S Fadhel 
  
D Diallo 
  
C Delpha 
  
A Migan 
  
I Bahri 
  
M Trabelsi 
  
M F Mimouni 
  
Maximum Power Point Analysis for Partial Shading Detection and Identification in Photovoltaic Systems

Keywords: Photovoltaic system, Fault diagnosis, Partial shading, Maximum Power Point (MPP), Principal Component Analysis, Linear Discriminant Analysis

Fault diagnosis of photovoltaic (PV) systems is a crucial task to guarantee security, increase productivity, efficiency, and availability. In this regard, numerous diagnosis methods have been developed. Methods requiring the interruption of power production are not adequate for economic reasons. The development of large-scale PV plants and the objective of maintenance cost reduction push toward the emergence of automatic on-line diagnosis methods that use available information. In this study, we propose two data-driven methods for partial shading diagnosis using only the maximum power point's information. It does not require the interruption of production, nor does it require any additional equipment to obtain the I(V) curve. The analyses are conducted with principal component analysis (PCA) and linear discriminant analysis (LDA) to detect and classify the faults. The experimental dataset is collected from a 250 Wp PV module under four states of health (healthy, and three severities of partial shading) for several meteorological conditions. The classification results have a 100% success rate, and are robust to the variations of temperature and irradiance.

Introduction

Although photovoltaic (PV) cells/modules are the most reliable components in a PV installation [START_REF] Golnas | PV System Reliability: An Operator's Perspective[END_REF] and considered as systems with low failure rates [START_REF] Iea | Reliability Study of Grid Connected PV Systems[END_REF] requiring low maintenance [START_REF] Zhao | Graph-Based Semi-supervised Learning for Fault Detection and Classification in Solar Photovoltaic Arrays[END_REF], it is crucial to implement effective monitoring systems for PV modules to diagnose their state of health. Indeed, many PV faults can cause significant power losses, may lead to accelerated system ageing, reduced efficiency, and even safety hazards.

Due to uncertainties related to PV cell technology, manufacturing process and climatic conditions, correlating PV fault type to power loss is tricky. It is still an on-going area of research. In particular, the impact of climatic conditions is evaluated in [START_REF] Jordan | Photovoltaic failure and degradation modes[END_REF], [START_REF] Iea | Assessment of Photovoltaic Module Failures in the Field[END_REF] by studying a large number of PV modules exposed to different climates. The annual degradation rate is proposed by numerous studies to quantify the impact of single or multiple faults. For example, it has been reported that crystalline silicon (c-Si) PV modules have degraded at an annual rate of approximately 7% due to discoloration and weakened solder bonds [START_REF] Sun | Real-time monitoring and diagnosis of photovoltaic system degradation only using maximum power point-the Suns-Vmp method[END_REF]. Another study reported that because of discoloration, the power loss could reach 10% per year in PV modules with concentrators [START_REF] Iea | Assessment of Photovoltaic Module Failures in the Field[END_REF]. According to [START_REF] Jordan | Photovoltaic failure and degradation modes[END_REF], PV installations deployed after the 2000s are more susceptible to the occurrence of defects. However, the percentage of degradation would be significantly lower than in previous installations. In particular, for new c-Si PV modules, the biggest concern seems to be hot spots, followed by potential induced degradation (PID). Hot spots have an impact on PV module performance and could contribute to premature ageing if they are frequent [START_REF] Bressan | A shadow fault detection method based on the standard error analysis of I-V curves[END_REF]. It has also been reported that partial shading (PS) can lead to several early degradations, and is a significant cause of the appearance of hot spots. Therefore, we are interested in partial shading (PS) diagnosis.

Several PV faults have a visual signature such as delamination, burn, or discoloration marks. So, they can be simply detected through visual inspection. This technique is clearly irrelevant for large PV installations. Moreover maintenance policies are evolving towards Condition Based Maintenance (CBM) to prevent failures and reduce maintenance costs. CBM requires continuous monitoring and automatic fault diagnosis methods.

There are several methods for diagnosing PV faults, reviewed in the literature [START_REF] Appiah | Review and performance evaluation of photovoltaic array fault detection and diagnosis techniques[END_REF] to [START_REF] Daliento | Monitoring, Diagnosis, and Power Forecasting for Photovoltaic Fields: A Review[END_REF]. They can be classified into two main families according to the measures used:

-

The first group uses radiation-based techniques: Electroluminescence (EL) [START_REF] Spertino | A power and energy procedure in operating photovoltaic systems to quantify the losses according to the causes[END_REF], [START_REF] Iea | Review on Infrared and Electroluminescence Imaging for PV Field Applications[END_REF], and Infrared Thermography (IRT) under steady-state conditions [START_REF] Iea | Review on Infrared and Electroluminescence Imaging for PV Field Applications[END_REF], [START_REF] Wolfgang | Identifikation von fehlerhaften PV Modulen und Anlangen mit Thermografie[END_REF]. The main advantage of these techniques is their ability to detect and locate the faults in real-time. EL is generally performed to detect micro-cracks in PV cells and other faults within the cell material (contact degradation…); however, it requires the system interruption. IRT can be performed at module level, allowing a fast and effective inspection to detect different types of faults. This technique can be tested without any operational interruption, but it requires mobile platforms to diagnose many PV modules. For this reason, researches are ongoing to develop advanced IRT techniques such as drone-mounted thermography [START_REF] Tsanakas | Advanced inspection of photovoltaic installations by aerial triangulation and terrestrial georeferencing of thermal/visual imagery[END_REF]. Therefore, IRT could be more suitable than the EL technique, especially for big PV plants.

-

The second group uses electrical measures. It is composed of reflectometry techniques, I(V) curve analysis, and maximum power point (MPP) coordinates analysis.

Reflectometry techniques are mainly used to detect catastrophic faults (ground faults and arc faults) and locate open-circuit faults in the PV strings. These methods are effective. Nevertheless, they are costly since they require a specific external signal function generator to stimulate the PV system [START_REF] Roy | An Irradiance-Independent, Robust Ground-FaultDetection Scheme for PV Arrays Based on SpreadSpectrum Time-Domain Reflectometry (SSTDR)[END_REF]- [START_REF] Takashima | Experimental studies of fault location in PV module strings[END_REF]. I(V) curves can also be used for fault diagnosis. However, not only do several defects have very similar signatures, but the I(V) curve is also very sensitive to environmental conditions. Therefore diagnosis methods based on the analysis of the entire I(V) curve's points need appropriate preprocessing. This difficulty may be one of the reasons that justify the limited number of publications using the full I(V) curve for fault diagnosis. From the literature review, we have only found two studies dealing with the full I(V) curve analysis for diagnosis purposes [START_REF] Bressan | A shadow fault detection method based on the standard error analysis of I-V curves[END_REF], [START_REF] Basri | A proposed graphical electrical signatures supervision method to study PV module failures[END_REF]. In [START_REF] Bressan | A shadow fault detection method based on the standard error analysis of I-V curves[END_REF], the analysis of the first derivative of the ratio between the standard error and the PV voltage is used for the same fault, the standard error results from the comparison between faulty and healthy I(V) data. Authors in [START_REF] Basri | A proposed graphical electrical signatures supervision method to study PV module failures[END_REF] have proposed the evaluation of the first and the second derivatives of the curve for shading detection. An I(V) plotter has been used in this study to sweep the I(V) curve composed of 265 points.

We have proposed in two previous works a new method based on the full I(V) curve analysis to detect and classify shading faults by using adequate variables [START_REF] Fadhel | Data-driven Approach for Isolated PV Shading Fault Diagnosis Based on Experimental I-V curves Analysis[END_REF], [START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF]. The experimental I(V) characteristics are obtained thanks to a programmable voltage source, which provides the points from the short-circuit current to the open-circuit voltage.

The other diagnosis techniques use the actual I(V) curve to extract several health indicators from the shape of the curve. The fault diagnosis decision is made upon analysis of the residuals computed as differences between measured indicators and estimated ones identified from the healthy I(V) characteristics. This latter is generally obtained by considering the usual electrical equivalent circuit model (single-diode or double-diode) [START_REF] Tossa | A new approach to estimate the performance and energy productivity of photovoltaic modules in real operating conditions[END_REF]. At first, an optimization algorithm is applied to extract the five optimal parameters, as proposed in [START_REF] Merchaoui | Particle swarm optimisation with adaptive mutation strategy for photovoltaic solar cell/module parameter extraction[END_REF]- [START_REF] Chen | Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics[END_REF]. Then, the non-linear equation I = f(V) is solved iteratively to reproduce the healthy behavior of the PV system.

In [START_REF] Spataru | Diagnostic method for photovoltaic systems based on light I-V measurements[END_REF], the authors have defined five indicators (fill factor, equivalent series resistance…) calculated from the shape of the outdoor measured on-line I(V) curve. Fault occurrence is detected by comparing the actual values with their initial values measured during the commissioning phase of the diagnosis system. Based on the one-diode model, authors in [START_REF] Bastidas-Rodr´ıguez | Model Based Degradation Analysis Of Photovoltaic Modules Through Series Resistance Estimation[END_REF] have defined two reference indicators to estimate the increment of the series resistance from the measures of the short-circuit current ISC, PV system temperature TPV, maximum power point's voltage and current. The experimental indicators analysis is performed with a variable load used to extract the full I(V) curve.

These methods suffer from several difficulties. First, they introduce additional time to sweep the full I(V) characteristic, and the duration and the quality of acquisition depend on the used instrument.

Second, these approaches are confronted with the case of large-scale photovoltaic plants with limited measurements. Furthermore, it is not practical to disconnect PV modules or strings to extract their I(V) curves as it perturbs the system operation and leads to production losses. For instance, the power loss due to the I (V) acquisition in [START_REF] Wang | A method for instantaneous measurement of PV I-V characteristics and its application for MPPT control[END_REF] resulted in a power efficiency drop of 0.16%.

For this reason, it is not suitable for continuous monitoring. There is therefore, an interest in using methods that do not require the interruption of production and that use only available data such as voltage and current at the point of maximum power (MPP) commonly available in PV systems. This approach is also cost-effective, as it does not require any additional measurement equipment.

The fault detection strategy developed in [START_REF] Khoshnami | Sample entropy-based fault detection for photovoltaic arrays[END_REF] is based on monitoring only the maximum power of the PV system by analyzing the sample entropy. In [START_REF] Dhimish | Multi-layer photovoltaic fault detection algorithm[END_REF], authors have proposed two diagnosis attributes, which are the voltage ratio (VR) and power ratio (PR) computed from the division of the theoretical and the measured values of the maximum power point's voltage and power, respectively.

More recently, to distinguish healthy from faulty states, three diagnosis indicators calculated from the comparison between predicted and measured current, voltage, and power at MPP have been proposed

in [START_REF] Chaibi | Simple and efficient approach to detect and diagnose electrical faults and partial shading in photovoltaic systems[END_REF]. The same electrical measurements are exploited in [START_REF] Harrou | An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class Support Vector Machine[END_REF], [START_REF] Garoudja | Statistical fault detection in photovoltaic systems[END_REF], to define three residuals as fault features. The data in these two studies are recorded from the same PV system whose behavior in the healthy state is estimated based on the one-diode model. Residuals are analyzed with the one-class support vector machine (1SVM) technique in [START_REF] Harrou | An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class Support Vector Machine[END_REF], while the exponentially weighted moving average (EWMA) approach is applied to the same residuals in [START_REF] Garoudja | Statistical fault detection in photovoltaic systems[END_REF], to detect and identify the faults. All the previous analysis methods using the maximum power point's coordinates rely on physics-based models. These methods are powerful in detecting many types of PV faults and can be applied to a wide range of PV plants. -Features analyses: in this step, PCA and LDA are used for partial shading faults detection and classification. LDA is also used to determine discriminative laws for data separation.

We will evaluate the robustness of the method to environmental conditions: variable temperature and irradiation.

The outline of the paper is as follows: section 2 describes how the database is collected and extended. The detailed faults diagnosis methodology based on maximum power point (MPP) coordinates are presented in section 3. A case study of an isolated PV module is presented to validate the proposed methods. Section 4 discusses the application to large-scale PV plants and compares its practical implementation with full I (V)-based diagnosis technique. Finally, section 5 concludes the paper.

Description of the dataset

2.1.Data acquisition within a 15-minute time window

The experiments were carried out on March 21, 2019, using the experimental setup displayed in Fig. 1. The main parameters of this module at standard test conditions (STC) are as follows [START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF]: the maximum power Pmpp = 250 Wp, the maximum power current Impp = 8.21 A, the maximum power voltage Vmpp = 30.52 V, the short-circuit current Isc = 8.64 A, the open-circuit voltage Voc =37.67 V. The temperature of the PV module TPV is measured with a 4-wire Pt100 probe bonded on its back face. The acquisition, display, and saving of each I (V) characteristic take one minute. Therefore, during 15 minutes, 15 experimental I(V) curves for each health status (healthy and the different shading profiles) are recorded for several levels of temperature TPV and irradiance GPOA. Each curve is composed of 101 points. As an example, for the environmental conditions TPV and GPOA presented in Fig. 2, the characteristics I(V) and P(V) under healthy status are displayed in Fig. 3. We can observe that due to the temperature and irradiance fluctuations ((∆GPOA)max = 25% and (∆TPV)max = 13%), the maximum power fluctuates from 149 Wp to 190 Wp. The shading profiles as in [START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF], and the corresponding experimental I(V) and P(V) curves are displayed in Fig. 4. One can notice the maximum power drop caused by the bypass diodes activation.

The solar irradiance and the module temperature measured during the partial shading experiments are plotted in Fig. 5. The maximum relative variations of irradiation and temperature are summarized in Table 1. 

Extension of the database

To increase the number of points in the database, we have generated new I(V) curves from the experimental ones by varying the solar irradiance. In the following, we have doubled the number of points; from the original 15 maximum power points for each health status, we have now 30 points.

Therefore, for the four modes (one healthy state and three partial shading ones), we have 30*4 MPP observations. Experimental and generated I(V) curves are plotted respectively with blue and red colors in Fig. 6. It must be noticed that MPP coordinates are almost always available in PV plants under operation, thanks to the global maximum power point tracking (GMPPT) algorithm [START_REF] Garcia-Gutierrez | Design of a Global Maximum Power Point Tracking (GMPPT) for PV array based on precise PV shadow model[END_REF][START_REF] Kobayashi | A study of a two stage maximum power point tracking control of a photovoltaic system under partially shaded insolation conditions[END_REF].

Fig. 6. I(V) curves of the extended database

We now have a database with a total of 120 maximum power points representative of four health conditions for the PV panel. It should also be noted that these data are representative of the variability inherent in real-world measurements in an outdoor environment. In the next section,

Proposed methodology for fault diagnosis

The proposed methodology for faults diagnosis can be described in four main steps, as presented in the flowchart displayed in Fig. 7:

Healthy Partial Shading 1
Partial Shading 2 Partial Shading 3

• The modelling: For this step, we have chosen a data-driven model based on the 120 maximum power point coordinates extracted from the I (V) curves.

• Data pre-processing: This step is decisive for the performance level of the diagnostic method.

It consists in choosing the field of information, the descriptive variables, and in implementing any technique allowing to keep the information useful and to eliminate nuisances. In our study, we used data from the maximum power point in the time domain, to which we applied the logarithmic function as in [START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF].

• Features extraction and analysis: The third and fourth steps aim to extract from the maximum power points, the features (signatures) to be analyzed to detect, isolate, and estimate the fault severity. One of the difficulties lies in choosing the most efficient tools for the extraction and analysis of signatures, especially since in our case the data varies with the environmental conditions. This sensitivity makes it difficult to distinguish the healthy state from the faulty ones. Therefore, to ensure reliable fault detection, the most appropriate tool should have the highest ability to separate the data from different health status. In this work, we have selected PCA and LDA for features' extraction and analysis to perform the PS detection and classification. 

3.1.Review of normalization methods in the field of PV

When dealing with maximum power point (MPP) in outdoor conditions, it might not be easy to distinguish healthy status from shading ones. The maximum power point's coordinates change rapidly due to variations in environmental conditions, and it becomes then difficult to differentiate whether a fault or climatic changes cause the MPP variation. In other words, the faulty PV system may have similar MPP's coordinates as a healthy one. Besides, the fluctuation of MPPs for different fault types may be the same. This is confirmed by the evolutions of the maximum power points' coordinates plotted in Fig. 8. For the current at MPP, Impp, we can observe the overlapping of several points in healthy conditions, partial shading 1, and partial shading 2. For the power at the MPP, Pmpp, the overlapping is observed in healthy conditions, partial shading 1, and partial shading 3. These overlaps can be expected to be more pronounced when the data acquisition interval is greater. Therefore, to ensure reliable fault detection, one should find appropriate processing techniques that highlight the data's separability. This normalization is efficient for detecting and classifying line-to-line and open-circuit fault, but it cannot be used for partial shading. However, the main issue with this method is to guarantee that the modules under test, and the modules of reference are in the same conditions of temperature and irradiance. Another normalization method is proposed in [START_REF] Khoshnami | Sample entropy-based fault detection for photovoltaic arrays[END_REF]. The PV array current, and voltage, are divided by the STC short-circuit current, and the STC open-circuit voltage, respectively to calculate the normalized parameters, used to determine the entropy of the PV array output power. The method is fast and effective for fault detection, however fault classification has not been considered. A per-unit standardization has been applied in two recent studies [START_REF] Chen | Intelligent fault diagnosis of photovoltaic arrays based on optimized kernel extreme learning machine and I-V characteristics[END_REF], [START_REF] Zhu | Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model[END_REF]. This normalization requires accurate measurements of temperature and irradiance. It also assumes that the temperature coefficients of voltage and current are constant. Nevertheless, several experiments on the PV modules installed at the French observatory SIRTA have revealed that these coefficients vary depending on the meteorological data. Based on this normalization, the diagnosis method in [START_REF] Zhu | Fault diagnosis approach for photovoltaic arrays based on unsupervised sample clustering and probabilistic neural network model[END_REF] achieved high fault identification percentages for all the studied faults except for partial shading. In that case, the rate of correct identification is 53.66%, which is quite low. 

3.2.Feature Extraction and Analysis with Principle Component Analysis

In our case, before applying PCA, the three variables, Impp, Vmpp, and Pmmp are centred (zero mean), and reduced (unit variance). The challenge is also to deal with a limited number of samples (thirty points per health status). The robustness of our proposal to TPV and GPOA variations will be evaluated.

Principle

The details of PCA are given in [START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF]. Briefly, PCA is a multivariate unsupervised technique that 3). The dispersion of the operating points found in the same group is due to the climatic conditions variations. Table 4 summarizes the percentages of classification, and

shows that all the data samples are correctly classified. In this table, we also present the classification performance when using all the points of the I(V) curve in [START_REF] Fadhel | PV shading fault detection and classification based on I-V curve using principal component analysis: Application to isolated PV system[END_REF]. Despite the variations of TPV and GPOA, and using only MPP's coordinates, the classification obtained in the present study is more accurate with 100% rate of classification. projections of the data in the subspaces spanned by the principal components obtained in the training stage are displayed in Fig. 10. The classes related to partial shading 1, 2, and 3 are clearly separated from the healthy one with a classification rate of 100%. These results are also compared with those obtained when using all the points of the curve I(V) (Table 5). They confirm that the analysis of the maximum power point's coordinates with the PCA is effective to detect and classify the partial shading (PS) accurately.

The justification for this high classification rate lies in the fact that partial shading more strongly affects the point of maximum power, which is at the inflexion point of the I(V) curve. Therefore, using only this information makes the classification more effective than using all the points of the I(V) curve. When looking at the maximum power point's coordinates projected in the PCA subspace, one can observe that classes can be linearly separated. Therefore in the following, linear discriminant analysis (LDA) is used to retrieve the classification laws for fault identification. 

3.3.Features analysis and extraction with Linear Discriminant Analysis (LDA)

Formulation of the LDA algorithm

The LDA algorithm used in [41] [42] [43] will be extended for application to photovoltaic system diagnosis. LDA and PCA share a common characteristic, which is dimension reduction. Nevertheless, theoretically, LDA is more powerful for data classification than PCA because LDA performs dimensionality reduction while keeping maximum the discriminatory information among the classes.

For this reason, LDA is generally used to improve data classification when different data classes overlap with the PCA algorithm.

Unlike the PCA, the LDA is a supervised analysis technique. It involves a learning phase during which c a priori groups are defined with M descriptive variables and N observations or samples distributed into a priori groups, as shown in Figure 13. LDA is both descriptive and decisive. In its descriptive phase, it reduces the size of the data and separates the data according to their a priori defined groups.

Linear combinations of the variables in each group create c -1 discriminant axes. Each axis is assigned a percentage of the data variance, which is calculated from the corresponding eigenvalue. As in PCA, the discriminant axes are ordered in descending order of eigenvalues. In its decisive phase, the LDA generates c -1 hyperplanes or separation laws that characterize the differences or similarities between the groups allocated a priori. Thanks to these laws, it is possible to classify new samples of data described by the same explanatory variables without a priori knowledge of their group. To perform best linear combinations, LDA aims to obtain a maximum interclass variance which highlights the differences between the classes, and a minimum intraclass variance [START_REF] Quinquis | Digital Signal Processing using MATLAB[END_REF]. The interclass and intraclass variances are respectively estimated by the between matrix variance B S and the within matrix variance w S .

Mathematically formulating, this analysis technique is based on maximizing the following objective function, also called Fisher criterion [START_REF] Mardia | Multivariate Analysis[END_REF]:
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The eigenvector decomposition of In the decisive phase, LDA uses three quantities to classify the new data samples in one of the defined a priori groups: posterior probability, prior probability, and cost.

The posterior probability that a new instance or observation l, described by the explicative variables, is classified into the class i C is estimated by the Bayes formula: P(C i / l) = P(l / C i ).P(C i ) P(l) [START_REF] Bressan | A shadow fault detection method based on the standard error analysis of I-V curves[END_REF] where P(C i ) represents the prior probability of class C i .

With this probabilistic approach, the unknown observation l to be identified will be assigned to the class i C with the highest posterior probability and minimum expected classification cost: ŷ = arg min y=1,..,c

(P(C 1 / k)C( y / C 1 ) + .. + P(C i / k)C( y / C i ) + .. + P(C c / k)C( y / C c )) ( 8 
)
Where ŷ is the predicted class, c is the number of classes and C( y / C i ) is the cost of classifying an observation as y when its true class is C i . The flowchart of the proposed algorithm is shown in Fig. 14. The LDA is applied to extract the faults discriminating characteristics from maximum power points (MPPs) coordinates. Then, the labels of the data are assigned according to their class of membership (Table 7), and the classifier computes the linear separation laws allowing the classification of new observations. The four a priori classes for original labels are retrieved from the classification results with the PCA algorithm. Let us consider (x1, x2) as the coordinates of an instance l in the LDA subspace (DA1, DA2). The three boundaries are described by three affine functions f1, f2 and f3 where each function fi is given by:

Results of the training stage with LDA algorithm

f i (x 1 , x 2 ) = L i (1)x 1 + L i (2)x 2 + K i ,i = 1,2,3 (9) 
The coefficients Li and Ki, i=1, 2, 3, are given in Table 8. With the cross-validation method, the same success rate (100%) as for PCA is obtained. LDA also entirely separates the different classes even under climatic variations. In the following, the obtained separation laws will be used to classify new samples; it is the validation stage.

Results of the validation stage with LDA

The validation is done in two steps. In the first one, the calculated separation laws are used to classify the remaining MPP (test data) representing 33% of the database collected on March 21, 2019.

The results, displayed in figure 16 show the successful classification of the test data.

In the second step, the separation laws are evaluated with the healthy samples extracted from measurements on June 26, 2018, mixed with 33% of partial shading data measured on March 21, 2019. The classification result is displayed in Fig. 17. With the separation laws, all the test samples are correctly classified in their a priori groups; no misclassification errors were found. With the crossvalidation method, discrimination's effectiveness between the measurements under variable experimental conditions is proved with a success rate of 100 % for all the classes (Table 9). Even if for the studied cases the obtained identification is correct, it can be observed in Fig. 17 that healthy state's data corresponding to samples 'test C0', lie on the separation boundary between classes C0 and C3. However, as the probability of assignment to class C0 is higher, these samples are predicted with label 1 and correctly identified as healthy data. Nevertheless, this ambiguity underlines the fact that in order to have good performance in classifying several types of defects with different levels of severity, it will be beneficial to have a rich database. It must contain several configurations (operating points and states of health) under different environmental conditions.

We can conclude that at the PV module level, the classification of measurements through LDA is successful as long as a large amount of labelled data is available for offline learning. 

Discussion and comparison

The classification results obtained through the analysis of the maximum power point's (MPP) coordinates with PCA and LDA for partial shading diagnosis are very close. Table 10 summarizes the main advantages and their limitations of the diagnosis methods proposed in this paper, the methods developed in our previous work, especially for large PV plants.

Fault diagnosis based on the analysis of maximum power point's (MPP) coordinates appears to be relevant for large PV plants. Indeed, this approach enables diagnosing a large number of PV modules in real-time faster than using all the points on the I(V) curve, thus reducing power losses and costs.

From a field-application perspective, it would be of interest to evaluate these methods with other faults.

MPP-based methods have up to now only been evaluated at the PV module level. It would be interesting to evaluate these methods at the PV string and array levels.

with reconfiguration algorithms to limit the shading effect. When several PV modules are connected in 496 series, the shading fault detection and notably the isolation is decisive to balance the modules or at 497 least mitigate the power production gaps between strings. Different reconfigurable architectures have 498 been developed, taking into account the shading condition and have allowed significant energy savings 499 [START_REF] Chaaban | Adaptive photovoltaic system[END_REF], [START_REF] Alahmad | An adaptive utility interactive photovoltaic system based on a flexible switch matrix to optimize performance in real-time[END_REF]. 

Conclusion

Fault detection and identification in PV systems are essential to expedite the maintenance and minimize the power losses. This study has presented a cost-effective and straightforward data-driven diagnosis approach to detect and identify partial shading using principal component analysis (PCA)

and linear discriminant analysis (LDA). No prior information on the PV system and no other sensing circuit are needed. The proposed methods take advantage of available measurements in PV systems: voltage, current, and power at the maximum power point (MPP). The effectiveness of the proposed methods has been successfully proved at the PV module level. Based on collected data under real working conditions (variable irradiation and temperature), we have demonstrated that the methods can correctly detect and classify the partial shading fault with a success rate of 100%. The methods are also easy to integrate into a monitoring system for real-time diagnosis and are especially convenient for large-scale PV plants. The data required for the learning stage can benefit from the vast amount of data available in PV plants under operation for decades. Otherwise, the learning database could be 

Fig. 1 .

 1 Fig. 1. Installed PV panel platform

Fig. 2 .Fig. 3 .

 23 Fig. 2. Module temperature and irradiance variations for a healthy PV module

Fig. 4 .Fig. 5 .

 45 Fig. 4. Partial Shading profiles and measured I (V) and P (V) curves

(b) Partial Shading 2 (

 2 c) Partial Shading 3

Fig. 7 .

 7 Fig. 7. Flowchart of the four-step diagnosis methodology

Fig. 8 .

 8 Fig. 8. Overlapping MPP's coordinates over a wide range of temperature and irradiance Several methods of normalization have been proposed in the literature to mitigate the effect of the environmental changes. Authors in [3] have defined two normalized parameters. The first one is the ratio of MPP's voltage by the reference open circuit voltage multiplied by Nmod, the number of seriesconnected PV modules. The second is the ratio of MPP's current by the reference short-circuit current

2 .

 2 uses a linear combination of m original variables to create a low-dimensional set of new variables named principal components (PCs). The new variables are uncorrelated, and the new dataset is considered optimal when the variance of the information is maximal despite the reduction in the size of the representation space. The original data is arranged in a matrix [ ] N m X × where N represents the number of measurements/ observations for each of the m variables. The observations include data on healthy and faulty operating conditions. In the following, the PCA algorithm is applied to the matrix ] Results in the training stage with the PCA algorithm In the training step, 80 observations representing 67% of the dataset is used. The PCA is applied three principal components PCi (i = 1,2,3), among which PC1 and PC2 preserve 99.9% of the initial total variance. The data can be projected in four different sub-spaces spanned by PC1-PC2, PC1-PC3, PC2-PC3, or PC1-PC2-PC3 respectively. The projections of the training data are displayed in Fig.9. Except in the subspace spanned by PC2 and PC3 (there is less information in PC2, and PC3 compared to PC1), the four classes can be clearly distinguished in the other three subspaces: one healthy class C0 and three faulty ones noted C1, C2, and C3 (Table

Fig. 10 .Table 5 . 4 .Fig. 11 .Table 6 .

 1054116 Fig. 10. Projection of the test data in the PCA subspaces

Fig. 12 .

 12 Fig. 12. Projection of the merged dataset in PCA subspace (PC1, PC2)

Fig. 13 .

 13 Fig. 13. Database organization for LDA algorithm

  that indicate the discriminant power of each axis. The eigenvectors associated with the largest eigenvalues define the discriminant axes that span the LDA space for classification. The original data centered reduced are finally projected onto this space to give the data class separability.

Fig. 14 .

 14 Fig. 14. Fault identification flowchart with LDA algorithm

  recorded on March 21, 2019 is used to extract the fault features. Three discriminant axes, also called Fisher axes, are obtained. Fig.15shows the projection of the training dataset into the 2 -dimensional LDA subspace spanned by the first and the second discriminant axes (DA1, DA2). These two axes represent 99.7%, and 0.18% of the data variance, respectively. In this figure, we have also drawn the linear boundaries between the classes. The magenta line is the boundary that separates the data for classes C0 and C3. On the other hand, the blue line separates the classes C0 and C1, and the red line separates the observations of C1 from those of C2.

Fig. 15 .

 15 Fig. 15. Projection of the training data in the subspace (DA1, DA2)

Fig. 16 .Fig. 17 .

 1617 Fig. 16. Classification of test data in the discrimination space (DA1, DA2)

Fig. 18 .

 18 Fig. 18. Healthy and faulty class prediction based on LDA

-Table 10 :

 10 Additionnal cost with local I (V) tracers -Sensitive to I (V) curve quality -Efficient and accurate fault identification depend on the learning data set (size and variety) (LDA) Overview of the proposed methods for partial shading detection in PV systems Advantages

Table 1 .

 1 Maximum relative variations of irradiance and temperature

	Partial Shading Condition	∆(GPOA)max (%)	∆(TPV)max (%)
	1	36	18.5
	2	6	32
	3	16	4.5

Table 2

 2 summarizes the normalization methods discussed above and the data size used to evaluate each diagnosis approach.

Table 2 .

 2 Normalized expressions used for PV system diagnosis to mitigate the climatic conditions effect

	Variable	Normalized expression	Size of PV data	Reference

Table 3 .

 3 The four health status classes

	Test condition	Class
	Healthy	C0
	Shading 1	C1
	Shading 2	C2
	Shading 3	C3

Fig. 9. Projection of the training Maximum Power Points' coordinates in the PCA subspaces

Table 4 .

 4 Confusion matrix for training dataset classification

											PC3(7.7E-30%)
	A priori Class										A posteriori class
		Class C0			Class C1	Class C2	Class C3
		MPP		I (V)			MPP I (V)	MPP I (V)	MPP I (V)
	Class C0	100		97.03			0		0	0	2.97	0	0
	Class C1	0				0			100		98.52	0	1.48	0	0
	Class C2	0				12.62			0		0	100	87.38	0	0
	Class C3	0				0			0		0	0	0	100 100
	3.2.3. Results in the validation stage with the PCA algorithm
	The remaining 33% of the database is used to test the effectiveness of the trained PCA model. The
	test matrix is 40 [ X	×	3]	=	log[ V mpp	I	mpp	mpp P	]	where 10 test samples are used for each health status. The

Table 7 :

 7 Fault types and original labels

	Condition	Class	Label
	Healthy	C0	1

Table 8 :

 8 Linear boundaries coefficients

	f	i	i L	(1)	i L	(2)	K	i
	1 f	2.93 10 3	71	4.7 10 3
	f	2	-1.82 10 4	59	-2.15 10 4
	f	3	-1.01 10 4	17	-1.49 10 4

Table 9 .

 9 Confusion matrix for test dataset with LDA

	Class		Class a posteriori	
	a priori	Class C0 (%)	Class C1 (%)	Class C2 (%)	Class C3 (%)
	Class C0	100	0	0	0
	Class C1	0	100	0	0
	Class C2	0	0	100	0
	Class C3	0	0	0	100

  from simulation models. It would be of interest to evaluate the proposed methodology with other faults (open-circuit, short-circuit, and contact degradation).

	Variables	Current i	Voltage v	Power p	303 observations for	each variable		Current IMPP	Voltage VMPP	Power PMPP	30 observations for	each variable
	Method		I (V) curve	analysis -	PCA [22]	MPP	analysis -	PCA		MPP	analysis -	LDA

generated
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