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Abstract 13 

Fault diagnosis of photovoltaic (PV) systems is a crucial task to guarantee security, increase 14 

productivity, efficiency, and availability. In this regard, numerous diagnosis methods have been 15 

developed. Methods requiring the interruption of power production are not adequate for economic 16 

reasons. The development of large-scale PV plants and the objective of maintenance cost reduction 17 

push toward the emergence of automatic on-line diagnosis methods that use available information. In 18 

this study, we propose two data-driven methods for partial shading diagnosis using only the maximum 19 

power point’s information. It does not require the interruption of production, nor does it require any 20 

additional equipment to obtain the I(V) curve. The analyses are conducted with principal component 21 

analysis (PCA) and linear discriminant analysis (LDA) to detect and classify the faults. The 22 

experimental dataset is collected from a 250 Wp PV module under four states of health (healthy, and 23 

three severities of partial shading) for several meteorological conditions. The classification results 24 

have a 100% success rate, and are robust to the variations of temperature and irradiance. 25 

Keywords: Photovoltaic system, Fault diagnosis, Partial shading, Maximum Power Point (MPP), 26 

Principal Component Analysis, Linear Discriminant Analysis  27 
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1. Introduction 30 

 31 

Although photovoltaic (PV) cells/modules are the most reliable components in a PV installation [1] 32 

and considered as systems with low failure rates [2] requiring low maintenance [3], it is crucial to 33 

implement effective monitoring systems for PV modules to diagnose their state of health.  Indeed, 34 

many PV faults can cause significant power losses, may lead to accelerated system ageing, reduced 35 

efficiency, and even safety hazards.  36 

Due to uncertainties related to PV cell technology, manufacturing process and climatic conditions, 37 

correlating PV fault type to power loss is tricky. It is still an on-going area of research.  In particular, 38 

the impact of climatic conditions is evaluated in [4], [5] by studying a large number of PV modules 39 

exposed to different climates. The annual degradation rate is proposed by numerous studies to quantify 40 

the impact of single or multiple faults. For example, it has been reported that crystalline silicon (c-Si) 41 

PV modules have degraded at an annual rate of approximately 7% due to discoloration and weakened 42 

solder bonds [6]. Another study reported that because of discoloration, the power loss could reach 43 

10% per year in PV modules with concentrators [5]. According to [4], PV installations deployed after 44 

the 2000s are more susceptible to the occurrence of defects. However, the percentage of degradation 45 

would be significantly lower than in previous installations. In particular, for new c-Si PV modules, the 46 

biggest concern seems to be hot spots, followed by potential induced degradation (PID). Hot spots 47 

have an impact on PV module performance and could contribute to premature ageing if they are 48 

frequent [7]. It has also been reported that partial shading (PS) can lead to several early degradations, 49 

and is a significant cause of the appearance of hot spots. Therefore, we are interested in partial shading 50 

(PS) diagnosis.  51 

Several PV faults have a visual signature such as delamination, burn, or discoloration marks. So, 52 

they can be simply detected through visual inspection. This technique is clearly irrelevant for large PV 53 

installations. Moreover maintenance policies are evolving towards Condition Based Maintenance 54 
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(CBM) to prevent failures and reduce maintenance costs. CBM requires continuous monitoring and 55 

automatic fault diagnosis methods.  56 

There are several methods for diagnosing PV faults, reviewed in the literature [8] to [11]. They can 57 

be classified into two main families according to the measures used:  58 

- The first group uses radiation-based techniques: Electroluminescence (EL) [12], [13], and 59 

Infrared Thermography (IRT) under steady-state conditions [13], [14]. The main advantage of 60 

these techniques is their ability to detect and locate the faults in real-time. EL is generally 61 

performed to detect micro-cracks in PV cells and other faults within the cell material (contact 62 

degradation…); however, it requires the system interruption. IRT can be performed at module 63 

level, allowing a fast and effective inspection to detect different types of faults. This 64 

technique can be tested without any operational interruption, but it requires mobile platforms 65 

to diagnose many PV modules. For this reason, researches are ongoing to develop advanced 66 

IRT techniques such as drone-mounted thermography [15]. Therefore, IRT could be more 67 

suitable than the EL technique, especially for big PV plants.  68 

- The second group uses electrical measures. It is composed of reflectometry techniques, I(V) 69 

curve analysis, and maximum power point (MPP) coordinates analysis.  70 

Reflectometry techniques are mainly used to detect catastrophic faults (ground faults and arc faults) 71 

and locate open-circuit faults in the PV strings. These methods are effective. Nevertheless, they are 72 

costly since they require a specific external signal function generator to stimulate the PV system [16]–73 

[20].  74 

I(V) curves can also be used for fault diagnosis. However, not only do several defects have very 75 

similar signatures, but the I(V) curve is also very sensitive to environmental conditions. Therefore 76 

diagnosis methods based on the analysis of the entire I(V) curve's points need appropriate 77 



4 

 

 

 

 

preprocessing. This difficulty may be one of the reasons that justify the limited number of publications 78 

using the full I(V) curve for fault diagnosis. From the literature review, we have only found two 79 

studies dealing with the full I(V) curve analysis for diagnosis purposes [7], [23]. In [7], the analysis of 80 

the first derivative of the ratio between the standard error and the PV voltage is used for the same 81 

fault, the standard error results from the comparison between faulty and healthy I(V) data. Authors in 82 

[23] have proposed the evaluation of the first and the second derivatives of the curve for shading 83 

detection.  An I(V) plotter has been used in this study to sweep the I(V) curve composed of 265 points. 84 

We have proposed in two previous works a new method based on the full I(V) curve analysis to detect 85 

and classify shading faults by using adequate variables [21], [22]. The experimental I(V) 86 

characteristics are obtained thanks to a programmable voltage source, which provides the points from 87 

the short-circuit current to the open-circuit voltage.  88 

The other diagnosis techniques use the actual I(V) curve to extract several health indicators from 89 

the shape of the curve. The fault diagnosis decision is made upon analysis of the residuals computed as 90 

differences between measured indicators and estimated ones identified from the healthy I(V) 91 

characteristics. This latter is generally obtained by considering the usual electrical equivalent circuit 92 

model (single-diode or double-diode) [24].  At first, an optimization algorithm is applied to extract the 93 

five optimal parameters, as proposed in [25]–[29]. Then, the non-linear equation I = f(V) is solved 94 

iteratively to reproduce the healthy behavior of the PV system.  95 

In [30], the authors have defined five indicators (fill factor, equivalent series resistance…) 96 

calculated from the shape of the outdoor measured on-line I(V) curve. Fault occurrence is detected by 97 

comparing the actual values with their initial values measured during the commissioning phase of the 98 

diagnosis system. Based on the one-diode model, authors in [31] have defined two reference indicators 99 

to estimate the increment of the series resistance from the measures of the short-circuit current ISC, PV 100 

system temperature TPV, maximum power point’s voltage and current. The experimental indicators 101 

analysis is performed with a variable load used to extract the full I(V) curve.    102 
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These methods suffer from several difficulties. First, they introduce additional time to sweep the 103 

full I(V) characteristic, and the duration and the quality of acquisition depend on the used instrument. 104 

Second, these approaches are confronted with the case of large-scale photovoltaic plants with limited 105 

measurements. Furthermore, it is not practical to disconnect PV modules or strings to extract their I(V) 106 

curves as it perturbs the system operation and leads to production losses. For instance, the power loss 107 

due to the I (V) acquisition in [32] resulted in a power efficiency drop of 0.16%.  108 

For this reason, it is not suitable for continuous monitoring. There is therefore, an interest in using 109 

methods that do not require the interruption of production and that use only available data such as 110 

voltage and current at the point of maximum power (MPP) commonly available in PV systems. This 111 

approach is also cost-effective, as it does not require any additional measurement equipment. 112 

The fault detection strategy developed in [33] is based on monitoring only the maximum power of 113 

the PV system by analyzing the sample entropy. In [34], authors have proposed two diagnosis 114 

attributes, which are the voltage ratio (VR) and power ratio (PR) computed from the division of the 115 

theoretical and the measured values of the maximum power point's voltage and power, respectively. 116 

More recently, to distinguish healthy from faulty states, three diagnosis indicators calculated from the 117 

comparison between predicted and measured current, voltage, and power at MPP have been proposed 118 

in [26]. The same electrical measurements are exploited in [35], [36], to define three residuals as fault 119 

features. The data in these two studies are recorded from the same PV system whose behavior in the 120 

healthy state is estimated based on the one-diode model. Residuals are analyzed with the one-class 121 

support vector machine (1SVM) technique in [35], while the exponentially weighted moving average 122 

(EWMA) approach is applied to the same residuals in [36], to detect and identify the faults. All the 123 

previous analysis methods using the maximum power point's coordinates rely on physics-based 124 

models. These methods are powerful in detecting many types of PV faults and can be applied to a 125 

wide range of PV plants. However, they rely on an analytical model to reproduce the nominal PV 126 

characteristics, and an optimization process is implemented for parameter extraction. Subsequently, 127 
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MPP's coordinates in a healthy state are estimated under real climatic conditions. When dealing with 128 

large PV plants, the modeling stage can be quite challenging to reproduce the MPP's coordinates with 129 

high accuracy. Besides, due to the sensitivity of PV systems to weather conditions, optimal thresholds 130 

must be selected for effective and robust detection. Moreover, physics-based models need to be 131 

updated to take into account the natural ageing and degradation of solar cells. Unfortunately, these 132 

mechanisms are not yet well known in order to develop reliable models. Data-driven methods based 133 

on historical data could be a valuable alternative for PV fault diagnosis. 134 

To the best of our knowledge, fault detection based on data-driven approaches using only real data 135 

at Maximum Power Point (MPP) data has not been well addressed; only one publication has been 136 

found in the literature [3]. Authors have proposed graph-based semi-supervised learning for fault 137 

diagnosis. The method is able to detect and identify line-to-line and open-circuit faults efficiently, but 138 

it is not suitable for partial shading detection. 139 

It should be remembered that partial shading (PS) is responsible for several early degradations, and 140 

is an essential cause of the appearance of hot spots. That is why, in what follows, we focus on the 141 

diagnosis of partial shading (PS) using a methodology based on maximum power point data.  142 

The methodology is based on four steps:  143 

- Modelling step in which the data is collected from an experimental PV module of 250 Wp, 144 

- Preprocessing step in which the variables (voltage, current, and power at the maximum 145 

power point) are selected, centered, reduced and processed through the logarithmic 146 

function, 147 

- Features extraction: in this step two statistical techniques, principal component analysis 148 

(PCA) and linear discriminant analysis (LDA) are applied. 149 
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- Features analyses: in this step, PCA and LDA are used for partial shading faults detection 150 

and classification. LDA is also used to determine discriminative laws for data separation.  151 

We will evaluate the robustness of the method to environmental conditions: variable temperature 152 

and irradiation.   153 

The outline of the paper is as follows: section 2 describes how the database is collected and 154 

extended. The detailed faults diagnosis methodology based on maximum power point (MPP) 155 

coordinates are presented in section 3. A case study of an isolated PV module is presented to validate 156 

the proposed methods. Section 4 discusses the application to large-scale PV plants and compares its 157 

practical implementation with full I (V)-based diagnosis technique. Finally, section 5 concludes the 158 

paper. 159 

 160 

2. Description of the dataset  161 

 162 

2.1.Data acquisition within a 15-minute time window 163 

The experiments were carried out on March 21, 2019, using the experimental setup displayed 164 

in Fig. 1. The main parameters of this module at standard test conditions (STC) are as follows 165 

[22]: the maximum power Pmpp = 250 Wp, the maximum power current Impp = 8.21 A, the 166 

maximum power voltage Vmpp = 30.52 V, the short-circuit current Isc  = 8.64 A, the open-circuit 167 

voltage Voc =37.67 V.  The temperature of the PV module TPV is measured with a 4-wire Pt100 168 

probe bonded on its back face. 169 
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 170 

Fig. 1. Installed PV panel platform  171 

 172 

A reference cell (SOLEMS RG100) is used to measure GPOA the plane of array irradiance.  173 

The acquisition, display, and saving of each I (V) characteristic take one minute. Therefore, during 15 174 

minutes, 15 experimental I(V) curves for each health status (healthy and the different shading profiles) 175 

are recorded for several levels of temperature TPV and irradiance GPOA. Each curve is composed of 101 176 

points. As an example, for the environmental conditions TPV and GPOA presented in Fig. 2, the 177 

characteristics I(V) and P(V) under healthy status are displayed in Fig. 3. We can observe that due to 178 

the temperature and irradiance fluctuations ((∆GPOA)max = 25% and (∆TPV)max = 13%), the 179 

maximum power fluctuates from 149 Wp to 190 Wp.  180 

 181 

Reference 

cell  

RG100 

PV Module FL 
60-250 MBP PV 

Module 

Programmable DC 
Electronic Load 
Chroma 63600 

+ 

-
��� ��� 

GPOA   

TPV 

Data 
acquisition 

Data 

transfert 

Data visualisation 

and analysis 

HMI

4-wire Pt 100 
probe, class A 
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Fig. 2. Module temperature and irradiance variations for a healthy PV module 

 

Fig. 3. Measured I(V) and P(V) curves for a healthy PV module 

 182 

The shading profiles as in [22], and the corresponding experimental I(V) and P(V) curves are 183 

displayed in Fig. 4. One can notice the maximum power drop caused by the bypass diodes activation. 184 

The solar irradiance and the module temperature measured during the partial shading experiments are 185 

plotted in Fig. 5.  The maximum relative variations of irradiation and temperature are summarized in 186 

Table 1. 187 

 188 

Table 1. Maximum relative variations of irradiance and temperature 189 
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Partial Shading Condition ∆(GPOA)max (%) ∆(TPV)max (%) 

1 36 18.5 

2 6 32 

3 16 4.5 

 190 

 191 

 192 

(a) Partial shading 1 193 

 194 

 195 

(b) Partial shading 2 196 

MPP 

MPP 
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(c) Partial shading 3 198 

 
 

 

MPP 

Fig. 4. Partial Shading profiles and measured I (V) and P (V) curves 

 

     

 

 

(a)   Partial Shading 1 
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 199 

Fig. 5. Module temperature and irradiance variations for the different partial shading conditions 200 

 201 

2.2. Extension of the database  202 

 203 

To increase the number of points in the database, we have generated new I(V) curves from the 204 

experimental ones by varying the solar irradiance. In the following, we have doubled the number of 205 

points; from the original 15 maximum power points for each health status, we have now 30 points. 206 

Therefore, for the four modes (one healthy state and three partial shading ones), we have 30*4 MPP 207 

observations. Experimental and generated I(V) curves are plotted respectively with blue and red colors 208 

in Fig. 6.  209 

(b)  Partial Shading 2 

(c)  Partial Shading 3 
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It must be noticed that MPP coordinates are almost always available in PV plants under operation, 210 

thanks to the global maximum power point tracking (GMPPT) algorithm [37, 39].  211 

 212 

Fig. 6. I(V) curves of the extended database 213 

 214 

We now have a database with a total of 120 maximum power points representative of four health 215 

conditions for the PV panel. It should also be noted that these data are representative of the variability 216 

inherent in real-world measurements in an outdoor environment. In the next section,  217 

 218 

3. Proposed methodology for fault diagnosis  219 

 220 

The proposed methodology for faults diagnosis can be described in four main steps, as presented in 221 

the flowchart displayed in Fig. 7: 222 

Healthy Partial Shading 1 

Partial Shading 2 Partial Shading 3 
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• The modelling: For this step, we have chosen a data-driven model based on the 120 maximum 223 

power point coordinates extracted from the I (V) curves.  224 

• Data pre-processing: This step is decisive for the performance level of the diagnostic method. 225 

It consists in choosing the field of information, the descriptive variables, and in implementing 226 

any technique allowing to keep the information useful and to eliminate nuisances. In our 227 

study, we used data from the maximum power point in the time domain, to which we applied 228 

the logarithmic function as in [22].   229 

• Features extraction and analysis: The third and fourth steps aim to extract from the 230 

maximum power points, the features (signatures) to be analyzed to detect, isolate, and 231 

estimate the fault severity. One of the difficulties lies in choosing the most efficient tools for 232 

the extraction and analysis of signatures, especially since in our case the data varies with the 233 

environmental conditions. This sensitivity makes it difficult to distinguish the healthy state 234 

from the faulty ones. Therefore, to ensure reliable fault detection, the most appropriate tool 235 

should have the highest ability to separate the data from different health status. In this work, 236 

we have selected PCA and LDA for features' extraction and analysis to perform the PS 237 

detection and classification. 238 
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 239 

Fig. 7. Flowchart of the four-step diagnosis methodology   240 

 241 

3.1.Review of normalization methods in the field of PV 242 

When dealing with maximum power point (MPP) in outdoor conditions, it might not be easy to 243 

distinguish healthy status from shading ones. The maximum power point's coordinates change rapidly 244 

due to variations in environmental conditions, and it becomes then difficult to differentiate whether a 245 

fault or climatic changes cause the MPP variation.  In other words, the faulty PV system may have 246 

similar MPP’s coordinates as a healthy one. Besides, the fluctuation of MPPs for different fault types 247 

may be the same. This is confirmed by the evolutions of the maximum power points’ coordinates 248 

plotted in Fig. 8. For the current at MPP, Impp, we can observe the overlapping of several points in 249 

healthy conditions, partial shading 1, and partial shading 2. For the power at the MPP, Pmpp, the 250 

overlapping is observed in healthy conditions, partial shading 1, and partial shading 3. These overlaps 251 

can be expected to be more pronounced when the data acquisition interval is greater. Therefore, to 252 
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ensure reliable fault detection, one should find appropriate processing techniques that highlight the 253 

data's separability.  254 

 255 

 256 

Fig. 8. Overlapping MPP’s coordinates over a wide range of temperature and irradiance  257 

Several methods of normalization have been proposed in the literature to mitigate the effect of the 258 

environmental changes. Authors in [3] have defined two normalized parameters. The first one is the 259 

ratio of MPP’s voltage by the reference open circuit voltage multiplied by Nmod, the number of series-260 

connected PV modules. The second is the ratio of MPP’s current by the reference short-circuit current 261 

_sc refI multiplied by NStr the number of parallel strings in the array.  This technique is easy to 262 

integrate within a PV inverter whatever its topology. However, it requires the use of two additional 263 

modules identical to the PV modules under test. They are considered as modules of reference to 264 

measure instantaneous _sc refI and _oc refV
 
with respect to solar irradiance and module temperature. 265 

This normalization is efficient for detecting and classifying line-to-line and open-circuit fault, but it 266 

cannot be used for partial shading. However, the main issue with this method is to guarantee that the 267 

modules under test, and the modules of reference are in the same conditions of temperature and 268 

irradiance. Another normalization method is proposed in [33]. The PV array current, and voltage, are 269 

divided by the STC short-circuit current, and the STC open-circuit voltage, respectively to calculate 270 

the normalized parameters, used to determine the entropy of the PV array output power. The method is 271 
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fast and effective for fault detection, however fault classification has not been considered. A per-unit 272 

standardization has been applied in two recent studies [29], [40]. This normalization requires accurate 273 

measurements of temperature and irradiance. It also assumes that the temperature coefficients of 274 

voltage and current are constant. Nevertheless, several experiments on the PV modules installed at the 275 

French observatory SIRTA have revealed that these coefficients vary depending on the meteorological 276 

data. Based on this normalization, the diagnosis method in [40] achieved high fault identification 277 

percentages for all the studied faults except for partial shading. In that case, the rate of correct 278 

identification is 53.66%, which is quite low.  279 

Table 2 summarizes the normalization methods discussed above and the data size used to evaluate 280 

each diagnosis approach.  281 

Table 2. Normalized expressions used for PV system diagnosis to mitigate the climatic conditions effect 282 

Variable                       Normalized expression                     Size of PV data Reference 

 

 

Normalized current 

and voltage at MPP 

 

 

 

 

 

 

Normalized current 

and voltage at MPP  

 

_st

mpp

mpp
r sc ref

n
N I

I
I

×
=  

mod _

mpp

mppn
oc réf

V
V

N V×
=  

Simulation test :  

5576 MPP data 

1.43% used for training 

 

Experimental test:  

5000 MPP data  

1% used for training 

 

 

[3] 

 

0

mpp

mp

sc

pn

I
I

I
=  

 

0

mpp

mp

oc

pn

V
V

V
=  

 

 

 

No training step  

 

 

[33] 
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Per unit 

normalization of 

Current and voltage 

at MPP, ideality 

factor, open-circuit 

voltage and short-

circuit current. 

 

 

Per unit 
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Current and voltage 

at MPP, ideality 

factor, open-circuit 

voltage and short-
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123 I-V data  

123/3 used for training 

 

 

 

 

 

 

 

 

 

 

[40] 

 

Simulation test : 4800 I-V data  

 75% used for training 

 

Experimental test : 2500 I-V 

data  

75% used for training  

 

 

 

[29] 

 283 

3.2.Feature Extraction and Analysis with Principle Component Analysis 284 

In our case, before applying PCA, the three variables, Impp, Vmpp, and Pmmp are centred (zero 285 

mean), and reduced (unit variance). The challenge is also to deal with a limited number of samples 286 

(thirty points per health status). The robustness of our proposal to TPV and GPOA variations will be 287 

evaluated. 288 

3.2.1. Principle  289 

The details of PCA are given in [22]. Briefly, PCA is a multivariate unsupervised technique that 290 

uses a linear combination of m original variables to create a low-dimensional set of new variables 291 

named principal components (PCs). The new variables are uncorrelated, and the new dataset is 292 

considered optimal when the variance of the information is maximal despite the reduction in the size 293 



19 

 

 

 

 

of the representation space.  The original data is arranged in a matrix [ ]N m
X ×  where N represents the 294 

number of measurements/ observations for each of the m variables. The observations include data on 295 

healthy and faulty operating conditions.  In the following, the PCA algorithm is applied to the matrix296 

]log[
mpp mpp mpp

X PV I= . 297 

3.2.2. Results in the training stage with the PCA algorithm  298 

In the training step, 80 observations representing 67% of the dataset is used. The PCA is 299 

applied to the matrix 80 ]log[
[ 3] mpp mpp mpp

X PV I× = . We obtain three principal components PCi (i = 300 

1,2,3), among which PC1 and PC2 preserve 99.9% of the initial total variance. The data can be 301 

projected in four different sub-spaces spanned by PC1-PC2, PC1-PC3, PC2-PC3, or PC1-PC2-PC3 302 

respectively. The projections of the training data are displayed in Fig.9. Except in the subspace 303 

spanned by PC2 and PC3 (there is less information in PC2, and PC3 compared to PC1), the four 304 

classes can be clearly distinguished in the other three subspaces: one healthy class C0 and three faulty 305 

ones noted C1, C2, and C3 (Table 3). The dispersion of the operating points found in the same group 306 

is due to the climatic conditions variations. Table 4 summarizes the percentages of classification, and 307 

shows that all the data samples are correctly classified. In this table, we also present the classification 308 

performance when using all the points of the I(V) curve in [22]. Despite the variations of TPV and 309 

GPOA, and using only MPP’s coordinates, the classification obtained in the present study is more 310 

accurate with 100% rate of classification. 311 

                                        Table 3. The four health status classes  312 

Test condition Class 
Healthy C0 
Shading 1 C1 
Shading 2 C2 
Shading 3 C3 

 313 
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Fig. 9. Projection of the training Maximum Power Points’ coordinates in the PCA subspaces         314 

                     315 

 Table 4. Confusion matrix for training dataset classification 316 

A priori Class  
 

A posteriori class  

Class C0 
 
MPP      I (V) 

Class C1 
 
MPP     I (V) 

Class C2  
 
MPP   I (V)  

Class C3 
 
MPP   I (V)  

 
Class C0 100        97.03 0           0 0          2.97 0          0 
Class C1 0           0 100       98.52 0          1.48 0          0 

Class C2 0           12.62 0           0 100      87.38 0          0 
Class C3 0           0 0           0 0          0 100    100 

 317 

3.2.3. Results in the validation stage with the PCA algorithm 318 

 319 

The remaining 33% of the database is used to test the effectiveness of the trained PCA model. The 320 

test matrix is 40 ]log[
[ 3] mpp mpp mpp

X PV I× = where 10 test samples are used for each health status. The 321 

P
C

3
(7

.7
E

-3
0
%

)
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projections of the data in the subspaces spanned by the principal components obtained in the training 322 

stage are displayed in Fig.10. The classes related to partial shading 1, 2, and 3 are clearly separated 323 

from the healthy one with a classification rate of 100%. These results are also compared with those 324 

obtained when using all the points of the curve I(V) (Table 5). They confirm that the analysis of the 325 

maximum power point’s coordinates with the PCA is effective to detect and classify the partial 326 

shading (PS) accurately.   327 

The justification for this high classification rate lies in the fact that partial shading more strongly 328 

affects the point of maximum power, which is at the inflexion point of the I(V) curve. Therefore, using 329 

only this information makes the classification more effective than using all the points of the I(V) 330 

curve. 331 

 332 

     
 

 

     
 333 

Fig. 10.  Projection of the test data in the PCA subspaces         334 
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 335 

Table 5. Confusion matrix for test data classification 336 

A priori class A posteriori class  

Class C0 
 
MPP      I(V)  

Class C1  
 
MPP     I(V)  

Class C2  
 
MPP   I(V)  

Class C3  
 
MPP   I(V)  

 
Class C0 100        97.03 0           0 0          2.97 0          0 
Class C1 0           0 100       99.01 0          0.99 0          0 

Class C2 0           0 0           0 100      100 0          0 

Class C3 0           0 0           0 0          0 100   100 

 337 

3.2.4. Robustness of the classification  338 

This section aims to validate the robustness of the fault diagnosis method based on PCA and 339 

maximum power point (MPP) coordinates. To do so, previously used faulty MPP data (collected on 340 

March 21, 2019), are merged with MPP data collected during healthy operation on June 26, 2018. The 341 

corresponding daily profiles of temperature and solar irradiance, as well as the MPP voltage and 342 

current evolution under these conditions, are plotted in Fig.11. The robustness is evaluated using the 343 

data extracted at different times, and for moderate and high irradiation values. Table 6 presents the 344 

new samples used and the ranges of variation of TPV and GPOA. 345 

 
 

 
(a) Temperature of the module (b) Irradiance 
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Fig. 11. Clear day profiles  346 

 347 

         Table 6. Extracted samples for robustness evaluation 348 

     Samples       Time (h)            TPV  (°C)           GPOA (W/m2) 

[100 ; 109]      [7h26 ; 7h33]            [36.46 ; 37.9]           [445.53 ; 468.46] 

[200 ; 209]      [8h44 ; 8h52]            [48.55 ; 49.81]           [680.71 ; 703.64] 

[450 ; 459] [12h03 ; 12h10]            [63.18 ; 64.19]           [992.10 ; 1004.50] 

[500 ; 509] [12h43 ; 12h50]            [59.68 ; 62.49]           [967.88 ; 982.80] 

[621 ; 630] [14h22 ; 14h29]            [56.93 ; 58.4]           [797.53 ; 815.39] 

[700 ; 709] [15h29 ; 15h37]            [48.96 ; 50.93]           [606.28 ; 628.28] 

 349 

The new matrix with the merged data 40 ]log[
[ 3] mpp mpp mpp

X PV I× =  is projected in the PCA 350 

subspace spanned by the two principal components (PC1, PC2) obtained in the learning stage with the 351 

data collected on March 21, 2019. The results are presented in Fig.12. We observe that class C0 352 

formed with the new healthy measurements is clearly separated from the other three classes of data 353 

corresponding to partial shading (PS) conditions. A successful classification of 100% is obtained. 354 

Moreover, we notice that all the new test data is positioned between classes C2 and C3, as observed in 355 

the previous validation stage. These results are encouraging and prove the robustness of the method 356 

for PS detection and classification of PV modules.   357 

(c) Voltage at MPP (d) Current at MPP 
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When looking at the maximum power point’s coordinates projected in the PCA subspace, one can 358 

observe that classes can be linearly separated.  Therefore in the following, linear discriminant analysis 359 

(LDA) is used to retrieve the classification laws for fault identification.  360 

  

     

  

 

 

Fig. 12. Projection of the merged dataset in PCA subspace (PC1, PC2) 361 

 362 

 363 

3.3.Features analysis and extraction with Linear Discriminant Analysis (LDA)  364 



25 

 

 

 

 

 365 

3.3.1. Formulation of the LDA algorithm 366 

The LDA algorithm used in [41] [42] [43] will be extended for application to photovoltaic system 367 

diagnosis. LDA and PCA share a common characteristic, which is dimension reduction. Nevertheless, 368 

theoretically, LDA is more powerful for data classification than PCA because LDA performs 369 

dimensionality reduction while keeping maximum the discriminatory information among the classes. 370 

For this reason, LDA is generally used to improve data classification when different data classes 371 

overlap with the PCA algorithm.  372 

Unlike the PCA, the LDA is a supervised analysis technique. It involves a learning phase during which 373 

c a priori groups are defined with M descriptive variables and N observations or samples distributed 374 

into a priori groups, as shown in Figure 13. LDA is both descriptive and decisive. In its descriptive 375 

phase, it reduces the size of the data and separates the data according to their a priori defined groups. 376 

Linear combinations of the variables in each group create c -1 discriminant axes. Each axis is assigned 377 

a percentage of the data variance, which is calculated from the corresponding eigenvalue. As in PCA, 378 

the discriminant axes are ordered in descending order of eigenvalues. In its decisive phase, the LDA 379 

generates c -1 hyperplanes or separation laws that characterize the differences or similarities between 380 

the groups allocated a priori. Thanks to these laws, it is possible to classify new samples of data 381 

described by the same explanatory variables without a priori knowledge of their group.  382 
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 383 

                                                           Fig. 13. Database organization for LDA algorithm 384 

To perform best linear combinations, LDA aims to obtain a maximum interclass variance which 385 

highlights the differences between the classes, and a minimum intraclass variance [44]. The interclass 386 

and intraclass variances are respectively estimated by the between matrix variance
BS  and the within 387 

matrix variance
wS .   388 

Mathematically formulating, this analysis technique is based on maximizing the following objective 389 

function, also called Fisher criterion [45]: 390 

 391 

( )
T

B

T

w

u S u
J u

u S u
=  (1) 

 392 

where u  is the linear expression that best discriminates all classes of data. 393 

Given N observations 1 2( , ,..., )Nx x x of M centered reduced explicative variables, Ni, the total number 394 

of observations for each class
iC , 1,2,...,i c= .  395 

Let’s consider 
iµ  as the mean value of observations belonging to 

iC  and µ as the mean value of the 396 

entire dataset given by:   397 
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The between variance matrix can be expressed as:   399 

1

( ) ( )
c

T

B i i

i

S µ µ µ µ
=

= − −∑  (4) 

  
The within variance matrix is calculated as:  400 

1

c

w i

i

S S
=

=∑  (5) 

  
where : 401 

 402 

( ) ( )
n i

T

i n i n i

x C

S x xµ µ
∈

= − −∑  (6) 

 403 

The eigenvector decomposition of 1
w BS S

−  gives the discriminant axes and their corresponding 404 

eigenvalues 1 2 1, ,..., cλ λ λ −  that indicate the discriminant power of each axis. The eigenvectors 405 

associated with the largest eigenvalues define the discriminant axes that span the LDA space for 406 

classification. The original data centered reduced are finally projected onto this space to give the data 407 

class separability.  408 

In the decisive phase, LDA uses three quantities to classify the new data samples in one of the defined 409 

a priori groups: posterior probability, prior probability, and cost.  410 

The posterior probability that a new instance or observation l, described by the explicative variables, is 411 

classified into the class 
iC  is estimated by the Bayes formula:  412 
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P̂(C
i
/ l) =

P(l / C
i
).P(C

i
)

P(l)
 (7) 

  

where P(C
i
)  represents the prior probability of class C

i
. 413 

With this probabilistic approach, the unknown observation l to be identified will be assigned to the 414 

class 
iC with the highest posterior probability and minimum expected classification cost:  415 

ŷ = arg min
y=1,..,c

(P(C1 / k)C( y / C1) + .. + P(C
i
/ k)C( y / C

i
) + .. + P(C

c
/ k)C( y / C

c
))

 
 (8) 

  
Where ŷ is the predicted class, c is the number of classes and C( y / C

i
) is the cost of classifying an  416 

observation as y when its true class isC
i
.  417 

3.3.2. Results of the training stage with LDA algorithm 418 
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  419 

Fig. 14. Fault identification flowchart with LDA algorithm 420 

The flowchart of the proposed algorithm is shown in Fig.14. The LDA is applied to extract the 421 

faults discriminating characteristics from maximum power points (MPPs) coordinates. Then, the labels 422 

of the data are assigned according to their class of membership (Table 7), and the classifier computes 423 

the linear separation laws allowing the classification of new observations. The four a priori classes for 424 

original labels are retrieved from the classification results with the PCA algorithm. 425 

                              Table 7: Fault types and original labels  426 

Condition  Class Label 

Healthy  C0 1 

Step 1 :   MPP acquisition 

Step 2 :  Features extraction 

Step 3 :  Fault Classification 

Learning 

Test  

Decision 

Decision 

Healthy MPP  

Faulty MPP  

µ
B

S  

w
S  
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Partial Shading 1  C1 2 

Partial Shading 2 C2 3 

Partial Shading 3 C3 4 

 427 

This training stage is carried out using 67% of the data as original labels. The same matrix 428 

80 ]log[
[ 3] mpp mpp mpp

X PV I× =  built with data recorded on March 21, 2019 is used to extract the fault 429 

features.  Three discriminant axes, also called Fisher axes, are obtained. Fig.15 shows the projection of 430 

the training dataset into the 2 – dimensional LDA subspace spanned by the first and the second 431 

discriminant axes (DA1, DA2). These two axes represent 99.7%, and 0.18% of the data variance, 432 

respectively. In this figure, we have also drawn the linear boundaries between the classes. The 433 

magenta line is the boundary that separates the data for classes C0 and C3. On the other hand, the blue 434 

line separates the classes C0 and C1, and the red line separates the observations of C1 from those of C2.   435 

Let us consider (x1, x2) as the coordinates of an instance l in the LDA subspace (DA1, DA2). The 436 

three boundaries are described by three affine functions f1, f2 and f3 where each function fi is given by:  437 

fi (x1, x2) = Li (1)x1 + Li (2)x2 + Ki ,i = 1,2,3                               (9) 438 

The coefficients Li and Ki, i=1, 2, 3, are given in Table 8.  439 

 440 
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Fig. 15. Projection of the training data in the subspace (DA1, DA2) 441 

 442 

Table 8: Linear boundaries coefficients  443 

if  (1)iL  (2)iL  
iK  

1f  2.93 103 71 4.7 103 

2f  -1.82 104 59 -2.15 104 

3f  -1.01 104 17 -1.49 104 

 444 

With the cross-validation method, the same success rate (100%) as for PCA is obtained. LDA also 445 

entirely separates the different classes even under climatic variations. In the following, the obtained 446 

separation laws will be used to classify new samples; it is the validation stage.  447 

 448 

3.3.3. Results of the validation stage with LDA  449 

The validation is done in two steps. In the first one, the calculated separation laws are used to 450 

classify the remaining MPP (test data) representing 33% of the database collected on March 21, 2019. 451 

The results, displayed in figure 16 show the successful classification of the test data. 452 

In the second step, the separation laws are evaluated with the healthy samples extracted from 453 

measurements on June 26, 2018, mixed with 33% of partial shading data measured on March 21, 454 

2019. The classification result is displayed in Fig.17. With the separation laws, all the test samples are 455 

correctly classified in their a priori groups; no misclassification errors were found. With the cross-456 

validation method, discrimination's effectiveness between the measurements under variable 457 

experimental conditions is proved with a success rate of 100 % for all the classes (Table 9). 458 
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 459 

Fig. 16. Classification of test data in the discrimination space (DA1, DA2)  460 

 461 

 462 
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 463 

Fig. 17. Classification of mixed data in the discrimination space (DA1, DA2) 464 

 465 

      Table 9. Confusion matrix for test dataset with LDA 466 

Class  
a priori 

Class a posteriori 

Class C0 (%) Class C1 (%) Class C2 (%) Class C3 (%) 
Class C0 100 0 0 0 
Class C1 0 100 0 0 

Class C2 0 0 100 0 
Class C3 0 0 0 100 

 467 

Even if for the studied cases the obtained identification is correct, it can be observed in Fig.17 that 468 

healthy state’s data corresponding to samples ‘test C0’, lie on the separation boundary between classes 469 

C0 and C3. However, as the probability of assignment to class C0 is higher, these samples are predicted 470 

with label 1 and correctly identified as healthy data. Nevertheless, this ambiguity underlines the fact 471 

that in order to have good performance in classifying several types of defects with different levels of 472 

severity, it will be beneficial to have a rich database. It must contain several configurations (operating 473 

points and states of health) under different environmental conditions.   474 

We can conclude that at the PV module level, the classification of measurements through LDA is 475 

successful as long as a large amount of labelled data is available for offline learning. 476 
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       477 

Fig. 18.  Healthy and faulty class prediction based on LDA 478 

 479 

 480 

4. Discussion and comparison  481 

 482 

The classification results obtained through the analysis of the maximum power point's (MPP) 483 

coordinates with PCA and LDA for partial shading diagnosis are very close. Table 10 summarizes the 484 

main advantages and their limitations of the diagnosis methods proposed in this paper, the methods 485 

developed in our previous work, especially for large PV plants.  486 

Fault diagnosis based on the analysis of maximum power point's (MPP) coordinates appears to be 487 

relevant for large PV plants. Indeed, this approach enables diagnosing a large number of PV modules 488 

in real-time faster than using all the points on the I(V) curve, thus reducing power losses and costs.  489 

From a field-application perspective, it would be of interest to evaluate these methods with other 490 

faults. 491 

MPP-based methods have up to now only been evaluated at the PV module level. It would be 492 

interesting to evaluate these methods at the PV string and array levels.  493 
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Limitations for large scale PV 

plants 

- Less convenient  

- Time-consuming and functional 

disturbance 

- Power losses 

- Additionnal cost with local I (V) 

tracers  

- Sensitive to I (V) curve quality 

 

- Efficient and accurate fault 

identification depend on the 

learning data set (size and 

variety) (LDA) 

           Table 10: Overview of the proposed methods for 
partial shading detection in PV systems 

Advantages  

- Adapted with online I (V) 

tracer 

- Sensitive to fault severity 

- Suitable for small-scale PV 

systems  

 

- Earlier fault detection 

allowing an optimized 

maintenance 

- Cost-effective : no 

additional measurement of 

temperature or irradiance 

for data normalization 

- Saving memory storage  

- Sensitive to fault severity 

- Robust to climatic 

variations 

- Possible power losses 

quantification (LDA) 

  Pre-processing 
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 501 

 502 

5. Conclusion 503 

 504 

Fault detection and identification in PV systems are essential to expedite the maintenance and 505 

minimize the power losses. This study has presented a cost-effective and straightforward data-driven 506 

diagnosis approach to detect and identify partial shading using principal component analysis (PCA) 507 

and linear discriminant analysis (LDA). No prior information on the PV system and no other sensing 508 

circuit are needed. The proposed methods take advantage of available measurements in PV systems: 509 

voltage, current, and power at the maximum power point (MPP). The effectiveness of the proposed 510 

methods has been successfully proved at the PV module level. Based on collected data under real 511 

working conditions (variable irradiation and temperature), we have demonstrated that the methods can 512 

correctly detect and classify the partial shading fault with a success rate of 100%. The methods are 513 

also easy to integrate into a monitoring system for real-time diagnosis and are especially convenient 514 

for large-scale PV plants. The data required for the learning stage can benefit from the vast amount of 515 

data available in PV plants under operation for decades. Otherwise, the learning database could be 516 
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generated from simulation models. It would be of interest to evaluate the proposed methodology with 517 

other faults (open-circuit, short-circuit, and contact degradation). 518 
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