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A statistical approach to the optimization of the radar ambiguity function and the chaos-based waveform design
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In this paper we adopt a statistical approach to optimize the ambiguity function of a radar system. By considering the codes defining the transmitted waveform as realizations of a random variable we firstly show that a suitable distribution of the random variable allows to obtain good codes. Secondly we show that using the chaotic skew tent map it is possible to generate deterministic codes having the desired statistical properties. This allows to obtain an optimized global ambiguity function of the radar system. The advantage of using chaos-based sequences is that they can be easily generated in any length and number. We further improve their performance by introducing down sampling. It appears that the proposed sequences have performance quite similar to those of the sequences of the literature computationally optimized.

Introduction

The primary purpose of a radar system [START_REF] Richards | Fundamentals of radar signal processing[END_REF] is to extract information about potentially moving targets in a given propagation environment by transmitting well-chosen waveforms and analysing the signals returned to the radar after their reflection on the targets. In particular the parameters of interest are the range and the speed of the target which can be measured by the round trip time and the Doppler frequency shift of the signal received by the radar, respectively. The system performance is based both on the receive filter and transmit waveform. We here focus on waveform design. The ambiguity function [START_REF] Woodward | Probability and information theory, with applications to radar[END_REF][START_REF] Eustice | Woodward's ambiguity function: From foundations to applications[END_REF] describes the response of a matched filter to a signal for different time delays and Doppler frequencies. The search for transmitted waveforms leading to the "best possible" radar ambiguity function, especially with regard to the low side lobes, has already been addressed in the literature [START_REF] Richards | Fundamentals of radar signal processing[END_REF]. In [START_REF] Alhujaili | Quartic gradient descent for tractable radar slow-time ambiguity function (staf) shaping[END_REF][START_REF] Najafabadi | Unimodular waveform design with desired ambiguity function for cognitive radar[END_REF] the authors presented the problem of waveform design as the nonlinear optimization of the radar ambiguity function and proposed algorithms which are relatively expensive in computation and / or complex to implement.

Waveform optimization has also recently sparked renewed interest in the context of MIMO radar [START_REF] Li | Mimo radar signal processing[END_REF] which consists of multiple antenna elements transmitting different waveforms toward different angles. In this context some works of the literature are inspired by the field of multi-user communications [START_REF] Sun | Analysis and comparison of mimo radar waveforms[END_REF][START_REF] Bolhasani | Constant envelope waveform design to increase range resolution and sinr in correlated mimo radar[END_REF], others aim to synthesize sequences by optimizing certain criteria concerning their autoand cross-correlation functions [START_REF] Stoica | On designing sequences with impulse-like periodic correlation[END_REF][START_REF] He | Designing unimodular sequence sets with good correlations-including an application to mimo radar[END_REF][START_REF] Arlery | Efficient gradient method for locally optimizing the periodic/aperiodic ambiguity function[END_REF][START_REF] Tan | Phase code optimization for coherent mimo radar via a gradient descent[END_REF][START_REF] Vignesh | Design of less-detectable radar waveforms using stepped frequency modulation and coding[END_REF]. It however appears that the waveforms generated by the existing methods have drawbacks. Either they are limited in length, or they require important calculations, especially when we need a large number of them or we want to add one.

Because the optimization of the global ambiguity function, that is to say over all time delays and Doppler frequencies, is quite difficult, other works [START_REF] Aubry | Ambiguity function shaping for cognitive radar via complex quartic optimization[END_REF][START_REF] Cui | Local ambiguity function shaping via unimodular sequence design[END_REF][START_REF] Yang | Cognitive local ambiguity function shaping with spectral coexistence[END_REF] suggested locally optimizing the ambiguity function over a given range of time delays and Doppler frequencies. Our approach proposed here considers the global ambiguity function.

In this paper, we propose to consider chaotic sequences as an alternative to other sequences in the literature for the design of radar waveforms. Earlier articles in the context of multi-user CDMA communication have already shown the interest of using codes based on chaos over more traditional codes [START_REF] Khanfouci | Plm sequences for the performance optimization of linear multiuser detectors[END_REF][START_REF] Merhrzi | A family of spatiotemporal chaotic sequences outperforming gold ones in asynchronous ds-cdma systems[END_REF]. Some other works have also suggested the use of chaotic sequences as candidates for the design of radar waveforms (see [START_REF] Jemaa | Chaotic sequences with good correlation properties for mimo radar application[END_REF][START_REF] Willsey | Quasi-orthogonal wideband radar waveforms based on chaotic systems[END_REF][START_REF] Jin | Complementary-based chaotic phase-coded waveforms design for mimo radar[END_REF] and the references inside). In this paper we propose a statistical approach to exploit the features of chaos in radar system. By considering each code as a realization of a random variable we show that we can build good codes if the distribution of the random variable is suitably chosen. We then consider sequences generated by the skew tent map and we show that for some values of the bifurcation parameter the invariant probability density coincides with the desired one. Note that this approach is valid for all the values of the Doppler frequency and thus allows the optimization of the global ambiguity function.

After briefly introducing in section 2 the ambiguity function and extracting the function of interest to be optimized, we will study in section 3 the statistical properties of the latter. In section 4, we will show how sequences generated by the skew tent map meet the statistical properties established in the previous section and required for a good ambiguity function. We will also propose a downsampling of our sequences in order to further improve their behaviour which will be compared to computationally optimized sequences of the literature. Finally the conclusion will summary the contribution of the paper and will present future extensions.

Short reminder of the radar ambiguity function

The ambiguity function (AF) of a radar system consists of the 2D output, for a given time delay τ and a given Doppler frequency ν, of the filter matched to the transmitted signal s(t) and can be written as [START_REF] Li | Mimo radar signal processing[END_REF]:

A(τ, ν) = s(t)s * (t + τ )e j2πνt dt (1) 
where the waveform s(t) is given by:

s(t) = Nc p=1 w p u(t -(p -1)T c ) (2) 
N c is the length of the sequences {w p } p=1,Nc and u(t) is a shaping function of duration T c . (1) then becomes :

A(τ, ν) = Nc p=1 Nc l=1 w p w * l γ u p,l (τ, ν) (3) 
where

γ u p,l (τ, ν) = u(t -(p -1)T c )u(t -(l -1)T c + τ )e j2πνt dt (4) 
After some calculations the ambiguity function for τ = kT c then becomes:

A(kT c , ν) = R w (ν, k)α(ν) (5) 
where

α(ν) = Tc 0 |u(t)| 2 e j2πνt dt (6) 
and

R w (k, ν) = Nc-k p=1
ω * p ω p+k e -jπν(p-1)Tc [START_REF] Li | Mimo radar signal processing[END_REF] Note that in the case where u(t) is the rectangular function of support [0, T c ],

α(ν) = e jπνTc sin πνT c πν (8) 
In practice, the Doppler frequency ν is usually much smaller than the bandwidth of the probing waveform so that we can safely suppose that We here consider phased codes so that ω p = e jπxp , where x p is a sequence in the interval [-1, 1]. The modulus of the expression (7) (we omit the subscript w in the following) becomes

|
|R(k, ν)| = | Nc-k p=1 e jπzp(k) | (9) 
where

z p (k) = x p+k -x p -ν(p -1)T c (10) 
If the sequence x p is randomly generated, z p (k) is also a random variable for every fixed integer k = 0 and Doppler frequency ν. Note that for k = 0,

|R(0, ν)| = | sin(πνTcNc/2) sin(πνTc/2) | so that |R(0, 0)| = N c .
In the section below we will first analyse the statistics of the modulus R =

|Z n |, for a fixed n, with

Z n = n p=1 e jπyp ( 11 
)
where n is large enough and y p is a random variable. We will first establish the desired statistical properties for the random variable R = |Z n |, in order to minimize its mean and variance which are related to the side lobes of the ambiguity function. We will then consider different distributions for y p in [START_REF] He | Designing unimodular sequence sets with good correlations-including an application to mimo radar[END_REF].

The optimisation of R = |Z n | through the statistics of y p will then be useful to the choice of the sequences x p allowing the desired properties of z p in ( 9) and [START_REF] Stoica | On designing sequences with impulse-like periodic correlation[END_REF].

We will also analyse the influence of the deterministic term in [START_REF] Stoica | On designing sequences with impulse-like periodic correlation[END_REF] corresponding to the Doppler frequency ν. 

         X = R √ s1+s2 B = α √ s1+s2 K = s2 s1 (12)
In the case of symmetric distribution with respect to 0 (i.e. β = 0) the distribution of the random variable X is [START_REF] Beckmann | Statistical distribution of the amplitude and the phase of a multiply scattered field[END_REF] 

f X (x) = K 2 + 1 K x exp[- K 2 + 1 2 (B 2 + K 2 + 1 2K 2 x 2 )] ∞ m=0 (-1) m ε m I m ( K 4 -1 4K 2 x 2 )I 2m [B(1 + K 2 )x] (13) 
where

ε m =    1, if m = 0; 2, if m = 0.
I m is the modified Bessel function of the first kind.

In [START_REF] Beckmann | Statistical distribution of the amplitude and the phase of a multiply scattered field[END_REF] it has been shown that:

• by varying K the distribution is only slightly modified, so we will consider K = 1 in the following.
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• the mean and the variance are the smallest for B = 0, corresponding to

α = 0.
The distribution ( 13) is then almost optimal in the sense that for a given value

x 0 of X the probability P (X < x 0 ) is the greatest for B = 0. This is illustrated in Figure 1 for K = 1, 2 and B = 0, 0.5, 1, 2. x f X (x)

K = 1; B = 0 K = 1; B = 0.5 K = 1; B = 1 K = 2; B = 0 K = 2; B = 0.5 K = 2; B = 1 K = 1; B = 2 K = 2; B = 2 x 0 Figure 1: Distribution f X (x) for different values of K and B 105 For K = 1 the distribution (13) is then reduced to f X (x) = 2xe -(B 2 +x 2 ) I 0 (2Bx) (14) 
Using [START_REF] Arlery | Efficient gradient method for locally optimizing the periodic/aperiodic ambiguity function[END_REF] we retrieve the distribution of the random variable

R = |Z n | f R (r) = 2 r s 1 + s 2 e -(B 2 + r 2 s 1 +s 2 ) I 0 (2B r √ s 1 + s 2 ) (15) 
• For α = 0 and thus B = 0 the distribution [START_REF] Aubry | Ambiguity function shaping for cognitive radar via complex quartic optimization[END_REF] is the Rice distribution

• For α = 0 and thus B = 0 we obtain the Rayleigh distribution

f R (r) = 2 r s 1 + s 2 e -r 2 s 1 +s 2 (16) 
The mean value and the variance of the distribution ( 16) are:

   E R = √ (s1+s2)π 2 V R = (1 -π 4 )(s 1 + s 2 ) (17) 
This distribution will then be considered as a reference, i.e. as said above, a sequence y p in [START_REF] He | Designing unimodular sequence sets with good correlations-including an application to mimo radar[END_REF] yielding to such a Rayleigh distribution will be considered as optimal.

In the following we will consider several distributions for y p . First note that since y p is supposed to follow an i.i.d distribution we have

α = nE[cosπy p ] (18) 
3.1. Case y p uniformly distributed in [-a, a]; a ≤ 1

In this case

β = 0; α = nsinc(a) (19) 
where sinc(x) = sin(πx) πx .

s 1 = n 2 (1 + sinc(2a) -2sinc 2 (a)) s 2 = n 2 (1 -sinc(2a))
which gives

   s 1 + s 2 = n(1 -sinc 2 (a)) B = √ n sinc(a) √ 1-sinc 2 (a) (20) 
The Rayleigh distribution ( 16) is obtained for a an integer. Indeed in this case sinc(a) = 0 which gives B = 0, K = 1 and 

s 1 + s 2 = n.
   E R = √ nπ 2 V R = (1 -π 4 )n (21) 
Note that, in practice, these mean and variance values should be compared to the maximum peak of the ambiguity function, i.e. |R(0, 0)| = n, and its square value, respectively. Thus we considered the two more significant features: the

normalized mean E n = E R n and variance V n = V R n 2 , we obtain    E n = 1 2 π n V n = (1 -π 4 ) 1 n ( 22 
)
It then appears that the mean side lobe to maximal peak ratio of the ambiguity 130 function vanishes as n increases as illustrated in Figure 3. x is the floor of x. Let y p be uniformly distributed in [-a, a] where a > 1. We show in the appendix that f ỹp(y) has two expressions according to a .

• if a is even, a = 2l f ỹp(y) =    l a if a -2l ≤ |y| ≤ 1 2l+1 2a if 0 ≤ |y| ≤ a -2l (24) 
• if a is odd, a = 2l + 1

140 f ỹp(y) =    2l+1 2a if 0 ≤ |y| ≤ -a + 2l + 2 l+1 a if -a + 2l + 2 ≤ |y| ≤ 1 (25) 
In Figure 4, we plotted the probability density of f y (y) and f ỹ (y) in the two cases a odd ( a = 5) and a even ( a = 6). By an easy computation of

α = 1 -1 cos(πy)f ỹ (y)dy we found that α =    -sin(π(2l+2-a)) 2πa if a = 2l + 1 sin(π(a-2l)) 2πa if a = 2l (26) 
In both cases 2l + 2a and a -2l ∈ [0, 1[, α = 0 if and only if a is an integer corresponding to the uniform distribution in [-1, 1]. In other words we obtain

-5 0 5 0 0.2 0.4 y E[a] impair (E[a] = 5) -6 -4 -2 0 2 4 6 0 0.2 0.4 y E[a] pair (E[a] = 6) f y (y) f ỹ(y) f y (y) f ỹ(y) (a -2l -2, l+1 a ) (-a + 2l, 2l+1 2a ) (a, 1 2a ) (a, 1 2a ) 
Figure 4: fy(y) and f ỹ (y) in the case of uniform distribution.

Case of y p with a triangular distribution in [-a, a]

First note that this distribution is obtained when y p = z p (k) in [START_REF] Stoica | On designing sequences with impulse-like periodic correlation[END_REF] with ν = 0 and uniformly distributed x p and x p+k .

We show in the appendix that f ỹ (y) can have two expressions according to a : In Figure 5 we plotted this distribution in both cases. Note that:

150 • if a is even, a = 2l f ỹ (y) =    (2l+1)a-2l(l+1)-|y| a 2 if 0 ≤ |y| ≤ a -2l 2la-2l 2 a 2 if a -2l ≤ |y| ≤ 1 (27) • if a is odd, a = 2l + 1 f ỹ (y) =    (2l+1)a-2l(l+1)-|y| a 2 if 0 ≤ |y| ≤ 2l + 2 -a 2(l+1)a-2(l+1) 2 a 2 if 2l + 2 -a ≤ |y| ≤ 1 (28) -1 -0.
y ⌊a⌋ = 2l + 1 (2l+1)a-2l(l+1) a 2 2(l+1)a-2(l+1) 2 a 2 a -2l 2l + 2 -a (2l+1)a-2l(l+1) a 2 2la-2l 2 a 2
• for a even, when a is an integer, i.e. a = 2l we obtain the uniform distribution in [-1, 1].

• for a odd, when a is an integer, i.e. a = 2l + 1 we obtain the triangular

distribution in [-1, 1].
These two results explain the expressions of α obtained by the computation of

α = 1 -1 cos(πy)f ỹ (y)dy and given below α =    -2 1-cos(π(a-2l)) π 2 a 2 if a = 2l 2 1-cos(π(2l+2-a)) π 2 a 2 if a = 2l + 1 (29)
When a = 2l we obtain α = 0 giving the Rayleigh distribution [START_REF] Cui | Local ambiguity function shaping via unimodular sequence design[END_REF], when a = 2l + 1 the expression ( 29) is maximal and equal to 4 π 2 a 2 corresponding to a Rice distribution (15).

Case of y p centered and gaussian distributed

This distribution is obtained when x p and x p+k in (10) are independent gaussian and centred variables and ν = 0. When f y (y) is gaussian, f ỹ (y) has • σ < 1 we obtain a density that differs very much from the uniform one, (as for σ 2 = 1 3 in the figure).

-5 0 5 0 0.1 0.2 0.3 0.4 0.5 0.6 f y (y); σ 2 = 1 f ỹ (y); σ 2 = 1 f y (y); σ 2 = 1 3 f ỹ (y); σ 2 = 1 3
• σ ≥ 1, the distribution f ỹ (y) is almost uniform in [-1, 1].

Histograms of |Z n |

To confirm the results of the discussion above we plotted in Figure 7 the histograms of |Z n | for the previously considered distributions with the Rayleigh distribution in red line . These histograms are computed for the case n = 1023 using 10000 realizations of y p . We obtain a Rayleigh distribution of R = |Z n | when y p follows the following distributions:

• uniform distribution in [-q, q], q an integer;

• triangular distribution in [-q, q], q ≥ 2 an even integer;

• centered and gaussian distribution with variance greater or equal to 1;

For these results we can see that the average and the variance are very close to the theoretical values computed using [START_REF] Jin | Complementary-based chaotic phase-coded waveforms design for mimo radar[END_REF] that are in the case n = 1023:

E n ∼ = 28.3454, V n ∼ = 219.5377 . In the other cases, we obtain a distribution which is very different from the Rayleigh distribution. (30)

E[Z k ] = 27.8393 V [Z k ] = 212.746 E[Z k ] = 52 V [Z k ] = 428 E[Z k ] = 155 V [Z k ] = 518 E[Z k ] = 28.49 V [Z k ] = 219.67 E[Z k ] = 28.26 V [Z k ] = 214.58 E[Z k ] = 45 V [Z k ] = 400
In the case νT c = 2q where q is an integer, E[Z n ] = An. If A = 0 the real part of Z n is also zero and consequently α = 0 and B = 0 which are the conditions so that R = |Z n | has a Rayleigh type distribution (see [START_REF] Beckmann | Statistical distribution of the amplitude and the phase of a multiply scattered field[END_REF]).

In case νT c = 2q:

E[Z n ] = A e jπnνTc/2 e jπνTc/2 sin[πnνT c /2] sin[πνT c /2] (31) Since | sin[πnνT c /2]| ≤ n| sin[πνT c /2]|, we obtain |Real(E[Z n ])| ≤ |E[Z n ]| ≤ |A|n (32) 
Also in this case if A = 0, the real part of E[Z n ] is zero, thus α = 0 and B = 0 which are the conditions so that R = |Z n | has a Rayleigh type distribution.

To illustrate this idea we plotted on Figure 8 Thus the presence of the deterministic term ν(p -1)T c ; ν = 0 makes every sequence a good one since it allows scattering the points on the unit circle. We can conclude that the important thing is to optimize |Z n | for ν = 0.

Ambiguity function for chaotic sequences

In this section we consider chaotic sequences {x p } generated by x p+1 = T µ (x p ) and an initial condition x 0 ∈ [-1, 1] where µ ∈ [-1, 1]; T µ (x) is the piece-wise linear skew tent map defined in [-1, 1] by The curve of T µ (x) is given on Figure 9. The invariant probability density of the variable x p is the uniform distribution in the interval [-1, 1] [24] i.e. for N large enough x p , p = 0, 1, ..., N could be considered as a realization of a random 210 variable uniformly distributed in [-1, 1]. The idea is to use such sequences in the radar system described above with y p = g k (x p ) for a given integer k where

T µ (x) =    2 µ-1 x -1+µ µ-1 if µ < x ≤ 1 2 µ+1 x -µ-1 µ+1 otherwise ( 
g k (x) = T k µ (x) -x (34) 
To analyze the statistics of y p for a given k, we plotted the curve of y = g k (x)

in Figure 4 for k = 4 (red line). The argument and the value of the maxi- 

-1 0 1 -2 0 2 x y y = T k µ (x) y = T k µ (x) -x b k (1) b k (2 k-1 + 1) y 0 a k (1) b k (2) b k (2 k-1 ) y 1 y 2 M k (1) N k (1) M k (2) M k (m 0 ) N k (2) N k (2 k-1 )
(m), M k (m)), 1 ≤ m ≤ 2 k-1 and 215 (b k (m), N k (m)), 1 ≤ m ≤ 2 k-1 + 1 where M k (m) = 1 -a k (m), 1 ≤ m ≤ 2 k-1 (35) N k (m) = -1 -b k (m), 1 ≤ m ≤ 2 k-1 + 1. ( 36 
)
a k (m) and b k (m) are defined by the following recursive relations [START_REF] Jemaa | Kendall's tau based correlation analysis of chaotic sequences generated by piecewise linear maps[END_REF]:

a 1 (1) = µ, b 1 (1) = -1, b 1 (2) = 1 a k+1 (2m -1) = µ + 1 2 [a k (m) -b k (m)] + b k (m) a k+1 (2m) = µ + 1 2 [a k (m) -b k (m + 1)] + b k (m + 1) b k+1 (2m -1) = b k (m) b k+1 (2m) = a k (m) b k+1 (2m + 1) = b k (m + 1)
The curve of T k µ (x)-x consists of alternately 2 k-1 increasing and decreasing straight lines. Let y = T k µ (x)x it is easy to see that

• in the m th increasing line we have

x = A k (m)y + B k (m) (37) 
A k (m) = a k (m) -b k (m) 2 -a k (m) + b k (m) B k (m) = a k (m) + b k (m) 2 -a k (m) + b k (m)
• in the m th decreasing line we have

x = C k (m)y + D k (m) (38) C k (m) = a k (m) -b k (m + 1) 2 -a k (m) + b k (m + 1) D k (m) = a k (m) + b k (m + 1) 2 -a k (m) + b k (m + 1)
Let X be a random variable following the uniform distribution in [-1, 1] and

Y = T k µ (X) -X. The probability P (Y < y) = P (X ∈ g -1 k (] -2, y]
). Since X is supposed to be uniformly distributed in [-1, 1] we can confirm the following points about the distribution of Y .

• if y ≤ -2 the probability P (Y < y) = 0.

• if y ≥ M k (1) the probability P (Y < y) = 1.

• if 0 ≤ y 0 ≤ M k (1) as shown in the figure there exists an unique integer 

m 0 , 1 ≤ m 0 ≤ 2 k-1 -1 such that y 0 ∈ [M k (m 0 + 1), M k (m 0 )]. Using
P (Y < y 0 ) = 1 2 (2 - m0 m=1 [C k (m) -A k (m)]y 0 + [D k (m) -B k (m)]) (39) • if N k (2 k-1 ) ≤ y 1 ≤ 0 there exists an integer m 1 , 1 ≤ m 1 ≤ 2 k-1 -1 such that y 1 ∈ [N k (m 1 + 1), N k (m 1 )
]. In this case

P (Y < y 1 ) = 1 2 m1 m=1 [(A k (m) -C k (m))y 1 + B k (m) -D k (m)] + 1 2 [2 -(C k (2 k-1 )y 1 + D k (2 k-1 ))] (40) • -2 ≤ y 2 ≤ N k (2 k-1 ) P (Y < y 2 ) = 1 2 (2 -(C k (2 k-1 )y 2 + D k (2 k-1 ))) (41) 
By deriving the function P (Y < y) in all the cases above we obtain the probability density

f µ,k (y) of Y = T k µ (X) -X f µ,k (y) =                my m=1 γ(k,m) 2 , if 0 ≤ y ≤ M k (1) my m=1 γ(k,m)+C k (2 k-1 ) 2 , if N k (2 k-1 ) ≤ y ≤ 0 -C(k,2 k-1 ) 2 if -2 < y ≤ N k (2 k-1 ) 0 otherwise (42)
where m y is the integer satisfying y the results are shown in the Figure 12 . We have almost the same behaviour, with the difference that for the case µ = 0.1 the distribution converges more quickly with respect to the case µ = 0.7. In the general case we obtain a distribution that converges to the triangular one for all values of µ, subsequently we have to look for parameter µ that yields the uniform distribution for the smallest value of iteration k.

∈ [M k (m y +1), M k (m y )] if 0 ≤ y ≤ 1-a k (1) or satisfying y ∈ [N k (m y + 1), N k (m y )] if -1 -b k (2 k-1 ) ≤ y < 0, and 
γ(k, m) = A(k, m) -C(k, m)
To measure the resemblance of f µ,k (y) with the uniform distribution on the interval [-1, 1] we considered the criteria

C(µ, k) = 1 -1 (f µ,k (x) - 1 2 ) 2 dx (43) 
We plotted on Figure 13 C(µ, k) versus the iteration number k and for different To see the impact of this result, we plotted on Figure 14 the main term [START_REF] Bolhasani | Constant envelope waveform design to increase range resolution and sinr in correlated mimo radar[END_REF] involved in the ambiguity function [START_REF] Alhujaili | Quartic gradient descent for tractable radar slow-time ambiguity function (staf) shaping[END_REF] as a function of ν and for k = 1, 2, 3 and for µ = 0.1 and µ = 0.7. As expected via the above analysis, the case µ = 0.1 allows side lobes in the ambiguity function [START_REF] Bolhasani | Constant envelope waveform design to increase range resolution and sinr in correlated mimo radar[END_REF] smaller than the case µ = 0.7.

We have considered here only the first values of k since for higher values -0. 9)-( 10)).

|R(3, ν )| Tν µ = 0.1 µ = 0.7 µ = 0.1 µ = 0.7 µ = 0.1 µ = 0.7
In Figure 17 we have plotted the maximum value of the first side lobe of the It should be noted that other chaotic transformations than the skew tent map could have been envisaged in order to obtain a better distribution of the sequence generated in particular in the first iterations and could thus avoid the high peaks around zero (that is to say for k = 1) in the ambiguity function.

If we have considered here the skew tent map as an example for generating chaotic sequences, it is because in our opinion, its theoretical analysis is easier than that of other chaotic transformations. In the next section, we propose a way to construct sequences extracted from the sequences generated by the skew tent map, producing a reduced first side lobe in the ambiguity function. 

Ambiguity function for down-sampled chaotic sequences

We have shown in the previous section how a chaotic sequence generated by the piece-wise linear skew tent map can yield a pseudo-random sequence with a desired probability distribution and, consequently, a good ambiguity function.

From the above analysis, however, we have seen that the ambiguity function is not as good as expected for the first values of k because the distribution of the chaotic sequence has not yet converged to the permanent and desired distribution, i.e. the uniform distribution in [-1, 1].

To circumvent this problem we here consider a down-sampled version of the chaotic sequence, i.e. instead of sequences {x p , 0 ≤ p ≤ N c -1} defined as in section 4 we consider sequences x s p , 0 ≤ p ≤ N c -1 defined by: x s p = x pNs , 0 ≤ p ≤ N c -1 where N s is the sampling rate. Noting that x s p+kx s p = x Nsp+Nskx Nsp the probability density of x s p+kx s p is the same as the one of x q+Nskx q . For example, the distributions of x s p+kx s p for k = 1, 2, N s = 5 and when x p is generated by (33) with µ = 0.1 are plotted in Figure 18.

Comparing these distributions to the ones in Figures 11 and12 and for the same values of k = 1, 2 we can see that we achieved the desired uniform probability density for all values of k. To analyse the impact of this down-sampling on 

Conclusion

In this paper we adopted a statistical approach to look for sequences that optimize the ambiguity function of a radar system. We have shown that desired sequences can be generated by a random variable with an appropriate distribution and that it is possible to obtain such sequences by generating them using a chaotic skew tent map. The advantage of using chaotic sequences is that they can be generated of any length and in large numbers. Although generated from a deterministic map with few parameters, they can be considered pseudorandom which makes it possible to study their statistical characteristics. Note that other chaotic sequences could be used and studied.

In this paper, we considered the ambiguity function in the case of a basic radar system. It would be easy to demonstrate that the proposed analysis is still valid for the single input-multi-output (SIMO) radar system. The multi-inputmulti-output (MIMO) case is however less straightforward since it involves the generation of multiple sequences with good properties of the cross-correlations which are embedded in other parameters such that the transmission antenna geometry. Because of the promising results we have here obtained, we will examine the MIMO case in a future work and adopt the same statistical approach to optimize the ambiguity function by considering the cross-correlation functions of the sequences. , if 0 < |z| ≤ a -2l

  sin πνTc πν | T c . It then appears that the optimization of the ambiguity function reduces to the optimization of |R w (k, ν)|, it is to say that |R w (k, ν)| for k = 0 must be the smallest as possible compared to |R w (0, 0)|, ∀ν.

3 .

 3 Statistical properties of R = |Z n |Let y p be an i.i.d random variable. By noting α and β the mean values of the real and imaginary parts of Z n , and by s 1 and s 2 their variances respectively we introduce the following notations as in[START_REF] Beckmann | Statistical distribution of the amplitude and the phase of a multiply scattered field[END_REF] 
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 82 Figure 2: The distribution f R (r) for n = 1023 and a = 1; 0.9; 0.8
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 23 Figure 3: Mean and variance of the Rayleigh distribution versus sequence length n
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 5 Figure 5: f ỹ (y) when yp has a triangular distribution in [-a,a] in the cases a even (a = 2l) and a odd (a = 2l + 1)

Figure 6 :

 6 Figure 6: fy(y) et f ỹ(y) in the case of centered and gaussian distribution

Figure 7 :

 7 Figure 7: Histograms of Z k for different distribution of yp

  the histograms of |Z n | for y p uniform in | -1.2, 1.2]. We can see that the distribution of |Z n | differs from the desired Rayleigh one only when ν = 0. This could be explained by saying that the presence of the deterministic term allows uniform scattering of the points on the unit circle when the distribution of u p is not uniformly distribution in [-1, 1].
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 89 Figure 8: Histograms of |Z k | in the case of yp uniform in [-1.2, 1.2]
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 10 Figure 10: Curves of y = g k (x); k = 4
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  37) and (38) we can show easily that

Figure 11 exhibits 2 -Figure 11 : 1 Figure 12 :

 11211112 Figure 11 exhibits the probability density of y = T k µ (x)x in blue line for µ = 0.7 and for different values of k. In red line we plotted the probability density of ỹ corresponding to y as defined in the previous section. From the
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 13 Figure 13: C(µ, k) for different values of µ and k

Figure 14 :

 14 Figure 14: |R(k, ν)| for k = 1, 2, 3; µ = 0.1 and µ = 0.7

  Figures and inFigures20 and 21 below we have removed the maximum peaks of |R(0, ν)|; indeed |R(0, ν)| is independent of the phase coded sequences (as
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 15 Figure 15: Ambiguity function (|R(0, ν)| removed) obtained with chaotic waveform (µ = 0.1)
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 16 Figure 16: Ambiguity function (|R(0, ν)| removed) obtained with chaotic waveform (µ = 0.7)
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 1718 Figure 17: Maximal peak of the ambiguity function (|R(0, ν)| removed) and Lyapunov exponent versus the bifurcation parameter µ
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 19 Figure 19: |R(k, ν)|, k = 1, 2, 3 for xp and x S p

Figure 20 :

 20 Figure 20: Ambiguity function (|R(0, ν)| removed) obtained with down-sampled chaotic waveform (µ = 0.1)

Figure 21 :

 21 Figure 21: Ambiguity function (|R(0, ν)| removed) obtained with CAN waveforms

2 , 2 + 2 +D = C 3 + C 4 2 1 (

 2223421 ∀w ∈ [-a, 0] -w+a a 2 , ∀w ∈ [0, a] Thus we haveP [-1 + 2k < W < z + 2k] = (a -2k)z + C 2 ]where C 1 and C 2 are constants; By simplifying we obtainP [Z < z] = 1 a 2 (2all 2 )z + C 1 + C 2 (50) For z ∈ [2la, 0] 480 P [Z < z] = P [Z < 2la] + P [2la ≤ Z < z] P [Z < z] = C + P [2la ≤ Z < z] C is constant P [Z < z] = C + l k=-l P [2la + 2k ≤ W < z + 2k] P [Z < z] = C + (2l + 1)az -2l(l + 1)z] + C + D Thus+ ((2l + 1)a -2l(l + 1))z] + C + D(51)By deriving (50) and (51) we find the distribution of Z for z < 0, for the symmetry of the problem we deduce the distribution of Z for z > 02l+1)a-2l(l+1)-|z| a 2

u p are i.i.d. random variables. It is easy to see that as the u p are i.i.d. E[e jπup ]

Appendix

Proof of [START_REF] Eisencraft | Spectral properties of chaotic signals generated by the skew tent map[END_REF] and [START_REF] Jemaa | Kendall's tau based correlation analysis of chaotic sequences generated by piecewise linear maps[END_REF] In this appendix we show [START_REF] Eisencraft | Spectral properties of chaotic signals generated by the skew tent map[END_REF] where we assumed a = 2l, l is a positive integer; the demonstration of ( 25) is almost the same. For simplicity we begin by the notations:

where k is an integer, we have e jπW = e jπZ .

We have

We obtain

For z ∈ [0, a -2l]

From (47) the first term of this summation is 1 2 , thus

We obtain

From (48) the first term of this summation is (2l+1)(a-2l) 2a

, thus

We obtain

The distribution of Z is obtained by deriving the expressions (45-49) and thus we obtain [START_REF] Eisencraft | Spectral properties of chaotic signals generated by the skew tent map[END_REF].

Proof of ( 27) and (28)

As the demonstrations of the expressions ( 27) and ( 28) are similar we show here only (27).

where k is an integer, we have e jπW = e jπZ .

Also we have (44) and (45).