by sol-
ving the linear programming problem (56)-(59). Next, we apply one of the met-
hods established in subsections 4.1.1 and 4.1.2 for determining a semi-ellipsoidal
P(G,wx) = C (G1)∩Q(P2,d2) or a polyhedral P(G,wx) = C (G1)∩P(G∗2,w2)
admissible domain of attraction.

5 Domains of attraction of the form D = C (G∗1)∩D2,
C (G∗1)⊂ C (G1)

We consider now the case when there does not exist any stabilizing gain matrix F
and nonnegative matrix H11 satisfying condition G1(A+BF) = H11G1. This means
that the cone C (G1) cannot be positively invariant and thus its faces cannot be boun-
dary hyperplanes of an admissible domain of attraction. It is clear that a ”quadratic”
approach consisting in the determination of a paraboloidal positively invariant set
R(v,0) ⊂ C (G1) with R(v,0) being a set defined by a second order polynomial
inequality v(x)≤ 0 where

v(x) = xT Px+ lT x (60)

is naturally excluded if C (G1) is a proper cone. We shall show that it is also exclu-
ded in the case when the cone C (G1) is degenerated to a half-space defined by an
inequality gT

1 x≤ 0. This follows from the following theorem:
Theorem 6: If there exist a matrix F and a function v(x),v : Rn→ R

v(x) = xT Px+ lT x

such that the set R(v,0) is positively invariant with respect to. the resulting closed-
loop system and satisfies the set relation R(v,0) ⊂ C (gT

1 ) then the cone C (gT
1 ) is

also positively invariant.
Proof:
If there exists a control u = Fx making a set of the form

R(v,0) = {x ∈ Rn : xT Px+ lT x≤ 0}

positively invariant with respect to the closed-loop system ẋ = (A+BF)x and such
that

R(v,0)⊂ C (G1)

then the surface v(x) = 0 is tangent to the hyperplane gT
1 x = 0 at the point x = 0,

that is
∇v(x)|x=0 = rg1

for a r > 0. Therefore,
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l = rg1

and
v(x) = xT Px+ rgT

1 x

Furthermore, if the set R(v,0) is positively invariant then

v[(A+BF)x]≤ v(x)

or
xT (A+BF)T P(A+BF)x+ rgT

1 (A+BF)x≤ xT Px+ rgT
1 x

for all x ∈ Rn such that v(x)≤ d, or equivalently for all x satisfying the inequality

xT Px+ rgT
1 x≤ d

For this implication to be satisfied for x belonging to a neighborhood of the origin,
it is necessary that

rgT
1 (A+BF)x≤ rgT

1 x

rgT
1 x≤ 0

which is equivalent to the existence of a nonnegative real number ĥ such that

ĥrgT
1 = rgT

1 (A+BF)

This, however, implies that the degenerated cone C (gT
1 ) is positively invariant . ut

According to this result, in the case when there does not exist any control law
making the half-space gT

1 x≤ 0 positively invariant, then a natural candidate admis-
sible domain of attraction will be of the form D = C (G∗1)∩D2 where C (G∗1) is a
polyhedral cone such that C (G∗1)⊆ C (G1).

For a set D = C (G∗1)∩D2 to be an admissible domain of attraction it is necessary
that the cone C (G∗1) is positively invariant and C (G∗1)⊆ C (G1). This is equivalent
to the existence of two matrices H∗11 ∈ Rn×n and L ∈ Rn×n such that

G∗1(A+BF) = H∗11G∗1 (61)

H∗11 ≥ 0 (62)

LG∗1 = G1 (63)

L≥ 0 (64)

Relations (61) and (62) guarantee the positive invariance of the proper cone C (G∗1)
and relations (63) and (64) are equivalent to the set relation C (G∗1)⊆ C (G1).

The determination of a gain matrix F and of a cone C (G∗1) with G∗1 satisfying
relations (61)-(64) is a nonlinear problem which, however, for some special but im-
portant cases can be solved by convenient eigenstructure assignment approaches. In
the following subsections, the two important cases when only one boundary hyper-
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plane and when n boundary hyperplanes of the set C (G1)∩P(G2,w2) pass through
the origin are considered.

5.1 Equilibrium on one boundary hyperplane

As already mentioned, when only one boundary hyperplane of set C (G1)∩P(G2,w2)
passes through the origin, the cone C (G1) is degenerated to a half-space defined by
the relation gT

1 x≤ 0.
If the pair (A,B) is controllable then, by applying an eigenvalue assignment ap-

proach, we can determine a gain matrix F such that all eigenvalues λi i = 1,2, ...,n
of matrix A+BF are distinct and 0 ≤ λi < 1. Each eigenvalue is associated with a
real left eigenvector g∗T1i i = 1,2, ...,n. The signs of the linearly independent as-
sociated left eigenvectors g∗T1i i = 1,2, ...,n can be chosen so that a nonnegative
vector k ∈ Rn, k =

[
k1 k2 · · · kn

]T satisfying the relation

k1g∗T11 + k2g∗T21 + ...+ kng∗T1n = gT
1

can be determined. Then, setting

G∗1 =


g∗T11
g∗T12

...
g∗T1n


we get

G∗1(A+BF) = H∗11G∗1 (65)

and
kT G∗1 = gT

1 (66)

where H∗11 is the nonnegative matrix H∗11 = diag(λ1,λ2, ...,λn). Relation (65) toget-
her with H∗11 ≥ 0 guarantee the positive invariance of the cone C (G∗1) and relation
(66) together with k≥ 0 imply that C (G∗1)⊂C (gT

1 ). Moreover, from (65) it follows
that u = Fx is a stabilizing control because, by construction, the matrix H∗11 has
stable eigenvalues and rankG∗1 = n.

The next step is the determination of a subset D∗2 ⊆ P(G2,w2) such that
D = C (G∗1)∩D∗2 is positively invariant and C (G∗1)∩D∗2 ⊂P(DF,ρ). To this end,
one first examine whether D = C (G∗1)∩P(G2,w2) is an admissible domain of at-
traction. This can be done by solving the linear programming problem

min
H21,H22,L,ε

{ε} (67)

under constraints
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G2(A+BF) = H21G∗1 +H22G2 (68)

H22w2 ≤ εw2 (69)

H21 ≥ 0, H22 ≥ 0 (70)

L
[

G∗1
G2

]
= DF (71)

L
[

0
w2

]
≤ ρ (72)

L≥ 0 (73)

If the optimal value ε̂ satisfies the inequality ε̂ ≤ 1 then D = C (G∗1)∩P(G2,w2)
is an admissible domain of attraction. Otherwise, by applying one of the approaches
established in the subsections 4.1.1 and 4.1.2, a domain of attraction D = C (G∗1)∩
D∗2 with C (G∗1)∩D∗2 ⊆ C (G∗1)∩P(G2,w2) can be determined.

5.2 Equilibrium on the vertex of a proper cone

Next, we consider the case when C (G1) is a proper cone, that is when G1 ∈ Rn×n

and detG1 6= 0. If there does not exist any stabilizing linear control making the cone
C (G1) positively invariant, then we search for a linear control making a set of the
form C (G∗1)∩D2 an admissible domain of attraction, where C (G∗1) is a proper
cone such that C (G∗1) ⊂ C (G1). A method for determining a stabilizing control
u = Fx rendering a proper cone C (G∗1), C (G∗1)⊂ C (G1) positively invariant can be
developed using the following result:

Theorem 7: If there exist positive real numbers λ ∗i i = 1,2, ...,n, a nonnegative
matrix L∗ ∈Rn×n and matrices V ∗ ∈Rn×n and Y ∈Rm×n, with detV ∗ 6= 0 such that

AV ∗+BY =V ∗diag(λ ∗1 ,λ
∗
2 , ...,λ

∗
n ) (74)

0≤ λ
∗
i < 1 i = 1,2, ...,n (75)

L∗ = G1V ∗ (76)

then, with the state feedback control u = Fx where

F = YV ∗−1, (77)

the equilibrium xe = 0 of the resulting closed-loop system (4) is asymptotically
stable, the proper cone C (V ∗−1) is positively invariant and C (V ∗−1)⊆ C (G1).

Proof:
From relations (74) and (77) it follows that

AV ∗+BFV ∗ =V ∗diag(λ ∗1 ,λ
∗
2 , ...,λ

∗
n )
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and taking into account that detV ∗ 6= 0 we get

V ∗−1(A+BF) = diag(λ ∗1 ,λ
∗
2 , ...,λ

∗
n )V

∗−1 (78)

Since the matrix H1
4
= diag(λ ∗1 ,λ

∗
2 , ...,λ

∗
n ) is nonnegative, from (78) it follows that

the cone C (V ∗−1) is positively invariant with respect to system (4). Furthermore,
u = Fx is a stabilizing control because λ ∗i i = 1,2, ...,n are the eigenvalues of matrix
A+BF and 0≤ λ ∗i < 1. Finally, taking into account that L∗ ≥ 0, from relation (76)
which can written as L∗V ∗−1 = G1, it follows that C (V ∗−1)⊆ C (G1). ut

Using this result we can develop eigenstructure assignment approaches for deter-
mining a stabilizing linear state feedback control together with a positively invariant
cone included in C (G1).

From
(A+BF)V ∗ =V ∗diag(λ ∗1 ,λ

∗
2 , ...,λ

∗
n ) (79)

which is equivalent to (74) it follows that the columns v∗i i = 1,2, ...,n of matrix
V ∗1 are the eigenvectors of the closed-loop matrix A+BF associated with the eigen-
values λ ∗i i = 1,2, ...,n. Thus, taking into account relations (74)-(76) and L∗ ≥ 0,
we conclude that for determining a stabilizing linear state feedback control and a
positively invariant cone C (G∗1) included in C (G1) one have to derive a gain ma-
trix F assigning the eigenvalues of the closed-loop system in the interval [0,1) with
corresponding eigenvectors vi satisfying the inequalities

G1v∗i ≥ 0 (80)

It should be noticed that the existence of a solution to this eigenstructure assignment
problem is not guaranteed even if the pair (A,B) is controllable [28], [1]. Sufficient
conditions of existence of such a solution may be established using the results on
the spectral characterization of systems possessing positively invariant cones [30].

The final step is the determination of a subset D∗2 ⊆ P(G2,w2) such that
D = C (V ∗−1

1 )∩D∗2 is positively invariant and C (V ∗−1
1 )∩D∗2 ⊂P(DF,ρ). This

can be done by applying one of the approaches established in the subsections 4.1.1
and 4.1.2.

Example 4: We consider a discrete-time linear system x(t + 1) = Ax(t)+ bu(t)
with

A =

[
0 1.4

2.2 −2

]
, b =

[
0.5
1.5

]
The control vector is constrained to satisfy the inequalities

u≤ ρ1

with ρ1 = 10 and ρ2 =− It is also given a bounded polyhedral subset P(G,wx) of
system’s state space where
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G =

 −0.2
−1.2
−0.5

1
0.4
−0.5

 , wx =

1
1
1


The set P(G,wx) represents a forbidden region in which for safety reasons the tra-
jectories of the system must not enter. Thus, the admissible region of evolution of
the state vector is the non-convex set P̄ = Rn\IntP(G,wx). The control objective
is the determination of a control law and of a subset D ⊂ P̄ such that all trajecto-
ries of the resulting closed-loop system emanating from the set D are transferred
asymptotically to an equilibrium xe lying as close as possible to the origin.

The states that can be equilibria satisfy the relation Axe + bue = xe, for a steady
state control ue. This implies that the admissible equilibrium states are situated on

the line 1.3xe1−1.8xe2 = 0. By adopting the function v(x) = max
1≤i≤3

{
gT

i x
wxi

}
as a dis-

tance of the state x from the origin, the admissible equilibrium states xe are also situ-
ated on the boundary of the forbidden region P(G,wx). Thus, with u1

e =−0.04255
and u2

e = 0.02439 we obtain the two admissible equilibrium states

x1
e =

[
1.91489
1.3829

]
, x2

e =

[
−1.0975
−0.7926

]
situated, respectively, on the boundary faces −0.2x1 +x2 = 1 and −1.2x1 +0.4x2 =
1 of the forbidden region P(G,wx).

We first consider the equilibrium x1
e lying on the boundary line −0.2x1 + x2 = 1

and we examine whether there exists a stabilizing control u(k) = u1
e + f iT [x(k)−x1

e ]
making the half space−0.2x1+x2≥ 1 positively invariant w.r.t. the resulting closed-
loop system x(k+1) = Ax(k)+b f iT [x(k)− xi

e]+bu1
e . Setting z(k) = x(k)− x1

e , this
problem is converted to a problem of determination of a stabilizing gain vector f i ∈
R2 for the system

z(k+1) = (A+b f iT )z(k) (81)

making the half space 0.2z1− z2 ≤ 0 positively invariant. To this end, we solve the
parametrized convex problems (33)-(35) with gT

1 =
[

0.2 −1
]

and we obtain

h1 = 0.35

Q =

[
8.9622 −11.2756
−11.2756 23.5890

]
Y =

[
−35.7136 62.5965

]
Thus, with the control u(t)= f 1T

(x(k)−x1
e)+u1

e where f 1T
=Y Q−1 =

[
−1.6214 1.8786

]
the equilibrium x1

e of system x(t + 1) = Ax(t) + bu(t) becomes asymptotically
stable and the half space −0.2x1 + x2 ≥ 1 is positively invariant. Then any set
D1= P(−gT

1 ,−1)∩Qx−x1
e
(Q−1,d) where

Qx−x1
e
(Q−1,d) = {x ∈ R2 : (x− x1

e)
T Q−1(x− x1

e)≤ r}
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with r satisfying the relation

Qx−x1
e
(Q−1,d)⊆ {x ∈ R2 : f iT (x− x1

e)≤ ρ1−u1
e}

is an admissible domain of attraction of the equilibrium x1
e . Such an admissible

domain is obtained by setting d = 0.0572.
We next consider the case of the equilibrium x2

e lying on the boundary line
gT

2 x = 1 where gT
2 =

[
1.2 −0.4

]
. Since gT

2 b = 0 but the line vector gT
2 is not a

left eigenvector of matrix A , there does not exist any gain matrix f 2T
and real num-

ber h22 such that gT
2 (A+b f 2T

) = h22gT
2 . Therefore, there does not exist any control

making the half space gT
2 x≥ 1 positively invariant. Thus, we search for a stabilizing

control u(t) = f 2T
(x(k)− x2

e)+u1
e making a cone

Cx−x2
e
(G∗2) = {x ∈ R2 : G∗2(x− x2

e)≥ 0}

Cx−x2
e
(G∗2)⊂ {x ∈ R2 : gT

2 x≥ 1}

positively invariant. Setting z(k) = x(k)−x2
e , this problem is converted to a problem

of determination of a gain vector f i ∈ R2 making the the system z(k+ 1) = (A+

b f 2T
)z(k) asymptotically stable, the cone C (G∗2) positively invariant and C (G∗2)⊂

C (−gT
2 ). By applying a standard eigenvalue assignment approach we determine the

gain vector
f 2T

=
[
−2.0610 2,7537

]
for which matrix A+ b f 2T

has the eigenvalues λ1 = 0.4 and λ2 = 0.7 associated
with the left eigenvectors

v∗T1 =
[
−0.5289 0,8487

]
v∗T2 =

[
0.4580 −0.8890

]
respectively. Then, setting

G∗2 =
[

v∗T1
v∗T2

]
we get

G∗2
(
A+b f T

2
)
= diag(λ1,λ2)G∗2

and
kT G∗2 = gT

2

with
kT =

[
10.8403 9.8990

]
This implies that the polyhedral proper cone C (G∗2) is positively invariant w.r.t. the
system z(k+1) = (A+b f 2T

)z(k) and satisfies the set relation C (G∗2)⊂C (gT
2 ). The-

refore, with the control u(k) = f 2T (x(k)−x2
e)+u2

e the cone Cx−x2
e
(G∗2) is positively

invariant.
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Cx−x2
e
(G∗2) = {x ∈ R2 : G∗2(x− x2

e)≥ 0}

It is a simple task to show that this is also an admissible domain of attraction
The forbidden region P(G,w), the positively invariant region C (gT

1 ) and the
admissible domains of attraction D1and D2 of the closed-loop systems with controls
u(1) and u(2) respectively are shown in Figure 3.

Fig. 3 The forbidden region P(G,w), the positively invariant region C (gT
1 ) and the admissible

domains of attraction D1 and D2 of the closed-loop systems with controls u(1) and u(2) respectively.

6 Concluding remarks

We have studied the Linear Constrained Regulation Problem around an equilibrium
situated on the boundary of a polyhedral region where the state constraints are satis-
fied. It has been shown that, in this case, the stabilizability of the pair (A,B) is not
sufficient for the existence of an admissible linear state-feedback control because
additional conditions of geometric nature are necessary to be satisfied. First, it has
been shown that if a control law making the maximal admissible set a domain of at-
traction exists, then it may be determined by solving a linear programming problem.
Next, the cases when such a control does not exist have been studied and appropriate
design approaches based on convex optimization and/or eigenstructure assignment
methods for determining stabilizing linear state-feedback controllers and correspon-
ding admissible domains of attraction have been proposed. It should be noticed that
the domains of attraction obtained by these approaches are not the maximal ones.
For polyhedral domains however, they may be considered as the starting domains
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in the application of iterative approaches of enlargement of admissible domains of
attraction [2], [3].

All the design techniques developed in this chapter are readily extendable to the
case of continuous-time systems [6].
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