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Paris, France

sylvie.marcos@l2s.centralesupelec.fr

Safya Belghith
Laboratoire RISC
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Abstract—In this paper, we consider chaotic sequences as an
alternative to other sequences in the literature for the design
of radar waveforms in multiple-input multiple-output (MIMO)
radar. For this aim we here adopt a statistical approach; by
considering the codes defining the transmitted waveform as real-
izations of a random variable we show that a suitable distribution
of the random variable can give good codes. As an example
we show how the chaotic skew tent map allows to generate
deterministic codes having the desired statistical properties and
thus makes it possible to obtain a good ambiguity function. These
results are confirmed by simulations and compared to those using
Gold codes and optimized codes.

Index Terms—MIMO radar, chaos-based sequences, ambiguity
function, skew tent map, invariant probability density

I. INTRODUCTION

In coherent MIMO radar [1] the search for transmitted
waveforms leading to the ”optimal” ambiguity function (AF),
in particular in terms of low side lobes, has been much
discussed in the literature [2-7]. Some works are inspired
by the field of multi-user communications [2], others aim to
synthesize sequences by optimizing certain criteria concern-
ing their auto- and cross-correlation functions [8-12]. Still
other studies relate to the joint optimization of the transmit
waveform and the receive filter [13] or else consider a multi-
objective optimization [14]. This gives rise to a non-linear
optimization. However, the sequence-based waveforms gener-
ated by the existing methods have drawbacks. Either they are
limited in length, or require important calculations, especially
when we need a large number of them or we want to add one.
In this paper, we propose to consider chaotic sequences as
an alternative to other sequences in the literature for the
design of radar waveforms. They are random-type sequences
generated by nonlinear and recursive deterministic systems
controlled with appropriate parameters and initial conditions.
These sequences can be easily generated, of any length and in
any number. There is no need to store a library or optimize a
given function to create a new sequence.
Earlier articles have already suggested the use of chaotic
sequences as candidates for the design of radar waveforms
[15], [16] and the references inside; in these works the
optimization is done by looking for orthogonal sequences
having good auto-correlation functions. However, no real
theoretical study has shown their interest in a radar system

where a Doppler phenomena is added to the auto and cross-
interferences. In this paper we propose a statistical approach
to exploit the features of chaotic sequences in MIMO radar
system. A similar approach has been proposed in [17] for the
SIMO context and encouraging results have been found. By
considering each code as a realization of a random variable
we show that we can build good codes for a radar system if
the distribution of the random variable is suitably chosen. For
example we show that for sequences generated by the skew
tent map and for certain values of its bifurcation parameter, the
invariant distribution coincides with the desired distribution.
In section II we introduce the AF and extract the function of
interest to be optimized, in section III we study the statistical
properties of the latter. In section IV, we show how sequences
generated by the skew tent map meet the desired statistical
properties established in the previous section. Simulation re-
sults illustrate our results in section V and show a comparison
with Gold sequences and the optimized sequences proposed
in [3]. The conclusion will summarize the contribution of the
paper and present future extension.

II. THE MIMO RADAR AMBIGUITY FUNCTION

The MIMO AF corresponding to the reception of signals in
the direction θ, for a delay τ and a Doppler frequency ν is
defined as [1]:

A(θ, θt, τ, ν) =

M∑
m=1

M∑
m′=1

βm,m′(θ, θt)Am,m′(τ, ν) (1)

M is the number of waveforms, θt is the direction of the target;
βm,m′(θ, θt) is a function of the antenna elements positions
and the wave vectors [7]. In (1),

Am,m′(τ, ν) =

∫
sm(t)s∗m′(t+ τ)ej2πνtdt (2)

is the cross-AF of sm(t) and sm′(t). sm(t) is given by:

sm(t) =

Nc∑
p=1

wm,pu(t− (p− 1)Tc) (3)



Nc is the length of the sequences {wm,p}p=1,...,Nc
; u(t) is a

shaping function of duration the pulse repetition interval Tc.
The discretized version of Am,m′(τ, ν) is

Am,m′(kTc, ν) =

Nc∑
p=1

Nc∑
l=1

wm,pw
∗
m′,l

∫
u(t− (p− 1)Tc)u(t− (l − k − 1)Tc)e

j2πνtdt

By replacing l − k by p′ we obtain

Am,m′(kTc, ν) =

Nc∑
p=1

Nc−k∑
p′=1−k

wm,pw
∗
′,p′+k

∫
u(t− (p− 1)Tc)u(t− (p′ − 1)Tc)e

j2πνtdt

Since u(t) is null outside the interval [0, Tc], the integral
vanishes if p 6= p′ and thus we obtain

Am,m′(kTc, ν) =

Nc−k∑
p=1

wm,pw
∗
m′,p+k

∫
|u(t− (p− 1)Tc)|2ej2πνtdt

By the variable change t− (p− 1)Tc in t we obtain

Am,m′(kTc, ν) = α(ν)Rm,m′(k, ν) (4)

α(ν) =

∫ Tc

0

|u(t)|2ej2πνtdt (5)

Rm,m′(k, ν) =

Nc−k∑
p=1

ωm,pω
∗
m′,p+ke

jπν(p−1)Tc (6)

In the sequel Rm,m′(k, ν) is called the cross-AF for m′ 6= m
and Rm(k, ν) = Rm,m(k, ν) is the auto-AF. The best AF (1)
should be maximal for θ = θt, τ = 0 and ν = 0 and null for
θ 6= θt, τ 6= 0 or ν 6= 0. This can be obtained when the auto
and cross-correlation functions are such that Rmm′(k, ν) =
0, ∀ k, ν for m 6= m′ and Rm(k, ν) = δ0(k, ν), ∀ k, ν and
∀m; δ0 is the two dimentionnal Dirac pulse.
We obtain for phased sequences ωm,p = ejπxm,p :

Rmm′(k, ν) =

Nc−k∑
p=1

ejπ[xm,p−xm′,p+k+ν(p−1)Tc] (7)

If u(t) is the rectangular function of support [0, Tc], α(ν) =
ejπνTc sinπνTc

πν . In practice, the Doppler frequency ν is usually
much smaller than the bandwidth of the probing waveform so
that we can safely suppose that | sinπνTc

πν | ' Tc. It follows that
we are going to optimize, for given and fixed values of m, m′

and k, the following expression:

|Rmm′(k, ν)| = |
Nc−k∑
p=1

ejπzp(k)| (8)

zp(k) = xm,p − xm′,p+k + ν(p− 1)Tc (9)

It is worth noting that the term zp(k) in (9) that determines
the properties of (8) is the summation of a random variable
xm,p − xm′,p+k and a deterministic term ν(p− 1)Tc.
In the sequel, we are going to study the statistical properties
of |Rmm′(k, ν)| for fixed values of m, m′ and k for different
distributions of zp(k). To do this, we introduce the notations:

Sn =

n∑
p=1

ejπΦp (10)

Zn = |Sn| (11)

We obtain (8) when n = Nc − k and Φp = zp(k).
Different criteria [20] have been considered to analyse objec-
tively the performance of waveforms in MIMO radar appli-
cation; in most of the cases the correlation properties of the
waveforms have been considered independently of the Doppler
term. In this work we have taken into account the Doppler term
and considered the following criterion

C = max
k 6=0;ν

G(k, ν) (12)

G(k, ν) = Σ
m,m′

Rm,m′(k, νTc) (13)

III. STATISTICAL PROPERTIES OF Zn

A. Statistics of Zn in the case of i.i.d. argument ΦP

Let us begin by ignoring the deterministic term in
(9) and suppose Φp an i. i. d. random variable with
a symmetrical distribution about its mean zero. From
the central limit theorem for n large enough and by
noting Sn = r exp(jπθ), the real and imaginary parts
of Sn are approximately Gaussian random variables
of means α = E[rcos(πθ)] = nE[cos(πΦp)] and
β = E[rsin(πθ)] = nE[sin(πΦp)] and variances s1

and s2, respectively. The distribution of r = Zn is [18]

ρ(r) = 2r
√
s1 + s2e

−(B2+(s1+s2)r2)I0(2B(s1 + s2)r) (14)

B = α
s1+s2

; I0 is the modified Bessel function of the 1st kind.
Let us consider the following cases.

1) Φp uniformly distributed: Let us assume Φp uniformly
distributed in [−a, a], 0 < a < 1. It follows that α = nsinc(a)
and β = 0. ρ(r) is plotted in Figure 1 for a = 1, 0.7, 0.8. We
can see that for a fixed value of R the probability that r < R
is the largest for the case a = 1 corresponding to the case
of ejπΦp uniformly distributed on the unit circle. In this case,
it is easy to find [18] that α = 0 and s1 = s2 = n/2 so
that B = 0 and the distribution of Zn reduces to the Rayleigh
distribution ρ(r) = 2ρ exp(−r2). This latter will be considered
as a reference in the sequel (blue line in Fig1).

2) Φp with a triangular distribution on [−2b, 2b], 1 ≤ 2b ≤
2: This distribution is here considered since it corresponds to
(9) when xm,p and xm′,p+k are uniform in [−b, b] and ν = 0.
Because of the periodicity of ejπΦp we have ejπΦp = ejπΦ̃p

where Φ̃p is a random variable in [−1, 1]. The distributions of
Φp and Φ̃p are plotted together in Figure2. We can see that
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Fig. 1. Distribution of the modulus of E[Zn]
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Fig. 2. Distribution of Φp and Φ̃p in the case of triangular distribution

Φ̃p is uniformly distributed in [−1, 1] if and only if b = 1, i.e.
we obtain a uniform equivalent distribution in [−1, 1] if the
distribution of Φp is a triangle on [−2, 2].

B. Statistics of Zn in the case of Φp = xm,p − xm′,p+k

Let Φp = xm,p − xm′,p+k. If the xm,p are i.i.d random
variables uniformly distributed in [−a, a], 0 < a < 1 the
distribution of Φp is the triangular function in [−2a, 2a]. If
2a < 1 the distribution of Φp is triangular within the interval
[−1, 1] and thus will give bad mean and variance of Zn as
explained in the previous section. If 2a ≥ 1 we retrieve
the statistics of Zn described in the previous section, i.e. the
Rayleigh distribution is obtained when a = 1.

C. Statistics of Zn in the case Φp = up + ν(p− 1)Tc

We here consider the statistics of

Φp = up + ν(p− 1)Tc (15)

Here Φp is the sum of an i.i.d. random term up and a
deterministic term ν(p− 1)Tc; since the up are i.i.d. E[ejπup ]
is a constant denoted by A and

E[Sn] = A

n∑
p=1

ejπ(p−1)νTc (16)

In the case νTc = 2q an even integer, E[Sn] = A ·n. If A = 0
the real part of E[Sn] is zero; thus α = B = 0 which are the
conditions so that Zn follows a Rayleigh distribution.
In the case νTc 6= 2q we can easily show that

|Real(E[Sn])| ≤ |A|n

In this case if A = 0, the real part of E[Sn] is zero, thus
α = B = 0 and also |Zn| has a Rayleigh type distribution.

D. Summary

We here summarize the previous discussion.
1) The optimization of |Rmm′(k, ν)| in (8) was achieved

through the statistical analysis of Zn(10)-(11).
2) The optimization of Zn is obtained if Φp in (10) is

uniformly distributed in [−1, 1] or if it follows the
triangular distribution in [−2, 2].

3) In the case Φp = zp(k) in (9) and ν = 0 the optimization
is obtained if xm,p is uniformly distributed in [−1, 1].

4) As shown in section III.C. the presence of the determin-
istic term in (9) has no influence if up = xm,p−xm′,p+k

follows the triangular distribution in [−2, 2] or equiva-
lently if xm,p is uniformly distributed in [−1, 1].

In the next section, we illustrate the results summarized above
by looking at the example of sequences generated by the
skewed tent map and we study the possibility of obtaining
such sequences optimizing the AF

IV. SEQUENCES GENERATED BY THE SKEW TENT MAP

Let xp be a sequence generated by xp+1 = Tµ(xp) and an
initial condition x0; Tµ(x) is the piece-wise linear skew tent
map defined in [−1, 1] by

Tµ(x) =

{
2

µ−1x−
1+µ
µ−1 if µ < x ≤ 1

2
µ+1x−

µ−1
µ+1 otherwise

(17)

The invariant distribution of xp is the uniform law in [−1, 1]
[19] i.e. xp could be considered as a realization of a uniform
random variable in [−1, 1]. The idea is to use such sequences
in the MIMO radar system with xm,p+k = T kµ (xm,p) for each
m = 1, ..,M , in this case (still k, m and m′ being fixed):

Φp = xm,p − T kµ (xm′,p+k) (18)

A. Optimisation of the auto-ambiguity function

For m = m′ assuming xm,p a random variable we have to
consider the statistics of xm,p−T kµ (xm,p). Assuming that the
xm,p is i.i.d. uniformly distributed in [−1, 1] the distribution
of Φp = xm,p−T kµ (xm,p) is triangular in [−2, 2] and thus the
equivalent distribution Φ̃p is uniform in [−1, 1]. In the Figures
3 and 4 we plotted the distributions of Φp = xm,p−T kµ (xm,p)
in blue line for µ = 0.1 and µ = 0.7 and for different values of
k. In red line we plotted the distributions of the equivalent Φ̃p
of Φ; from the previous discussion Φ̃p should be uniform in
the interval [−1, 1]. We can see that after a few iterations the
distribution of Φ = xm,p − T kµ (xm,p) tends to the triangular
distribution in the interval [−2, 2] and thus Φ̃p tends to the
uniform distribution in the interval [−1, 1] for all values of
µ, subsequently we have to look for parameter µ that allows
good distributions for the first iterations.
To see the impact of this result we plotted Figure 5 the function
(8) for µ = 0.1 and µ = 0.7 and for k = 1, 2, 3. We can see
that the case µ = 0.1 allows low peaks in (8) yielding a better
AF; this is due to the fact that for µ = 0.1 the invariant
distribution of xm,p−T kµ (xm,p) converges more quickly than
for the case µ = 0.7. This can be observed by comparing the
first sub-figures of the Figures 3 and 4.
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B. Optimisation of the cross-ambiguity function

Now suppose the initial conditions xm,p,m = 1, ...,M
in (9) independent; thus xm,p+k and xm′,p+k are two i.i.d
random variables for each couple m 6= m′. The minimization
of (8) is achieved if Φp = xm,k − xm′,k+p is triangular in
[−2, 2] which is true for sequences generated by (17) allowing
uniform distribution in [−1, 1] for all the values of µ.

V. SIMULATION RESULTS

To highlight the previous analysis we plotted in Figures 6
and 7 the AF obtained with the sequences generated by (17)
for the cases µ = 0.1 and µ = 0.7, M = 3 and Nc = 1023.
We can see that the results agree with the statistical approach
developed above i.e. the results are better for µ = 0.1.
As a comparison we plotted in Figures 8 and 9 the AF obtained
with optimized Multi-CAN and Gold [9] [10] [11] sequences.
Subjectively we can see that the Multi-CAN sequences are the
best and the Gold sequences are the worst.
We plotted in Figures 10 and 11 the criterion (12) obtained
with the chaotic sequences versus the bifurcation parameter
µ for M = 2 and M = 3. We can see that these results
confirm the theoretical results discussed above: the chaos

−0.05 0 0.05
0

0.5

1

νTc

 

 
µ = 0.7
µ = 0.1

−0.05 0 0.05
0

0.5

1

 

 

νTc

µ = 0.7
µ = 0.1

−0.05 0 0.05
0

0.5

1

 

 

νTc

µ = 0.7
µ = 0.1

k = 1

k = 2

k = 3

Fig. 5. |R(k, ν)| for k = 1, 2, 3 and µ = 0.1 and µ = 0.7

based ambiguity function is the best for µ = 0.1. In the same
figures we plotted the criteria C for Multi-Can sequences; we
can see that the MultiCAN sequences are the best. The value
of C allowed by Gold sequences is too bad to be plotted in
the same figures: for M = 2 C ∼= 4 and for M = 3 C ∼= 9. As
explained before the superiority of Multi-CAN sequences with
respect to the chaotic ones is due to the fact that the invariant
probability density is not uniform in the first iterations.
It is worth noting that the skew tent map is taken as an
example to illustrate the approach proposed here; we did not
optimize via the choice of chaotic map. This encourages us to
further search for other chaotic maps allowing a good invariant
distribution in the first iterations as explained in Figs. 3 and
4. This will be done in a future work.

Fig. 6. G(k, ν) for µ = 0.1

Fig. 7. G(k, ν) for µ = 0.7



Fig. 8. G(k, ν) for Multi-CAN sequences

Fig. 9. G(k, ν) for Gold sequences

VI. CONCLUSION

In this paper we proposed a statistical approach to seek
sequences to use in MIMO radar system; by considering
sequences as realizations of a continuous random variable we
showed that if the distribution of this random variable is uni-
form in the interval [−1, 1] we could obtain good sequences.
As an example we considered chaotic sequences generated by
the skew tent map ; indeed these sequences have a stochastic
behaviour while being deterministically generated. We showed
that statistical features of these sequences are close to the
desired ones and that they depend on the bifurcation parameter
of the skew tent map. The advantage of chaotic sequences is
that they can be generated of any length and in any number.
The results obtained are promising and encourage us to take
our study further, especially considering other types of chaotic
sequences. As demonstrated in this work the drawback of the
considered chaotic sequences is due to the first iterations of
the corresponding distribution. A method allowing to avoid
this weakness has recently been proposed in [21].
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