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Abstract: This paper investigates the problem of secret key generation over a wiretap channel when
the terminals observe correlated sources. These sources are independent of the main channel and
the users overhear them before the transmission takes place. A novel outer bound is proposed
and, employing a previously reported inner bound, the secret key capacity is derived under certain
less-noisy conditions on the channel or source components. This result improves upon the existing
literature where the more stringent condition of degradedness is required. Furthermore, numerical
evaluation of the achievable scheme and previously reported results for a binary model are presented;
a comparison of the numerical bounds provides insights on the benefit of the chosen scheme.

Keywords: information-theoretic security; secret key agreement; secret key capacity; wiretap channel;
correlated sources

1. Introduction

The wiretap channel, introduced by Wyner [1], is the basic model for analyzing secrecy in wireless
communications. In this model, the transmitter, named Alice, wants to communicate reliably with
Bob while keeping the transmitted message—or part of it—secret from an eavesdropper, named Eve,
overhearing the communication through another channel. Secrecy is characterized by the amount
of information that is not leaked, which can be measured by the equivocation rate—the remaining
uncertainty about the message at the eavesdropper. The secrecy capacity of the wiretap channel
is thus defined as the maximum transmission rate that can be attained with zero leakage. In their
influential paper [2], Csiszár and Körner determined the rate-equivocation region of a general broadcast
channel with any arbitrary level of security, which also establishes the secrecy capacity of the wiretap
channel. These schemes guarantee secrecy by exploiting an artificial random noise that saturates the
eavesdropper’s decoding capabilities.

On the other hand, Shannon [3] showed that it is also possible to achieve a positive secrecy rate
by means of a secret key. Alice and Bob can safely communicate over a noiseless public broadcast
channel as long as they share a secret key. The rate of this key, however, must be at least as large
as the rate of the message to attain zero leakage. The main question that arises in this scenario is
therefore: how do the legitimate users safely share the secret key? The answer is that the users should
not communicate the key itself, which would then be compromised. Instead, they should only convey
enough information to allow themselves to agree upon a key without disclosing, at the same time,
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any relevant information about it to the eavesdropper (for further discussion, the reader is referred
to [4,5]).

In this work, we study the problem of secret key generation over a wiretap channel with correlated
sources at each terminal. These sources are assumed to be independent of the main channel and
there is no additional public broadcast channel of finite or infinite rate, as seen in Figure 1. It is
assumed that each node acquires the n-sequence observation of its corresponding source before the
communication begins.

Rr

K
Alice

Xm
p(yz|x)

Ym

Zm

Bob
K̂

Pr
{

K̂ 6=K
}
≤ε

Eve I(K; ZmEn) ≤ ε

p(abe)
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En
Bn

Figure 1. System model for the problem of secret key generation. Every node has access to one of the
correlated sources (A, B, E), whereas Rr is the local randomness only used by Alice.

1.1. Related Work

Maurer [6] and Ahlswede and Csiszár [7] were among the first to study the use of correlated
observations available at the legitimate users as a means to agree upon a key. In addition to the
correlated observations, the terminals may communicate over a public broadcast channel of infinite
capacity to which the eavesdropper has also access. Two models are proposed in [7]: the “source
model”, where the users observe correlated random sources controlled by nature, and the “channel
model”, where the users observe inputs and outputs of a noisy channel controlled by one of the users.
In [8], Csiszár and Narayan studied the first model but assumed that the public broadcast channel
has finite capacity and there is a third “helper” node who is not interested in recovering the key but
rather helping Alice and Bob. The same authors also analyzed the channel model with only one [9]
or with multiple channel inputs [10]. Capacity results are presented in [8–10] assuming that there is
only one round of communication over the public channel. General inner and outer bounds for both
source and channel models with interaction over the public channel were introduced by Gohari and
Anantharam [11,12].

More recently, Khisti et al. [13] investigated the situation where there is no helper node, the users
communicate over a wiretap channel, and a separate public discussion channel may or may not be
available. The simultaneous transmission of a secret message along with a key generation scheme
using correlated sources was analyzed by Prabhakaran et al. [14]. They obtained a simple expression
that reveals the trade-off between the achievable secrecy rate and the achievable rate of the secret key.
The corresponding Gaussian channel with correlated Gaussian sources but independent of the channel
components is recently studied in [15]. Closed form expressions for both secret key generation and
secret message transmission are derived. On the other hand, Salimi et al. [16] considered simultaneous
key generation of two independent users over a multiple access channel with feedback, where each
user eavesdrops the other. In addition, the receiver can actively send feedback, through a private
noiseless (or noisy) link, to increase the size of the shared keys.

The authors of [13–15] did not assume interactive communication, i.e., there is only one round of
communication. Salimi et al. [16], however, allowed the end user to respond once through the feedback
link. Other authors have analyzed key generation schemes that rely on several rounds of transmissions.
Tyagi [17] characterized the minimum communication rate required to generate a maximum-rate secret
key with r rounds of interactive communication. He showed that this rate is equal to the interactive
common information (a quantity he introduces) minus the secret key capacity. In his model, two users
observe i.i.d. correlated sources and communicate over an error-free channel. Hayashi et al. [18]
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studied a similar problem but consider general (not necessarily i.i.d.) source sequences of finite
length. Their proposed protocol attains the secret key capacity for general observations as well as the
second-order asymptotic term of the maximum feasible secret key length for i.i.d. observations. They
also proved that the standard one-way communication protocol fails to attain the aforementioned
asymptotic result. Courtade and Halford [19] analyzed the related problem of how many rounds of
public transmissions are required to generate a specific number of secret keys. Their model assumes
that there are n terminals connected through an error-free public channel, where each terminal is
provided with a number of messages before transmission that it uses to generate the keys. More
recently, Boche et al. [20] investigated the computability of the secret key in the source model with only
one forward communication. They showed that the corresponding secret key capacity is not Turing
computable when the public communication is rate-limited, and consequently there is no algorithm
that can simulate or compute the secret key capacity.

As previously mentioned, the focus of the present work is on sources that are independent of the
main channel; nonetheless, some works have addressed the general situation of correlated sources and
channels. Prior work on secrecy for channels with state include Chen and Vinck’s [21] and Liu and
Chen’s [22] analyses of the wiretap channel with state. These works employ Gelfand and Pinsker’s
scheme [23] to correlate the transmitted codeword with the channel state at the same time that it
saturates the eavesdropper’s decoding capabilities. A single-letter expression of the secrecy capacity
for this model is still unknown, although a multi-letter bound was provided by Muramatsu [24] and
a novel lower bound is recently reported in [25]. As a matter of fact, the complexity of this problem
also lies in the derivation of an outer bound that can handle simultaneously secrecy and channels
with state.

To the best of our knowledge, only a handful of works have studied the problem of key generation
for channels with state. The previously mentioned result of Prabhakaran et al. [14] is one of these
examples. Zibaeenejad [26] analyzed a similar scenario where there is also a public channel of finite
capacity between the users and he provides an inner and an outer bound for this model. Although
the inner bound is developed for a channel with state, it is possible to apply it to the model used in
the present work, i.e., sources independent of the main channel. However, some steps of the proof
reported in [26] appear to be obscure and a constraint seems to be missing in the final expression;
the resulting achievable rate was recently shown in [27] to be in certain cases unachievable. As a
consequence, we decided not to compare our inner bound to this previously reported scheme.

1.2. Contributions and Organization of the Paper

In this work, we introduce a novel outer bound (Theorem 2) for the problem of secret key
generation over a wiretap channel with correlated sources at each terminal. The correlated sources are
assumed to be independent of the main channel and, thanks to a previously reported inner bound
(Theorem 1), we obtain the capacity region (Propositions 1–3) whenever the channel and/or source
components satisfy the specific less-noisy conditions described in Table 1. In contrast, the proposed
schemes in [13–16] are optimal only when the stronger degradedness condition holds true for the channel
and source components.

The results and tools introduced in this work have connections to ones in a previous work of
ours [28], where we studied both the secrecy capacity and the secret key capacity of the wiretap channel
with generalized feedback. In [28], we determined some capacity regions for the problem dealt here as
a secondary result of the main problem. It is not surprising that, by being the main focus of the present
work, the capacity results shown here are more general than those in [28]. Furthermore, we go deeper
into the analysis of secret key agreement schemes and we show, in Section 4, the suboptimality of a
previously published achievable scheme.

This paper is organized as follows. Section 2 provides some definitions and the previously
reported inner bound. In Section 3, we first present the outer bound for the problem of secret key
agreement and then we enumerate the cases where we obtain the capacity region. Section 4 illustrates
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with a binary example the benefit of the present inner bound over a previously reported scheme.
Finally, Section 5 summarizes and concludes the work, while some technical proofs are deferred to
the appendices.

1.3. Notation and Conventions

Throughout this work, we use the standard notation of El Gamal and Kim [29]. Specifically, given
two integers i and j, the expression [i : j] denotes the set {i, i + 1, . . . , j}, whereas for real values a
and b, [a, b] denotes the closed interval between a and b. We use the notation xj

i = (xi, xi+1, . . . , xj) to
denote the sequence of length j− i + 1 for 1 ≤ i ≤ j. If i = 1, we drop the subscript for succinctness,
i.e., xj = (x1, x2, . . . , xj). Lowercase letters such as x and y are mainly used to represent constants or
realizations of random variables, capital letters such as X and Y stand for the random variables in
itself, and calligraphic letters such as X and Y are reserved for sets, codebooks, or special functions.

The set of nonnegative real numbers is denoted by R+. The probability distribution (PD) of the
random vector Xn, pXn(xn), is succinctly written as p(xn) without subscript when it can be understood
from the argument xn. Given three random variables X, Y, and Z, if its joint PD can be decomposed as
p(xyz) = p(x)p(y|x)p(z|y), then they form a Markov chain, denoted by X−
−Y−
− Z. The random
variable Y is said to be less noisy than Z w.r.t. X if I(U; Y) ≥ I(U; Z) for each random variable U
such that U −
− X −
− (Y, Z); this relation is denoted by Y �X Z. Entropy is denoted by H(·) and
mutual information, I(·; ·). The expression [x]+ denotes max{x, 0}. Given u, v ∈ [0, 1], the function
h2(u) , −u log2 u− (1− u) log2(1− u) is the binary entropy function and u ∗ v , u(1− v) + v(1− u).
We denote typical and conditional typical sets by T n

δ (X) and T n
δ (Y|xn), respectively.

2. Preliminaries

2.1. Problem Definition

Consider the wiretap channel with correlated sources at every node (A, B, E), as shown in Figure 1.
The legitimate users (Alice and Bob) want to agree upon a secret key K ∈ K while an eavesdropper
(Eve) is overhearing the communication. Let A, B, E , X , Y , and Z be six finite sets. Alice, Bob,
and Eve observe the random sequences (sources) An, Bn, and En, respectively, drawn i.i.d. according
to the joint distribution p(abe) on A×B × E . Alice communicates with Bob through m instances of a
discrete memoryless channel with input X ∈ X and output Y ∈ Y . Eve is listening the communication
through another channel with input X ∈ X and output Z ∈ Z . This channel is defined by its transition
probability p(yz|x) and it is independent of the sources’ distribution.

Definition 1 (Code). A (2nRk , n, m) secret key code cn for this model consists of:

• a key set Kn , [1 : 2nRk ], where Rk is the rate of the secret key;
• a source of local randomness Rr ∈ Rr at Alice;
• an encoding function ϕ : An ×Rr → Xm;
• a key generation function ψa : An ×Rr → Kn; and
• a key generation function ψb : Bn ×Ym → Kn.

The rate of such a code is defined as the number of channel uses per source symbol
m
n

.

Given a code, let K = ψa(An, Rr) and Xm = ϕ(An, Rr); then, the performance of the (2nRk , n, m)

secret key code cn is measured in terms of its average probability of error

Pe(cn) , Pr{ψb(Bn, Ym) 6= K|cn} , (1)

in terms of the information leakage

Lk(cn) , I(K; EnZm|cn) , (2)
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and in terms of the uniformity of the keys

Uk(cn) , nRk − H(K|cn) . (3)

Definition 2 (Achievability). A tuple (η, Rk) ∈ R2
+ is said to be achievable for this model if, for every ε > 0

and sufficiently large n, there exists a (2nRk , n, m) secret key code cn such that

m
n
≤ η + ε , Pe(cn) ≤ ε , L(cn) ≤ ε , and U(cn) ≤ ε . (4)

The set of all achievable tuples is denoted byR? and is referred to as the secret key region.

2.2. Inner Bound

The following theorem gives an inner bound onR?, i.e., it defines the regionRin ⊆ R?.

Theorem 1 ([30], Theorem 2). A tuple (η, Rk) ∈ R2
+ is achievable if there exist random variables U, V,

Q, T, and X on finite sets U , V , Q, T , and X , respectively, with joint distribution p(uvqtxyzabe) =

p(q|t)p(tx)p(yz|x)p(abe)p(v|a)p(u|v), which verify

Rk ≤ η
[
I(T; Y|Q)− I(T; Z|Q)

]
+ I(V; B|U)− I(V; E|U) (5)

subject to

I(U; A|B) ≤ η I(Q; Y) , (6a)

I(V; A|B) ≤ η I(T; Y) . (6b)

Moreover, it suffices to consider sets U , V ,Q, and T such that |U | ≤ |A|+ 2, |V| ≤ (|A|+ 1)(|A|+ 2),
|Q| ≤ |X |+ 2, and |T | ≤ (|X |+ 1)(|X |+ 2).

Sketch of Proof. Alice employs the two-layer description (U, V) to compress the source A and she
transmits it through the two-layer channel codeword (Q, T). Each layer of the description must fit
in the corresponding layer of the channel codeword according to Equation (6). In brief, the encoder
randomly picks codewords un(s1) from T n

δ (U) and, for each one, it randomly picks codewords
vn(s1, s2) from T n

δ (V|un(s1)). After observing the source sequence an, the encoder selects the indices
(ŝ1, ŝ2) of the codewords that are jointly typical with an. The codewords un(s1) and vn(s1, s2) are
distributed in bins, i.e., un(s1) ∈ B1(r1) and vn(s1, s2) ∈ B̃2(s1, r2, rp), and it is the bin indices (r̂1, r̂2, r̂p)

which are transmitted through the noisy channel. The channel codewords qm(r1, r2) are randomly
picked from T m

δ (Q) and, for each qm(r1, r2), the codewords tm(r1, r2, rp, k2, r f ) are randomly picked
from T m

δ (T|qm(r1, r2)). In addition to the bin indices from the two-layer description of the source,
the encoder uses the noisy channel to transmit a part of the secret key (k2), which is protected using a
wiretap code; the dummy index r f corresponds to the artificial noise used to exhaust the decoding
capabilities of the eavesdropper. Once the decoder successfully decodes the channel and source
codewords using its side information bn, it can obtain the other part of the key (k1) from another bin
index of the source codeword, i.e., vn(s1, s2) ∈ B̄2(s1, r2, k1). We note that the achievable secret key
rate in Equation (5) is a combination of the secret bits transmitted through the noisy channel in the
manner of the wiretap channel and the secret bits obtained by the reconstruction of the source at Bob.

The inner bound in [30] is obtained using the weak secrecy and uniformity conditions,
i.e., L(cn) ≤ nε and U(cn) ≤ nε. However, an improved proof of the inner bound is found in [31],
which shows that the strong secrecy and uniformity conditions in Equation (4) also hold true. We refer
the interested reader to [30,31] for a detailed proof of the inner bound.
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Remark 1. By setting U = ∅, the region in Theorem 1 recovers the results in ([13], Theorems 1 and 4), when
the eavesdropper has access to a correlated source, and ([14], Theorem 2), when there is no secret message to be
transmitted. The advantage of having two layers of description is that Theorem 1 can potentially achieve higher
secret key rates (see Section 4) and it recovers the result of Csiszár and Narayan [8] (see Remark 6).

Remark 2. The inner bound in Theorem 1 is a special case of the inner bound recently proposed in [27] for a
more general system model.

Remark 3. The region in Theorem 1 also recovers the result in ([32], Theorem 1) which was published after
the original submission of Bassi et al. [30]. In that work, Alice and Bob communicate over a public noiseless
channel of rate R1 and a secure noiseless channel of rate R2. The proposed achievable scheme in [32] sends the
codeword Q through the public channel, i.e., I(Q; Y) = R1, and the codeword T through the secure channel,
i.e., I(T; Y|Q) = R2 and I(T; Z|Q) = 0. The reader may verify that, by using the aforementioned quantities
and η = 1, both regions are equal.

3. Main Results

In this section, we first introduce an outer bound for the secret key region (Theorem 2). We then
study some special cases where the inner bound of Theorem 1 turns out to achieve the (optimal) secret
key region (Propositions 1–3).

3.1. Outer Bound

The following theorem gives an outer bound onR?, i.e., it defines the regionRout ⊇ R?.

Theorem 2. An outer bound on the secret key region for this channel model is given by

Rk ≤ max
p∈P

{
η
[
I(T; Y)− I(T; Z)

]
+ I(V; B|U)− I(V; E|U)

}
(7)

subject to
I(V; A|B) ≤ η I(X; Y) , (8)

where P is the set of all input probability distributions given by

P =
{

p(txyzuvabe) = p(tx)p(yz|x)p(abe)p(v|a)p(u|v)
}

(9)

with |T | ≤ |X |, |U | ≤ |A|+ 1, and |V| ≤ (|A|+ 1)2.

Proof. Refer to Appendix A for details.

Theorem 2 shows that the secret key generated between Alice and Bob has two components. The
first two terms on the r.h.s. of Equation (7) represent the part of the key that is securely transmitted
through the noisy channel (given by the random variable T) as in the wiretap channel. On the other
hand, the last two terms on the r.h.s. of Equation (7) characterize the part of the key that is securely
extracted from the correlated sources (given by the random variables U and V). Since the source and
channel variables are independent in the model, it should not be surprising that the variable T is
independent of (U, V). However, given that the users need to agree on common extracted bits from
the source, the noisy channel imposes the restriction in Equation (8) on the amount of information
exchanged during that agreement.

Remark 4. The regionsRout andRin do not coincide in general. This is due to the presence of the condition
in Equation (6a) in the inner bound, and the looser condition in Equation (8) in the outer bound with respect
to Equation (6b). We present in Section 3.2 a few special cases where these differences disappear and both
regions coincide.
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Remark 5. We note that, although the model defines source and channel sequences of potentially different
lengths, the final bounds in Equations (7) and (8) are single-letter and they are calculated using the single-letter
probability distribution in Equation (9). The difference in sequence length is captured by the coefficient η defined
in Equation (4).

3.2. Optimal Characterization of the Secret Key Rate

The inner boundRin is optimal under certain less-noisy conditions on the channel and/or source
components. These special cases are summarized in Table 1 and explained in the sequel.

Table 1. Regimes where Theorem 1 is optimal. No secret key is achievable if Z �X Y and E �A B.

Z �X Y Y �X Z

E �A B B �A E E �A B B �A E

Rk = 0 Proposition 1 Proposition 2 Proposition 3

3.2.1. Eve Has a Less Noisy Channel

If Eve has a less noisy channel than Bob, i.e., Z �X Y, the information transmitted over the channel
is compromised. Therefore, the amount of secret key that can be generated only depends on the
statistical differences between the sources.

Proposition 1. If Z �X Y, a tuple (η, Rk) ∈ R2
+ is achievable if and only if there exist random

variables U, V, and X on finite sets U , V , and X , respectively, with joint distribution p(uvabexyz) =

p(u|v)p(v|a)p(abe)p(x)p(yz|x), which verify

Rk ≤ I(V; B|U)− I(V; E|U) (10a)

subject to I(V; A|B) ≤ η I(X; Y) . (10b)

Proof. Given the less-noisy condition on Eve’s channel, i.e., I(T; Y) ≤ I(T; Z) for any RV T such that
T−
−X−
− (YZ), the bound in Equation (7) is maximized with T = ∅. On the other hand, the region in
Equation (10) is achievable by setting auxiliary RVs Q = T = X inRin.

Remark 6. The secret key capacity of the wiretap channel with a public noiseless channel of rate R ([8],
Theorem 2.6) turns out to be a special case of Proposition 1, where X = Y = Z and defining η H(X) =

η log |X | ≡ R.

3.2.2. Eve Has a Less Noisy Source

If Eve has a less noisy source than Bob, i.e., E �A B, the amount of secret key that can be generated
depends on the amount of secure information transmitted through the wiretap channel.

Proposition 2. If E �A B, a tuple (η, Rk) ∈ R2
+ is achievable if and only if there exist random variables T and

X on finite sets T and X , respectively, with joint distribution p(txyz) = p(tx)p(yz|x), which verify

Rk ≤ η
[
I(T; Y)− I(T; Z)

]
. (11)

Proof. Given the less-noisy condition on Eve’s source, i.e., I(V; B) ≤ I(V; E) for any RV V such that
V −
− A−
− (BE), the bound in Equation (7) is maximized with U = V and independent of the sources.
The region in Equation (11) is achievable by using the same auxiliary RVs in the inner bound as in the
outer bound.

Remark 7. The bound in Equation (11) is equal to the secrecy capacity of the wiretap channel.
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Remark 8. Even though the bound in Equation (11) becomes independent of the sources sequences (An, Bn, En),
we assume n 6= 0, and thus the rate η is finite.

3.2.3. Bob Has a Less Noisy Channel and Source

If Bob has a less noisy channel and source than Eve, i.e., Y �X Z and B �A E, the lower layers of
the channel and source codewords are no longer needed.

Proposition 3. If Y �X Z and B �A E, a tuple (η, Rk) ∈ R2
+ is achievable if and only if there exist

random variables V and X on finite sets V and X , respectively, with joint distribution p(vabexyz) =

p(v|a)p(abe)p(x)p(yz|x), which verify

Rk ≤ η
[
I(X; Y)− I(X; Z)

]
+ I(V; B)− I(V; E) (12a)

subject to I(V; A|B) ≤ η I(X; Y) . (12b)

Proof. Given the less-noisy conditions on Bob’s channel and source, the bound in Equation (7) is
maximized with U = ∅ and T = X. The region in Equation (12) is achievable by also setting auxiliary
RVs U = Q = ∅ and T = X in the inner bound.

Remark 9. Proposition 3 extends the results from ([13], Theorem 4) and ([14], Theorem 3) which assume the
more stringent conditions of degradedness: A−
− B−
− E and X−
−Y−
− Z.

4. Secret Key Agreement over a Wiretap Channel with BEC/BSC Sources

As mentioned in Remark 1, the inner bound introduced in Section 2.2 employs two layers of
description, and thus it is an improvement over previously reported results. In this section, we compare
the performance of this achievable scheme with the scheme in [13] for a specific binary source and
channel model.

4.1. System Model

Consider the communication system depicted in Figure 2. The main channel consists of a noiseless
link from Alice to Bob and a binary symmetric channel (BSC) with crossover probability ζ ∈

[
0, 1

2

]
from Alice to Eve (see Figure 2a). Additionally, the three nodes have access to correlated sources;
in particular, Alice observes a binary uniformly distributed source, i.e., A ∼ B

(
1
2

)
, which is the

input of two parallel channels, as shown in Figure 2b. Bob observes the output of a binary erasure
channel (BEC) with erasure probability β ∈ [0, 1], and Eve, a BSC with crossover probability ε ∈

[
0, 1

2

]
.

For simplicity, we assume η = 1 in the sequel.

X = Y
0

1

Z
0

1

1− ζ

ζ

ζ

1− ζ

(a) Main channel

A
0

1

B
0

e

1

E
0

1

1− ε

ε

ε

1− ε

1− β

β

β

1− β

(b) BEC/BSC sources

Figure 2. System model for the wiretap channel with BEC/BSC sources.

Remark 10. The sources (A, B, E) satisfy different properties according to the values of the parameters
(β, ε) [33], specifically:
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• If 0 ≤ β < 2ε, E is a degraded version of B, i.e., A−
− B−
− E.
• If 2ε ≤ β < 4ε(1− ε), B is less noisy than E, i.e., B �A E.
• If 4ε(1− ε) ≤ β < h2(ε), B is more capable than E.

4.2. Performance of the Coding Scheme

The following proposition provides a simple expression of the inner bound from Theorem 1.
The expression is obtained by simplifying the maximization process of the input distribution, and thus
it might not be optimal. However, this suffices to show the higher rates achieved by this scheme as we
see later.

Proposition 4. The tuple (η = 1, Rk) ∈ Rin if there exist u, v, q ∈
[
0, 1

2
]

such that:

Rk ≤ (1− β)
[
h2(v ∗ u)− h2(v)

]
+ h2(v ∗ ε)− h2(v ∗ u ∗ ε) + h2(ζ) + h2(q)− h2(ζ ∗ q) , (13a)

subject to β
[
1− h2(v ∗ u)

]
≤ 1− h2(q) . (13b)

Proof. The bound in Equation (13) is directly calculated from Equations (5) and (6a) with the following
choice of input random variables: T = X, Q = X ⊕ Q′, V = A ⊕ V′, and U = V ⊕ U′. Here,
X ∼ B

(
1
2

)
, Q′ ∼ B(q), V′ ∼ B(v), and U′ ∼ B(u), and each random variable is independent of each

other and (A, B, E). The condition in Equation (6b) in the inner bound becomes redundant with the
aforementioned choice of input distribution.

As previously mentioned, we provide next the inner bound presented in ([13], Theorem 4) as a
means of comparison. This inner bound is similar to Theorem 1 but with only one layer of description
for the source A; thus, its achievable region is denoted Rin-1L. We note that Theorem 4 from [13] is
actually a capacity result assuming that A−
− B−
− E and X−
−Y−
− Z. In our present example, only
the second Markov chain holds independently of the value of the parameters β and ε, but this does
not invalidate the use of the inner bound.

Proposition 5 ([13], Theorem 4). The tuple (η = 1, Rk) ∈ Rin-1L if and only if

Rk ≤
[
h2(ε)− β

]+
+ h2(ζ) . (14)

Proof. See Appendix B.

Remark 11. Proposition 5 is a special case of Proposition 4 with u = q = 1
2 , and v = 0 or v = 1

2 . As mentioned
in Remark 1, the inner bound ([13], Theorem 4) is a special case of Theorem 1 with U = ∅ (thus u = 1

2 ).
Moreover, given that in this model the Markov chain X−
−Y−
− Z holds, the channel codebook of Proposition 5
only has one layer (thus q = 1

2 ). On the other hand, there are two layers of description in Proposition 4,
and whenever U 6= ∅ (i.e., u < 1

2 ), we have that Q 6= ∅ (i.e., q < 1
2 ). This relationship is determined by

Equation (13b).

We performed numerical optimization of the bound in Equation (13) for different values of
β while fixing ζ = 0.01 and ε = 0.05; the results are shown in Figure 3 along with the bound in
Equation (14). We see in the figure the advantage of having two layers of description for the source A.
The proposed scheme in Proposition 4 attains higher secret key rates than the scheme with only one
layer of description (Proposition 5) for intermediate values of β. It is in this regime, when the source B
is no longer less noisy than E, that two layers of description are needed.
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Figure 3. Achievable secret key rates for the wiretap channel with BEC/BSC sources, with ζ = 0.01
and ε = 0.05. In Region A, A−
− B−
− E; in Region B, B �A E; and, in Region C, B is more capable than
E. The horizontal dotted line corresponds to the secrecy capacity of the main channel, i.e., h2(ζ).

5. Summary and Concluding Remarks

In this work, we investigated the problem of secret key generation over a noisy channel in presence
of correlated sources (independent of the main channel) at all terminals. We introduced a novel outer
bound for this channel model, which allowed us to show that a particular achievable scheme is optimal
for all classes of less-noisy sources and channels (Propositions 1–3). In Section 4, we further compared
the performance of the aforementioned achievable scheme with a previously reported result for a
simple binary model. Numerical computation of the corresponding bounds provided interesting
insights on the regimes where the achievable scheme outperforms the previous one.

This work, however, does not address the scenario where the sources and the noisy channel are
correlated. The extension of the previously mentioned result of Prabhakaran et al. [14] by using two
description layers is a natural consequence. Indeed, this extension—posterior to the short version
of the present work in [30]—has been recently addressed in [27]. By using two description layers,
the proposed achievable scheme recovers the present inner bound for η = 1 provided that the sources
are independent of the channel.
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Appendix A. Proof of Theorem 2

The outer bound is derived by following similar steps to those in ([28], Theorem 4) which assumes
η = 1. It is reproduced here for completeness.

Let (η, Rk) be an achievable tuple according to Definition 2, and ε > 0. Then, there exists a
(2nRk , n, m) secret key code cn with functions ϕ(·), ψa(·), and ψb(·) such that

Xm = ϕ(An, Rr) , (A1a)

K = ψa(An, Rr) , (A1b)

K̂ = ψb(Bn, Ym) , (A1c)

that verify

m
n
≤ η + ε , (A2a)

Pr
{

K 6= K̂
}
≤ ε , (A2b)

I(K; EnZm) ≤ ε , (A2c)

nRk − H(K) ≤ ε , (A2d)

where we have dropped the conditioning on the codebook cn from Equations (A2b)–(A2d) and all
subsequent calculations for clarity. Before continuing, we present the following remark that is useful
to establish Markov chains between the random variables.

Remark A1. From the fact that random variables Ai, Bi, Ei are independent across time and the channel
X 7→ (Y, Z) is memoryless and without feedback, the joint distribution of (K, An, Bn, En, Xm, Ym, Zm) can be
written as follows. For each i ∈ [1 : n] and each j ∈ [1 : m], we have

p(k, an, bn, en, xm, ym, zm) = p(ai−1, bi−1, ei−1) p(ai, bi, ei) p(an
i+1, bn

i+1, en
i+1)

× p(k, xm|an) p(yj−1, zj−1|xj−1) p(yj, zj|xj) p(ym
j+1, zm

j+1|xm
j+1) , (A3)

where Pϕ(xm|an) = ∑
∀ k

p(k, xm|an) and Pψa(k|an) = ∑
∀ xm

p(k, xm|an) are the distributions of the stochastic

functions in Equations (A1a) and (A1b), respectively.

We may now carry on with the derivation of the outer bound. First, consider,

nRk ≤ H(K) + ε (A4a)

= H(K|EnYm) + I(K; EnYm) + ε

≤ H(K|EnYm) + I(K; EnYm)− I(K; EnZm) + 2ε (A4b)

= H(K|EnYm) + I(K; Ym|En)− I(K; Zm|En) + 2ε

≤ H(K|EnYm)− H(K|BnYm) + I(K; Ym|En)− I(K; Zm|En) + nε′ (A4c)

= I(K; Bn|Ym)− I(K; En|Ym)︸ ︷︷ ︸
Rs

+ I(K; Ym|En)− I(K; Zm|En)︸ ︷︷ ︸
Rc

+ nε′, (A4d)

where

• Equation (A4a) stems from the uniformity of the keys in Equation (A2d).
• Equation (A4b) is due to the security condition in Equation (A2c).
• Equation (A4c) follows from Equations (A1) and (A2b), and Fano’s inequality, H(K|BnYm) ≤ nε.
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We now study separately the “source” term Rs and the “channel” term Rc. Hence,

Rs = ∑n
i=1 I(K; Bi|YmBi−1)− I(K; Ei|YmEn

i+1)

= ∑n
i=1 I(K; Bi|YmBi−1En

i+1)− I(K; Ei|YmBi−1En
i+1) (A5a)

= ∑n
i=1 I(Vi; Bi|Ui)− I(Vi; Ei|Ui) (A5b)

= n[I(VJ ; BJ |UJ J)− I(VJ ; EJ |UJ J)] (A5c)

= n[I(V; B|U)− I(V; E|U)] , (A5d)

where

• Equation (A5a) is due to Csiszár sum identity.
• Equation (A5b) follows from the definition of the auxiliary RVs Ui = (YmBi−1En

i+1) and
Vi = (KUi).

• Equation (A5c) introduces the auxiliary RV J uniformly distributed over [1 : n] and independent
of all the other variables.

• Equation (A5d) stems from the definition of random variables U = (UJ J), V = (VJ J), B = BJ ,
and E = EJ .

This establishes the “source” term in Equation (A4d) with auxiliary RVs (U, V) that satisfy the
following Markov chain

Ui −
−Vi −
− Ai −
− (BiEi) . (A6)

The first part of Equation (A6) is trivial given the definition Vi = (KUi), whereas the second part
follows from the i.i.d. nature of the sources and that they are correlated to the main channel only
through the encoder’s input in Equation (A1a), see Equation (A3),

(KYmBi−1En
i+1)−
− Ai −
− (BiEi) . (A7)

The “channel” term Rc can be single-letterized similarly,

Rc = m[I(T; Y|Q)− I(T; Z|Q)] , (A8)

where we first define the auxiliary RVs Qi = (EnYi−1Zm
i+1) and Ti = (KQi), we then introduce the

auxiliary RV L uniformly distributed over [1 : m], and we finally define Q = (QLL), T = (TLL),
Y = YL, and Z = ZL. The auxiliary RVs in this term, i.e., (Q, T), satisfy the following Markov chain

Qi −
− Ti −
− Xi −
− (YiZi) , (A9)

where the nontrivial part is due to the memoryless property of the channel and Equation (A1b),
provided the joint probability distribution satisfies Equation (A3). Since neither Q nor T appears on
other parts of the outer bound, we may expand Rc as

Rc = m ∑
q∈Q

pQ(q) [I(T; Y|Q = q)− I(T; Z|Q = q)]

≤ m max
q∈Q

[I(T; Y|Q = q)− I(T; Z|Q = q)]

= m[I(T?; Y)− I(T?; Z)] , (A10)

where in the last step we choose auxiliary RV T? ∼ pT|Q(·|q).
Gathering Equations (A4), (A5), (A8), and (A10), the rate of the secret key writes

Rk ≤ I(V; B|U)− I(V; E|U) +
m
n
[
I(T; Y)− I(T; Z)

]
+ ε′. (A11)
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If we let (n, m)→ ∞ and take arbitrarily small ε′, we obtain the bound in Equation (7).
To obtain Equation (8), we use the following Markov chain that is a consequence of Equation (A1a),

provided the joint probability satisfies Equation (A3):

(BnEn)−
− An −
− Xm −
− (YmZm) . (A12)

Due to the data processing inequality, we have

I(An; Ym) ≤ I(Xm; Ym) ≤ m I(X; Y) , (A13)

where in the last inequality we use the memoryless property of the channel. Next, consider

I(An; Ym) = I(AnBn; Ym) (A14a)

≥ I(An; Ym|Bn)

= I(An; KYm|Bn)− I(An; K|BnYm)

≥ I(An; KYm|Bn)− nε (A14b)

≥ n[I(A; V|B)− ε] , (A14c)

where

• Equation (A14a) follows from the Markov chain in Equation (A12).
• Equation (A14b) stems from H(K|BnYm) ≤ nε due to Equations (A1) and (A2b),

and H(K|AnBnYm) ≥ 0.

For the last step, i.e., Equation (A14c), consider

I(KYm; An|Bn) = I(KYm; AnEn|Bn) (A15a)

= ∑n
i=1 I(KYm; AiEi|Bn An

i+1En
i+1)

≥∑n
i=1 I(KYmBi−1En

i+1; AiEi|Bi) (A15b)

= ∑n
i=1 I(Vi; AiEi|Bi) (A15c)

≥∑n
i=1 I(Vi; Ai|Bi)

= n I(VJ ; AJ |BJ J) (A15d)

= n I(VJ J; AJ |BJ) (A15e)

= n I(V; A|B) , (A15f)

where

• Equation (A15a) stems from the Markov chain (BnEn)−
− An −
− (KYm).
• Equation (A15b) follows from the sources being i.i.d., i.e., (AiEi)−
− Bi −
− (Bi−1Bn

i+1 An
i+1En

i+1).
• Equation (A15c) is due to the auxiliary RV Vi = (KYmBi−1En

i+1).
• Equation (A15d) introduces the auxiliary RV J uniformly distributed over [1 : n] and independent

of all the other variables.
• Equation (A15e) follows from the independence of J and (AJ BJ).
• Equation (A15f) stems from the definition of random variables V = (VJ J), B = BJ , and A = AJ .

Putting Equations (A13) and (A14) together, we obtain:

I(V; A|B) ≤ m
n

I(X; Y) + ε , (A16)

which gives the condition in Equation (8) as we let (n, m)→ ∞ and take an arbitrarily small ε.
Although the definition of the auxiliary RVs (TUV) used in the proof makes them arbitrarily

correlated, the bounds in Equations (7) and (8) only depend on the marginal PDs p(tx) and p(uv|a).
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Consequently, we can restrict the set of possible joint PDs to Equation (9), i.e., independent source and
channel variables, and still achieve the maximum.

The bounds on the cardinality of the alphabets T , U , and V for the auxiliary RVs follow from
Fenchel–Eggleston–Carathéodory’s theorem and the standard cardinality bounding technique ([29],
Appendix C); therefore, their proof is omitted. This concludes the proof of Theorem 2. �

Appendix B. Proof of Proposition 5

For completeness, we first present the inner bound from ([13], Theorem 4) but rewritten using the
notation of the present work:

Rk ≤ max
p(x)p(v|a)

{
I(V; B)− I(V; E) + η I(X; Y|Z)

}
(A17a)

subject to I(V; A|B) ≤ η I(X; Y) . (A17b)

In the sequel, we assume η = 1.
The main channel in the system model depicted in Figure 2a is not only degraded but also Y

equals X; thus, the last term on the r.h.s. of Equation (A17a) may be expanded as follows

I(X; Y|Z) = H(X|Z) = H(X) + H(Z|X)− H(Z) . (A18)

Since X is the input of a BSC of parameter ζ and output Z, it is clear that

I(X; Y|Z) ≤ H(Z|X) = h2(ζ) , (A19)

with equality if and only if X ∼ B
(

1
2

)
. Furthermore, this choice of X maximizes the r.h.s. of

Equation (A17b) and makes the condition redundant:

I(V; A|B) ≤ H(A|B) = βH(A) = β ≤ 1 = H(X) , (A20)

given that A ∼ B
(

1
2

)
and 0 ≤ β ≤ 1.

It remains to be determined what the maximizing value of the first two terms on the r.h.s. of
Equation (A17a) is. Let us first assume that B is more capable than E, i.e., 0 ≤ β < h2(ε) according to
Remark 10. Then, we may write

I(V; B)− I(V; E)

= I(A; B)− I(A; E)−
[
I(A; B|V)− I(A; E|V)

]
≤ I(A; B)− I(A; E) (A21a)

= H(A|E)− H(A|B) (A21b)

= h2(ε)− β , (A21c)

where the inequality is due to I(A; B|V) ≥ I(A; E|V) for all p(v, a) given the more capable assumption.
The bound in Equation (A21) holds with equality if and only if V = A. We also note that Equation (A21)
is a monotonically decreasing function of β and it is zero when β = h2(ε). For β > h2(ε), the bound in
Equation (A21) is no longer valid; however, we can rightfully argue that, as Bob’s source degrades
while Eve’s remains the same, it is not possible to obtain more secret bits from the sources than for
β = h2(ε). Therefore, for β > h2(ε),

I(V; B)− I(V; E) ≤ 0 , (A22)

which holds with equality if and only if V = ∅.
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Combining Equations (A17), (A19), (A21), and (A22), we obtain the bound in Equation (14). This
concludes the proof of Proposition 5. �
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