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Abstract

In this paper we adopt a statistical approach to optimize the ambiguity function

of a radar system. By considering the codes defining the transmitted waveform

as realizations of a random variable we firstly show that a suitable distribution of

the random variable allows to obtain good codes. Secondly we show that using

the chaotic skew tent map it is possible to generate deterministic codes having

the desired statistical properties. This allows to obtain an optimized global

ambiguity function of the radar system. The advantage of using chaos-based

sequences is that they can be easily generated in any length and number. We

further improve their performance by introducing down sampling. It appears

that the proposed sequences have performance quite similar to those of the

sequences of the literature computationally optimized.
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1. Introduction

The primary purpose of a radar system [1] is to extract information about

potentially moving targets in a given propagation environment by transmitting

well-chosen waveforms and analysing the signals returned to the radar after

their reflection on the targets. In particular the parameters of interest are5

the range and the speed of the target which can be measured by the round

trip time and the Doppler frequency shift of the signal received by the radar,

respectively. The system performance is based both on the receive filter and

transmit waveform. We here focus on waveform design. The ambiguity function

[2,3] describes the response of a matched filter to a signal for different time10

delays and Doppler frequencies. The search for transmitted waveforms leading

to the ”best possible” radar ambiguity function, especially with regard to the

low side lobes, has already been addressed in the literature [1]. In [5,6] the

authors presented the problem of waveform design as the nonlinear optimization

of the radar ambiguity function and proposed algorithms which are relatively15

expensive in computation and / or complex to implement.

Waveform optimization has also recently sparked renewed interest in the context

of MIMO radar [7] which consists of multiple antenna elements transmitting

different waveforms toward different angles. In this context some works of the

literature are inspired by the field of multi-user communications [8,9], others20

aim to synthesize sequences by optimizing certain criteria concerning their auto-

and cross-correlation functions [10-14]. It however appears that the waveforms

generated by the existing methods have drawbacks. Either they are limited in

length, or they require important calculations, especially when we need a large

number of them or we want to add one.25

Because the optimization of the global ambiguity function, that is to say over

all time delays and Doppler frequencies, is quite difficult, other works [15-17]

suggested locally optimizing the ambiguity function over a given range of time

delays and Doppler frequencies. Our approach proposed here considers the

global ambiguity function.30
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In this paper, we propose to consider chaotic sequences as an alternative to

other sequences in the literature for the design of radar waveforms. Earlier

articles in the context of multi-user CDMA communication have already shown

the interest of using codes based on chaos over more traditional codes [18,19].

Some other works have also suggested the use of chaotic sequences as candidates35

for the design of radar waveforms (see [20-22] and the references inside). In this

paper we propose a statistical approach to exploit the features of chaos in radar

system. By considering each code as a realization of a random variable we

show that we can build good codes if the distribution of the random variable is

suitably chosen. We then consider sequences generated by the skew tent map40

and we show that for some values of the bifurcation parameter the invariant

probability density coincides with the desired one. Note that this approach is

valid for all the values of the Doppler frequency and thus allows the optimization

of the global ambiguity function.

After briefly introducing in section 2 the ambiguity function and extracting the45

function of interest to be optimized, we will study in section 3 the statistical

properties of the latter. In section 4, we will show how sequences generated

by the skew tent map meet the statistical properties established in the previous

section and required for a good ambiguity function. We will also propose a down-

sampling of our sequences in order to further improve their behaviour which will50

be compared to computationally optimized sequences of the literature. Finally

the conclusion will summary the contribution of the paper and will present

future extensions.

2. Short reminder of the radar ambiguity function

The ambiguity function (AF) of a radar system consists of the 2D output,55

for a given time delay τ and a given Doppler frequency ν, of the filter matched

to the transmitted signal s(t) and can be written as [7]:

A(τ, ν) =

∫
s(t)s∗(t+ τ)ej2πνtdt (1)
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where the waveform s(t) is given by:

s(t) =

Nc∑
p=1

wpu(t− (p− 1)Tc) (2)

Nc is the length of the sequences {wp}p=1,Nc
and u(t) is a shaping function

of duration Tc. (1) then becomes :60

A(τ, ν) =

Nc∑
p=1

Nc∑
l=1

wpw
∗
l γ̃

u
p,l(τ, ν) (3)

where

γ̃up,l(τ, ν) =

∫
u(t− (p− 1)Tc)u(t− (l − 1)Tc + τ)ej2πνtdt (4)

After some calculations the ambiguity function for τ = kTc then becomes:

A(kTc, ν) = Rw(ν, k)α(ν) (5)

where

α(ν) =

∫ Tc

0

|u(t)|2ej2πνtdt (6)

and

Rw(k, ν) =

Nc−k∑
p=1

ω∗pωp+ke
−jπν(p−1)Tc (7)

Note that in the case where u(t) is the rectangular function of support [0, Tc],65

α(ν) = ejπνTc
sinπνTc
πν

(8)

In practice, the Doppler frequency ν is usually much smaller than the band-

width of the probing waveform so that we can safely suppose that | sinπνTc

πν | ' Tc.
It then appears that the optimization of the ambiguity function reduces to the

optimization of |Rw(k, ν)|, it is to say that |Rw(k, ν)| for k 6= 0 must be the

smallest as possible compared to |Rw(0, 0)|,∀ν.70

We here consider phased codes so that ωp = ejπxp , where xp is a sequence in

the interval [−1, 1]. The modulus of the expression (7) (we omit the subscript

w in the following) becomes

|R(k, ν)| = |
Nc−k∑
p=1

ejπzp(k)| (9)
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where

zp(k) = xp+k − xp − ν(p− 1)Tc (10)

If the sequence xp is randomly generated, zp(k) is also a random variable for75

every fixed integer k 6= 0 and Doppler frequency ν. Note that for k = 0,

|R(0, ν)| = | sin(πνTcNc/2)
sin(πνTc/2)

| so that |R(0, 0)| = Nc.

In the section below we will first analyse the statistics of the modulus R =

|Zn|, for a fixed n, with80

Zn =

n∑
p=1

ejπyp (11)

where n is large enough and yp is a random variable. We will first establish

the desired statistical properties for the random variable R = |Zn|, in order

to minimize its mean and variance which are related to the side lobes of the

ambiguity function. We will then consider different distributions for yp in (11).

The optimisation of R = |Zn| through the statistics of yp will then be useful to85

the choice of the sequences xp allowing the desired properties of zp in (9) and

(10).

We will also analyse the influence of the deterministic term in (10) corresponding

to the Doppler frequency ν.

3. Statistical properties of R = |Zn|90

Let yp be an i.i.d random variable. By noting α and β the mean values of

the real and imaginary parts of Zn, and by s1 and s2 their variances respectively

we introduce the following notations as in [23]
X = R√

s1+s2

B = α√
s1+s2

K =
√

s2
s1

(12)

In the case of symmetric distribution with respect to 0 (i.e. β = 0) the distri-

bution of the random variable X is [23]95

fX(x) =
K2 + 1

K
x exp[−K

2 + 1

2
(B2 +

K2 + 1

2K2
x2)]
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∞∑
m=0

(−1)mεmIm(
K4 − 1

4K2
x2)I2m[B(1 +K2)x] (13)

where

εm =

 1, if m = 0;

2, if m 6= 0.

Im is the modified Bessel function of the first kind.

In [23] it has been shown that:

• by varying K the distribution is only slightly modified, so we will consider

K = 1 in the following.100

• the mean and the variance are the smallest for B = 0, corresponding to

α = 0.

The distribution (13) is then almost optimal in the sense that for a given value

x0 of X the probability P (X < x0) is the greatest for B = 0. This is illustrated

in Figure 1 for K = 1, 2 and B = 0, 0.5, 1, 2.
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K = 2;B = 2

x0

Figure 1: Distribution fX(x) for different values of K and B

105

For K = 1 the distribution (13) is then reduced to

fX(x) = 2xe−(B
2+x2)I0(2Bx) (14)

Using (12) we retrieve the distribution of the random variable R = |Zn|

fR(r) = 2
r

s1 + s2
e−(B

2+ r2

s1+s2
)I0(2B

r√
s1 + s2

) (15)
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• For α 6= 0 and thus B 6= 0 the distribution (15) is the Rice distribution

• For α = 0 and thus B = 0 we obtain the Rayleigh distribution

fR(r) = 2
r

s1 + s2
e−

r2

s1+s2 (16)

The mean value and the variance of the distribution (16) are:110  ER =

√
(s1+s2)π

2

VR = (1− π
4 )(s1 + s2)

(17)

This distribution will then be considered as a reference, i.e. as said above, a

sequence yp in (11) yielding to such a Rayleigh distribution will be considered

as optimal.

In the following we will consider several distributions for yp. First note that

since yp is supposed to follow an i.i.d distribution we have115

α = nE[cosπyp] (18)

3.1. Case yp uniformly distributed in [−a, a]; a ≤ 1

In this case

β = 0; α = nsinc(a) (19)

where sinc(x) = sin(πx)
πx .

s1 =
n

2
(1 + sinc(2a)− 2sinc2(a))

s2 =
n

2
(1− sinc(2a))

which gives120  s1 + s2 = n(1− sinc2(a))

B =
√
n sinc(a)√

1−sinc2(a)

(20)

The Rayleigh distribution (16) is obtained for a an integer. Indeed in this

case sinc(a) = 0 which gives B = 0, K = 1 and s1 + s2 = n. Figure 2 exhibits

an example of fR(r) for n = 1023 and for different values of a. In the case of

the Rayleigh distribution (16) and from (17) the mean value and variance of

R = |Zn| are125
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Figure 2: The distribution fR(r) for n = 1023 and a = 1; 0.9; 0.8

 ER =
√
nπ
2

VR = (1− π
4 )n

(21)

Note that, in practice, these mean and variance values should be compared to

the maximum peak of the ambiguity function, i.e. |R(0, 0)| = n, and its square

value, respectively. Thus we considered the two more significant features: the

normalized mean En = ER

n and variance Vn = VR

n2 , we obtain En = 1
2

√
π
n

Vn = (1− π
4 ) 1

n

(22)

It then appears that the mean side lobe to maximal peak ratio of the ambiguity130

function vanishes as n increases as illustrated in Figure 3.

3.2. Case yp uniformly distributed in [−a, a]; a > 1

Due to the fact that ejπyp is 2-periodic, a random variable ỹp in [−1, 1]

satisfying ejπyp = ejπỹp corresponds to the random variable yp, see the example

plotted in red line on Figure 4 . Consequently, the statistical properties of |Zn|135

are the same for yp and ỹp. It is easy to show that ỹp is given by:

ỹp =

 yp − bypc − 1 if bypc is odd

yp − bypc if bypc is even
(23)
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Figure 3: Mean and variance of the Rayleigh distribution versus sequence length n

bxc is the floor of x. Let yp be uniformly distributed in [−a, a] where a > 1. We

show in the appendix that fỹp(y) has two expressions according to bac.

• if bac is even, bac = 2l

fỹp(y) =

 l
a if a− 2l ≤ |y| ≤ 1

2l+1
2a if 0 ≤ |y| ≤ a− 2l

(24)

• if bac is odd, bac = 2l + 1140

fỹp(y) =

 2l+1
2a if 0 ≤ |y| ≤ −a+ 2l + 2

l+1
a if − a+ 2l + 2 ≤ |y| ≤ 1

(25)

In Figure 4, we plotted the probability density of fy(y) and fỹ(y) in the two

cases bac odd (bac = 5) and bac even (bac = 6). By an easy computation of

α =
∫ 1

−1 cos(πy)fỹ(y)dy we found that

α =

 −
sin(π(2l+2−a))

2πa if bac = 2l + 1

sin(π(a−2l))
2πa if bac = 2l

(26)

In both cases 2l + 2− a and a− 2l ∈ [0, 1[, α = 0 if and only if a is an integer

corresponding to the uniform distribution in [−1, 1]. In other words we obtain145

R with the Rayleigh distribution (16) if and only if α = B = 0.
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Figure 4: fy(y) and fỹ(y) in the case of uniform distribution.

3.3. Case of yp with a triangular distribution in [−a, a]

First note that this distribution is obtained when yp = zp(k) in (10) with

ν = 0 and uniformly distributed xp and xp+k.

We show in the appendix that fỹ(y) can have two expressions according to bac:150

• if bac is even, bac = 2l

fỹ(y) =


(2l+1)a−2l(l+1)−|y|

a2 if 0 ≤ |y| ≤ a− 2l

2la−2l2
a2 if a− 2l ≤ |y| ≤ 1

(27)

• if bac is odd, bac = 2l + 1

fỹ(y) =


(2l+1)a−2l(l+1)−|y|

a2 if 0 ≤ |y| ≤ 2l + 2− a
2(l+1)a−2(l+1)2

a2 if 2l + 2− a ≤ |y| ≤ 1
(28)
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Figure 5: fỹ(y) when yp has a triangular distribution in [-a,a] in the cases a even (a = 2l)

and a odd (a = 2l + 1)

In Figure 5 we plotted this distribution in both cases. Note that:

• for bac even, when a is an integer, i.e. a = 2l we obtain the uniform

distribution in [−1, 1].155

• for bac odd, when a is an integer, i.e. a = 2l+ 1 we obtain the triangular

distribution in [−1, 1].

These two results explain the expressions of α obtained by the computation of

α =
∫ 1

−1 cos(πy)fỹ(y)dy and given below

α =

 −2 1−cos(π(a−2l))
π2a2 if bac = 2l

2 1−cos(π(2l+2−a))
π2a2 if bac = 2l + 1

(29)

When a = 2l we obtain α = 0 giving the Rayleigh distribution (16), when160

a = 2l+ 1 the expression (29) is maximal and equal to 4
π2a2 corresponding to a
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Rice distribution (15).

3.4. Case of yp centered and gaussian distributed

This distribution is obtained when xp and xp+k in (10) are independent

gaussian and centred variables and ν = 0. When fy(y) is gaussian, fỹ(y) has

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

 

 

fy(y);σ
2 = 1

fỹ(y); σ
2 = 1

fy(y); σ
2 = 1

3

fỹ(y); σ
2 = 1

3

Figure 6: fy(y) et fỹ(y) in the case of centered and gaussian distribution

165

one of the two shapes represented in Figure 6, according to the variance σ2:

• σ < 1 we obtain a density that differs very much from the uniform one,

(as for σ2 = 1
3 in the figure).

• σ ≥ 1, the distribution fỹ(y) is almost uniform in [−1, 1].

3.5. Histograms of |Zn|170

To confirm the results of the discussion above we plotted in Figure 7 the

histograms of |Zn| for the previously considered distributions with the Rayleigh

distribution in red line . These histograms are computed for the case n = 1023

using 10000 realizations of yp. We obtain a Rayleigh distribution of R = |Zn|
when yp follows the following distributions:175

• uniform distribution in [−q, q], q an integer;
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• triangular distribution in [−q, q], q ≥ 2 an even integer;

• centered and gaussian distribution with variance greater or equal to 1;

For these results we can see that the average and the variance are very close

to the theoretical values computed using (22) that are in the case n = 1023:180

En ∼= 28.3454, Vn ∼= 219.5377 . In the other cases, we obtain a distribution

which is very different from the Rayleigh distribution.
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Figure 7: Histograms of Zk for different distribution of yp

3.6. Statistics of R = |Zn| in the case yp = up + ν(p− 1)Tc

In this section we tackle the influence of the presence of the determinisic

term ν(p− 1)Tc on the statistics of R. We consider yp = up + ν(p− 1)Tc where185

up are i.i.d. random variables. It is easy to see that as the up are i.i.d. E[ejπup ]
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is a constant (not depending on p) denoted by A and

E[Zn] = A

n∑
p=1

ejπ(p−1)νTc (30)

In the case νTc = 2q where q is an integer, E[Zn] = An. If A = 0 the

real part of Zn is also zero and consequently α = 0 and B = 0 which are the

conditions so that R = |Zn| has a Rayleigh type distribution (see [23]).190

In case νTc 6= 2q:

E[Zn] = A
ejπnνTc/2

ejπνTc/2

sin[πnνTc/2]

sin[πνTc/2]
(31)

Since | sin[πnνTc/2]| ≤ n| sin[πνTc/2]|, we obtain

|Real(E[Zn])| ≤ |E[Zn]| ≤ |A|n (32)

Also in this case if A = 0, the real part of E[Zn] is zero, thus α = 0 and B = 0

which are the conditions so that R = |Zn| has a Rayleigh type distribution.

To illustrate this idea we plotted on Figure 8 the histograms of |Zn| for yp195

uniform in | − 1.2, 1.2]. We can see that the distribution of |Zn| differs from the

desired Rayleigh one only when ν = 0. This could be explained by saying that

the presence of the deterministic term allows uniform scattering of the points

on the unit circle when the distribution of up is not uniformly distribution in

[−1, 1].200

Thus the presence of the deterministic term ν(p − 1)Tc; ν 6= 0 makes every

sequence a good one since it allows scattering the points on the unit circle. We

can conclude that the important thing is to optimize |Zn| for ν = 0.

4. Ambiguity function for chaotic sequences

In this section we consider chaotic sequences {xp} generated by xp+1 =205

Tµ(xp) and an initial condition x0 ∈ [−1, 1] where µ ∈ [−1, 1]; Tµ(x) is the

piece-wise linear skew tent map defined in [−1, 1] by

Tµ(x) =

 2
µ−1x−

1+µ
µ−1 if µ < x ≤ 1

2
µ+1x−

µ−1
µ+1 otherwise

(33)

14
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The curve of Tµ(x) is given on Figure 9. The invariant probability density of

the variable xp is the uniform distribution in the interval [−1, 1] [24] i.e. for N

large enough xp, p = 0, 1, ..., N could be considered as a realization of a random210

variable uniformly distributed in [−1, 1]. The idea is to use such sequences in

the radar system described above with yp = gk(xp) for a given integer k where

gk(x) = T kµ (x)− x (34)

To analyze the statistics of yp for a given k, we plotted the curve of y = gk(x)

in Figure 4 for k = 4 (red line). The argument and the value of the maxi-

−1 0 1
−2

0

2

x

 

 

y

y = T k
µ (x)

y = T k
µ (x)− x

bk(1)
bk(2

k−1 + 1)

y0

ak(1) bk(2) bk(2
k−1 )

y1

y2

Mk(1)

Nk(1)

Mk(2) Mk(m0)

Nk(2)

Nk(2
k−1 )

Figure 10: Curves of y = gk(x); k = 4

mum and the minimum are respectively (ak(m),Mk(m)), 1 ≤ m ≤ 2k−1 and215

(bk(m),Nk(m)), 1 ≤ m ≤ 2k−1 + 1 where

Mk(m) = 1− ak(m), 1 ≤ m ≤ 2k−1 (35)

Nk(m) = −1− bk(m), 1 ≤ m ≤ 2k−1 + 1. (36)

16



ak(m) and bk(m) are defined by the following recursive relations[25]:

a1(1) = µ, b1(1) = −1, b1(2) = 1

ak+1(2m− 1) =
µ+ 1

2
[ak(m)− bk(m)] + bk(m)

220

ak+1(2m) =
µ+ 1

2
[ak(m)− bk(m+ 1)] + bk(m+ 1)

bk+1(2m− 1) = bk(m)

bk+1(2m) = ak(m)

bk+1(2m+ 1) = bk(m+ 1)

The curve of T kµ (x)−x consists of alternately 2k−1 increasing and decreasing

straight lines. Let y = T kµ (x)− x it is easy to see that225

• in the mth increasing line we have

x = Ak(m)y +Bk(m) (37)

Ak(m) =
ak(m)− bk(m)

2− ak(m) + bk(m)

Bk(m) =
ak(m) + bk(m)

2− ak(m) + bk(m)

• in the mth decreasing line we have

x = Ck(m)y +Dk(m) (38)
230

Ck(m) =
ak(m)− bk(m+ 1)

2− ak(m) + bk(m+ 1)

Dk(m) =
ak(m) + bk(m+ 1)

2− ak(m) + bk(m+ 1)

Let X be a random variable following the uniform distribution in [−1, 1] and

Y = T kµ (X) −X. The probability P (Y < y) = P (X ∈ g−1k (] − 2, y]). Since X

is supposed to be uniformly distributed in [−1, 1] we can confirm the following

points about the distribution of Y .235

• if y ≤ −2 the probability P (Y < y) = 0.
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• if y ≥Mk(1) the probability P (Y < y) = 1.

• if 0 ≤ y0 ≤ Mk(1) as shown in the figure there exists an unique integer

m0, 1 ≤ m0 ≤ 2k−1 − 1 such that y0 ∈ [Mk(m0 + 1),Mk(m0)]. Using

(37) and (38) we can show easily that240

P (Y < y0) =
1

2
(2−

m0∑
m=1

[Ck(m)−Ak(m)]y0 + [Dk(m)−Bk(m)]) (39)

• if Nk(2k−1) ≤ y1 ≤ 0 there exists an integer m1, 1 ≤ m1 ≤ 2k−1 − 1 such

that y1 ∈ [Nk(m1 + 1),Nk(m1)]. In this case

P (Y < y1) =
1

2

m1∑
m=1

[(Ak(m)− Ck(m))y1 +Bk(m)−Dk(m)]

+
1

2
[2− (Ck(2k−1)y1 +Dk(2k−1))] (40)

• −2 ≤ y2 ≤ Nk(2k−1)

P (Y < y2) =
1

2
(2− (Ck(2k−1)y2 +Dk(2k−1))) (41)

By deriving the function P (Y < y) in all the cases above we obtain the proba-245

bility density fµ,k(y) of Y = T kµ (X)−X

fµ,k(y) =



∑my

m=1
γ(k,m)

2 , if 0 ≤ y ≤Mk(1)∑my

m=1
γ(k,m)+Ck(2

k−1)

2 , if Nk(2k−1) ≤ y ≤ 0

−C(k,2k−1)
2 if − 2 < y ≤ Nk(2k−1)

0 otherwise

(42)

wheremy is the integer satisfying y ∈ [Mk(my+1),Mk(my)] if 0 ≤ y ≤ 1−ak(1)

or satisfying y ∈ [Nk(my + 1),Nk(my)] if −1− bk(2k−1) ≤ y < 0, and

γ(k,m) = A(k,m)− C(k,m)

Figure 11 exhibits the probability density of y = T kµ (x) − x in blue line for

µ = 0.7 and for different values of k. In red line we plotted the probability250

density of ỹ corresponding to y as defined in the previous section. From the
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Figure 11: Probability density of y = Tkµ (x)− x (Blue line) and ỹ (red line) for µ = 0.7
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Figure 12: Probability density of y = Tkµ (x)− x (Blue line) and ỹ (red line) for µ = 0.1
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previous discussion ỹ should be uniform in the interval [−1, 1] in order to have a

Rayleigh distribution for R = |Zn| and consequently to minimize the side lobes

of the ambiguity function.

We can see that after a few iterations the probability density of y = T kµ (x)−x255

tends to the triangular distribution in the interval [−2, 2] and thus ỹ follows the

uniform distribution in the interval [−1, 1]. We did the same thing for µ = 0.1;

the results are shown in the Figure 12 . We have almost the same behaviour, with

the difference that for the case µ = 0.1 the distribution converges more quickly

with respect to the case µ = 0.7. In the general case we obtain a distribution260

that converges to the triangular one for all values of µ, subsequently we have to

look for parameter µ that yields the uniform distribution for the smallest value

of iteration k.

To measure the resemblance of fµ,k(y) with the uniform distribution on the

interval [−1, 1] we considered the criteria265

C(µ, k) =

∫ 1

−1
(fµ,k(x)− 1

2
)2dx (43)

We plotted on Figure 13 C(µ, k) versus the iteration number k and for different
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Figure 13: C(µ, k) for different values of µ and k

values of µ. It is clear that the case µ = 0.1 allows the best value of C(µ, k).

To see the impact of this result, we plotted on Figure 14 the main term (9)

involved in the ambiguity function (5) as a function of ν and for k = 1, 2, 3 and
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for µ = 0.1 and µ = 0.7. As expected via the above analysis, the case µ = 0.1270

allows side lobes in the ambiguity function (9) smaller than the case µ = 0.7.

We have considered here only the first values of k since for higher values
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Figure 14: |R(k, ν)| for k = 1, 2, 3; µ = 0.1 and µ = 0.7

|R(k, ν)| behaves similarly regardless of the bifurcation parameter of the chaotic

sequence. Indeed the invariant distribution reaches the uniform distribution for

large values of k as explained above. In addition as previously explained for275

ν 6= 0 the phase coded sequence is distributed on the unit circle giving good

behaviour of |R(k, ν)| even with bad distribution; this explains the similarity of

the peaks of |R(k, ν)| for µ = 0.1 and µ = 0.7

This can also be seen in Figures 15 and 16 where the contours of the ambiguity

functions are plotted for µ = 0.1 and µ = 0.7 respectively. We zoomed in280

on the small values of k and ν because in the other regions, the behaviour of

the ambiguity function is almost the same for µ = 0.1 and µ = 0.7. In these

Figures and in Figures 20 and 21 below we have removed the maximum peaks

of |R(0, ν)|; indeed |R(0, ν)| is independent of the phase coded sequences (as

22



shown under equations (9)-(10)).285

In Figure 17 we have plotted the maximum value of the first side lobe of the
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Figure 15: Ambiguity function (|R(0, ν)| removed) obtained with chaotic waveform (µ = 0.1)

ambiguity function and the Lyapunov exponent (the well-known parameter that

characterizes the instability of a dynamic system) with respect to the bifurcation

parameter µ. We can see that the more chaotic the sequences, i.e. the larger

the Lyapunov exponent, the lower the maximum value of the first side lobe of290

the ambiguity function.

It should be noted that other chaotic transformations than the skew tent

map could have been envisaged in order to obtain a better distribution of the

sequence generated in particular in the first iterations and could thus avoid the

high peaks around zero (that is to say for k = 1) in the ambiguity function.295

If we have considered here the skew tent map as an example for generating

chaotic sequences, it is because in our opinion, its theoretical analysis is easier

than that of other chaotic transformations. In the next section, we propose a

way to construct sequences extracted from the sequences generated by the skew

tent map, producing a reduced first side lobe in the ambiguity function.300
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Figure 16: Ambiguity function (|R(0, ν)| removed) obtained with chaotic waveform (µ = 0.7)

5. Ambiguity function for down-sampled chaotic sequences

We have shown in the previous section how a chaotic sequence generated by

the piece-wise linear skew tent map can yield a pseudo-random sequence with a

desired probability distribution and, consequently, a good ambiguity function.

From the above analysis, however, we have seen that the ambiguity function305

is not as good as expected for the first values of k because the distribution

of the chaotic sequence has not yet converged to the permanent and desired

distribution, i.e. the uniform distribution in [−1, 1].

To circumvent this problem we here consider a down-sampled version of the

chaotic sequence, i.e. instead of sequences {xp, 0 ≤ p ≤ Nc − 1} defined as in310

section 4 we consider sequences
{
xsp, 0 ≤ p ≤ Nc − 1

}
defined by: xsp = xpNs

, 0 ≤
p ≤ Nc−1 where Ns is the sampling rate. Noting that xsp+k−xsp = xNsp+Nsk−
xNsp the probability density of xsp+k−xsp is the same as the one of xq+Nsk−xq.
For example, the distributions of xsp+k − xsp for k = 1, 2, Ns = 5 and when xp is

generated by (33) with µ = 0.1 are plotted in Figure 18.315

Comparing these distributions to the ones in Figures 11 and 12 and for the same

values of k = 1, 2 we can see that we achieved the desired uniform probability

density for all values of k. To analyse the impact of this down-sampling on
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nent versus the bifurcation parameter µ
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Figure 18: Distribution of xsp+1 − xp and xsp+2 − xp for Ns = 5

the ambiguity function we plotted on Figure 19 |R(k, ν)|, k = 1, 2, 3 for xp and

xSp . We can clearly see the superiority of the down-sampled sequence xSp with320

respect to the sequence xp.

The resulting ambiguity function in the case µ = 0.1 and for Ns = 5 from

which we have removed the maximum peaks of |R(0, ν)| is shown in Figure 20.

By comparing this ambiguity function to that of Figure 15 corresponding to

µ = 0.1 and for Ns = 1 we can see the disappearance of the high peaks close325

to (k, ν) = (1, 0) (corresponding to the first side lobe). We also see that the

maximum value of the side lobes is reduced while their average value is almost

the same.
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Figure 19: |R(k, ν)|, k = 1, 2, 3 for xp and xSp

We have compared the performances of the waveforms presented here to those

proposed in [26]. In this work, the authors generated phase coded waveforms330

from the so-called cyclic-new algorithm (CAN), an iterative and cyclic algorithm

minimizing a cost function based on the ambiguity function. By comparing

Figures 20 and 21, and in particular the maximum and average values of the

side lobes of the ambiguity functions, it can be seen that the sequences based on

the chaos proposed with a down sampling give almost the same performances335

as CAN sequences. The advantage of chaotic waveforms over CAN waveforms

is due to the simplicity of their generation and this regardless of their length or

number. Indeed by randomly choosing the initial condition in (33) we obtain

a new sequence having the same statistical properties as the others. This also

gives the possibility of obtaining sequences with desired spectral characteristics.340

On the contrary, in the case of CAN waveforms, if we want to add a new

waveform and / or a longer waveform to those already generated by CAN,

further optimization of the cost function is necessary.
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Figure 20: Ambiguity function (|R(0, ν)| removed) obtained with down-sampled chaotic wave-

form (µ = 0.1)
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Figure 21: Ambiguity function (|R(0, ν)| removed) obtained with CAN waveforms

6. Conclusion345

In this paper we adopted a statistical approach to look for sequences that

optimize the ambiguity function of a radar system. We have shown that desired

sequences can be generated by a random variable with an appropriate distribu-

tion and that it is possible to obtain such sequences by generating them using

a chaotic skew tent map. The advantage of using chaotic sequences is that350

they can be generated of any length and in large numbers. Although generated

from a deterministic map with few parameters, they can be considered pseudo-

random which makes it possible to study their statistical characteristics. Note

that other chaotic sequences could be used and studied.

In this paper, we considered the ambiguity function in the case of a basic radar355

system. It would be easy to demonstrate that the proposed analysis is still

valid for the single input-multi-output (SIMO) radar system. The multi-input-

multi-output (MIMO) case is however less straightforward since it involves the
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generation of multiple sequences with good properties of the cross-correlations

which are embedded in other parameters such that the transmission antenna360

geometry. Because of the promising results we have here obtained, we will ex-

amine the MIMO case in a future work and adopt the same statistical approach

to optimize the ambiguity function by considering the cross-correlation functions

of the sequences.
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Appendix

Proof of (24) and (25)

In this appendix we show (24) where we assumed a = 2l, l is a positive450

integer; the demonstration of (25) is almost the same. For simplicity we begin

by the notations: W = yp ∈ [−a, a] and Z = ỹp ∈ [−1, 1]. It is obvious that if

W = Z + 2k where k is an integer, we have ejπW = ejπZ .

We have

P [Z < z] = 0;∀z ≤ −1 (44)
455

P [Z < z] = 1;∀z ≥ 1 (45)

For z ∈ [−1, 2l − a]

P [Z < z] = P [−1 ≤ Z < z] =

l∑
k=1−l

P [−1 + 2k ≤W < z + 2k]

Knowing that W is uniformly distributed in [−a, a] we have P [−1 + 2k < W <

z + 2k] = z+1
2a ; we obtain

P [Z < z] = 2l
z + 1

2a
=
l

a
(z + 1) (46)

For z ∈ [2l − a, 0]

P [Z < z] = P [−1 ≤ Z < 2l−a]+P [2l−a < Z < z] =
l

a
(2l−a+1)+

l∑
k=−l

P [2l−a+2k < W < z+2k]
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We obtain460

P [Z < z] =
l

a
(2l − a+ 1) +

2l + 1

2a
(z + a− 2l) (47)

For z ∈ [0, a− 2l]

P [Z < z] = P [−1 ≤ Z < 0] + P [0 < Z < z]

From (47) the first term of this summation is 1
2 , thus

P [Z < z] =
1

2
+

l∑
k=−l

P [2k < W < z + 2k]

We obtain

P [Z < z] =
1

2
+

2l + 1

2a
z (48)

For z ∈ [a− 2l, 1]

P [Z < z] = P [−1 < Z < a− 2l] + P [a− 2l < Z < z]

From (48) the first term of this summation is (2l+1)(a−2l)
2a , thus465

P [Z < z] =
(2l + 1)(a− 2l)

2a
+

l−1∑
k=−l

P [a+ 2k − 2l < W < z + 2k]

We obtain

P [Z < z] =
(2l + 1)(a− 2l)

2a
+
l

a
(z − a+ 2l) (49)

The distribution of Z is obtained by deriving the expressions (45-49) and thus

we obtain (24).

Proof of (27) and (28)

As the demonstrations of the expressions (27) and (28) are similar we show470

here only (27).

Let W = yp ∈ [−a, a] and Z = ỹp ∈ [−1, 1]. It is obvious that if W = Z + 2k

where k is an integer, we have ejπW = ejπZ .

Also we have (44) and (45).

For z ∈ [−1, 2l − a]475

P [Z < z] = P [−1 ≤ Z < z] =

l∑
k=1−l

P [−1 + 2k ≤W < z + 2k]

33



fW (w) =

 w+a
a2 ,∀w ∈ [−a, 0]

−w+a
a2 ,∀w ∈ [0, a]

Thus we have

P [−1 + 2k < W < z + 2k] =


∫ z+2k

−1+2k
−w+a
a2 dw, if k ≥ 1∫ z+2k

−1+2k
w+a
a2 dw, if k ≤ 0

which gives

P [Z < z] =
1

a2

0∑
k=1−l

[
1

2
z2 + (a+ 2k)z + C1] +

1

a2

l∑
k=1

[−1

2
z2 + (a− 2k)z + C2]

where C1 and C2 are constants; By simplifying we obtain

P [Z < z] =
1

a2
(2al − l2)z + C1 + C2 (50)

For z ∈ [2l − a, 0]480

P [Z < z] = P [Z < 2l − a] + P [2l − a ≤ Z < z]

P [Z < z] = C + P [2l − a ≤ Z < z]

C is constant

P [Z < z] = C +

l∑
k=−l

P [2l − a+ 2k ≤W < z + 2k]

P [Z < z] = C +
1

a2

0∑
k=−l

[
1

2
z2 + (a+ 2k)z] +C3 +

1

a2

l∑
k=1

[−1

2
z2 + (a− 2k)z] +C4

which gives

P [Z < z] =
1

a2
[
1

2
z2 + (2l + 1)az − 2l(l + 1)z] + C +D

D = C3 + C4 Thus,485

P [Z < z] =
1

a2
[
1

2
z2 + ((2l + 1)a− 2l(l + 1))z] + C +D (51)

By deriving (50) and (51) we find the distribution of Z for z < 0, for the

symmetry of the problem we deduce the distribution of Z for z > 0; thus we

find

fZ(z) =

 2al−l2
a2 , if a− 2l ≤ |z| ≥ 1

(2l+1)a−2l(l+1)−|z|
a2 , if 0 < |z| ≤ a− 2l
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