Agustin A Barrachina

Chengfang Ren

Christele Morisseau

Gilles Vieillard

Jean-Philippe Ovarlez

J A Barrachina

J.-P Ovarlez

Complex-Valued vs. Real-Valued Neural Networks for Classification Perspectives: An Example on Non-Circular Data

research documents, whether they are published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

In the Machine Learning community, most Neural Networks are developed for processing real-valued features (voice signals, RGB images, videos, etc.). The signal processing community, however, has a higher interest in developing theory and techniques over complex fields. Indeed, complex-valued signals are encountered in a large variety of applications such as biomedical sciences, physics, communications and radar. All these fields use signal processing tools [START_REF] Schreier | Statistical Signal Processing of Complex-Valued Data[END_REF], which are usually based on complex filtering operations (Discrete Fourier Transform, Wavelet Transform, Wiener Filtering, Matched Filter, etc.). CVNNs appear as a natural choice to process and to learn from these complex-valued features since the operation performed at each layer of CVNNs can be interpreted as complex filtering. Notably, CVNNs are more adapted to extract phase information [START_REF] Hirose | Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence[END_REF], which could be helpful, e.g., for retrieving Doppler frequency in radar signals, classifying polarimetric SAR data [START_REF] Hänsch | Classification of polarimetric SAR data by complex valued neural networks[END_REF]Zhao et al. 2019), etc. Although CVNN has been proven to achieve better results than its real-valued counterpart for particular structures of complex-valued data [START_REF] Hirose | Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence[END_REF][START_REF] Hirose | Complex-valued neural networks[END_REF][START_REF] Hirose | Complex-valued neural networks: The merits and their origins[END_REF][START_REF] Hänsch | Classification of polarimetric SAR data by complex valued neural networks[END_REF], the difficulties in implementing CVNN models in practice have slowed down the field from growing further [START_REF] Mönning | Evaluation of Complex-Valued Neural Networks on Real-Valued Classification Tasks[END_REF]. In this paper, we address this issue by providing a Python library to deal with the implementation of CVNN models. The code also offers statistical indicators, e.g., loss and accuracy box plots [START_REF] Mcgill | Variations of box plots[END_REF][START_REF] Chambers | Graphical methods for data analysis[END_REF], to compare the performance of CVNN models with its real-valued counterpart.

There are no rules in practice to prioritize CVNN over RVNN for complex-valued datasets. Performance highly depend on the characteristics of the complex-valued dataset. Indeed, merely taking real data as input does not profit from using CVNN [START_REF] Mönning | Evaluation of Complex-Valued Neural Networks on Real-Valued Classification Tasks[END_REF]. We propose in this paper to analyze the influence of the non-circular statistical property on the performance of both CVNN and RVNN networks. We show that particular structures of such complex data, as, for example, phase information or statistical correlation between real and imaginary parts, can notably benefit from using CVNN compared to its real-valued equivalent. Under this context, CVNN is potentially an attractive network to obtain better classification performance on complex datasets.

The paper is organized as follows: In Section 2, we discuss the mathematical background of CVNN to then continue with the circularity property for a random variable. Section 3 discusses the feed-forward network architecture and the programming code used for these experiments. Section 4 illustrates the comparison of statistical performance obtained for each network. In particular, the sensitivity of CVNN and RVNN results are evaluated either by changing the dataset characteristics or the network hyper-parameters.

Although CVNN is an acronym that involves numerous complex-valued neural network architectures, in this work, we will always be referring to fully connected feed-forward ones. This convention was chosen to be coherent with the existing bibliography [START_REF] Hirose | Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence[END_REF][START_REF] Hirose | Complex-valued neural networks[END_REF][START_REF] Hirose | Complex-valued neural networks: The merits and their origins[END_REF][START_REF] Hänsch | Classification of polarimetric SAR data by complex valued neural networks[END_REF][START_REF] Amin | Wirtinger Calculus Based Gradient Descent and Levenberg-Marquardt Learning Algorithms in Complex-Valued Neural Networks[END_REF][START_REF] Hirose | Complex-valued neural networks: Advances and applications[END_REF].

Mathematical Background

A natural way to build CVNN consists in extending RVNN for handling complex-valued neurons. The latter implies that the weights for connecting neurons and the hidden activation functions should be complex-valued. In contrast, the loss function remains real-valued to minimize an empirical risk during the learning process. Despite the architectural change for handling complex-valued inputs, the main challenge of CVNN is the way to train such neural networks.

Wirtinger derivation

When training CVNNs, the weights are updated using a complex gradient, so the back-propagation operation becomes complex-valued. In complex analysis, Liouville's theorem states that every bounded holomorphic function is constant (Fine and Rosenberger 1997, pp.70-71), implying that the loss and activation functions should be either constant or unbounded.

Wirtinger calculus [START_REF] Wirtinger | Zur formalen Theorie der Funktionen von mehr komplexen Veränderlichen[END_REF] generalizes the notion of complex derivative for non-holomorphic functions. It states that given a complex function f (z) of a complex variable z = x + j y ∈ C, (x, y) ∈ R 2 , the partial derivatives with respect to z and z respectively are:

∂f ∂z 1 2 ∂f ∂x -j ∂f ∂y , ∂f ∂z
1 2 ∂f ∂x + j ∂f ∂y .
(1) Wirtinger calculus enables one to work with nonholomorphic functions, providing an alternative method for computing the gradient. Following references [START_REF] Amin | Wirtinger Calculus Based Gradient Descent and Levenberg-Marquardt Learning Algorithms in Complex-Valued Neural Networks[END_REF] and [START_REF] Hirose | Learning Algorithms in Complex-Valued Neural Networks using Wirtinger Calculus[END_REF], the complex gradient is then defined as:

∇ z f = 2 ∂f ∂z . (2)
Also, for any real-valued loss function L : C → R, the complex derivative of the composition of L with any complex function g : C → C with g(z) = r(z) + j s(z) is given by the following so-called chain rule:

∂L • g ∂z = ∂L ∂r ∂r ∂z + ∂L ∂s ∂s ∂z . (3)
Using equations 2 and 3 it is possible to train CVNN.

Circularity

The importance of circularity for CVNNs has already been mentioned in [START_REF] Hirose | Complex-valued neural networks[END_REF][START_REF] Hirose | Complex-valued neural networks: Advances and applications[END_REF]. Let us denote the vector u [X, Y] T as the real random vector built by stacking the real and imaginary parts of a complex random variable Z = X + j Y . The probability density function (pdf) of Z can be identified with the pdf of u. The variance of Z is defined by:

σ 2 Z E |Z -E[Z]| 2 = σ 2 X + σ 2 Y , (4)
where σ 2 X and σ 2 Y are respectively the variance of X and Y . The latter does not bring information about the covariance:

σ XY E [(X -E[X]) (Y -E[Y])] , (5)
but this information can be retrieved thanks to the pseudovariance [START_REF] Ollila | On the circularity of a complex random variable[END_REF][START_REF] Picinbono | Second-order complex random vectors and Normal distributions[END_REF]:

τ Z E (Z -E[Z]) 2 = σ 2 X -σ 2 Y + 2 j σ XY . (6)
The circularity quotient Z is then:

Z = τ Z /σ 2 Z .
If Z has a vanishing pseudo-variance, τ Z = 0, or equivalently, Z = 0, it is said to be second-order circular. The correlation coefficient is defined as

ρ = σ XY σ X σ Y . (7)
In this work, complex non-circular random datasets are generated and classified, with two non-exclusive possible sources of non-circularity: X and Y have unequal variances or X and Y are correlated.

3 Proposed Neural Networks

Library

Although it has been proven several times that CVNN achieves better generalization than RVNN [START_REF] Hirose | Generalization characteristics of complex-valued feedforward neural networks in relation to signal coherence[END_REF], the latter has been often favored over the former due to difficulties in the implementation [START_REF] Mönning | Evaluation of Complex-Valued Neural Networks on Real-Valued Classification Tasks[END_REF]. Indeed, the two most popular Python libraries for developing deep neural networks, Pytorch and Tensorflow do not fully support the creation of complexvalued models. Therefore, one of the contributions of this work is to provide a library, published in conjunction with this paper [START_REF] Barrachina | Complex-Valued Neural Networks[END_REF], that enables the full implementation of fully-connected feed-forward CVNNs using Tensorflow as back-end.

Even though Tensorflow does not fully support the implementation of a CVNN, it has one significant benefit: It enables the use of complex-valued data types for the automatic differentiation (autodiff) algorithm [START_REF] Hoffmann | A hitchhiker's guide to automatic differentiation[END_REF] to calculate the complex gradients. Tensorflow's autodiff implementation calculates the gradient for f : C → C as:

∇ z f = ∂f ∂z + ∂f ∂z . (8)
It is straightforward to prove that (2) and (8) are equivalent for a real-valued loss function f :

C → R (Kreutz- Delgado 2009).
Libraries to develop CVNNs do exist, the most important one of them being probably the code published in [START_REF] Trabelsi | Deep complex networks[END_REF]. However, we have decided not to use this library since the latter uses Theano as back-end, which is no longer maintained. Another code was published on GitHub that uses Tensorflow and Keras to implement CVNN [START_REF] Dramsch | Complex-Valued Neural Networks in Keras with Tensorflow[END_REF]. However, as Keras does not support complex-valued numbers, the published code simulates complex operations always using realvalued datatypes. Therefore, the user has to transform its complex-valued data to a real-valued equivalent before using this library.

The library used to generate the results of this paper was tested through several well known real-valued applications. Probably the most relevant test was the adaptation of Tensorflow's online code example Training a neural network on MNIST with Keras since the model architecture is very similar to the one used in this paper. The network architecture has been coded with our library. Statistically, the results obtained with our network were equivalent to the one given by Tensorflow's example. They can be found in the GitHub repository inside the examples subfolder.

For more information about the library published in this paper, please refer to the documentation.

Model Architecture

Activation function One of the essential characteristics of CVNN is its activation functions, which should be nonlinear and complex-valued. Additionally, the latter is desired to be piece-wise smooth to compute the gradient. The extension to complex field offers many possibilities to design an activation function. Among them, two main types are proposed by extending real-valued activation functions [START_REF] Kuroe | On activation functions for complex-valued neural networks: existence of energy functions[END_REF]:

• Type-A: g A (f) = g R (Re(f)) + j g I (Im(f)), • Type-B: g B (f) = g r (|f |) e j g φ (φ(f))
, where f : C → C is a complex function and g R , g I , g r , g φ are all real-valued functions 1 . The most popular activation functions, sigmoid, hyperbolic tangent (tanh) and Rectified Linear Unit (ReLU), are extensible using Type-A or Type-B approach.

Normally, g φ is left as a linear mapping [START_REF] Kuroe | On activation functions for complex-valued neural networks: existence of energy functions[END_REF][START_REF] Hirose | Complex-valued neural networks[END_REF]. Under this condition, using ReLU activation function for σ r has a limited interest since the latter makes g B converge to a linear function, limiting Type-B ReLU usage. Nevertheless, ReLU has increased in popularity over the others as it has proved to learn several times faster than equivalents with saturating neurons [START_REF] Krizhevsky | Imagenet classification with deep convolutional neural networks[END_REF]. Consequently, we will adopt, in Section 4, the Type-A ReLU, which is a non-linear function, as CVNN hidden layers activation functions.

The image domain of the output layer depends on the set of data labels. For classification tasks, real-valued integers or binary numbers are frequently used to label each class. Therefore the output layer's activation function should be real-valued. For this reason, we use softmax (normalized exponential) as the output activation function, which maps the magnitude of complex-valued input to [0; 1], so the image domain is homogeneous to a probability.

Number of layers

Even though the tendency is to make the models as deep as possible for Convolutional Neural Networks (CNN), this is not the case for fully-connected feed-forward neural networks, also known as MultiLayer Perceptron (MLP). For these models, one hidden layer (1HL) is usually sufficient for the vast majority of problems [START_REF] Hornik | Multilayer Feedforward Networks Are Universal Approximators[END_REF][START_REF] Stinchcombe | Universal approximation using feedforward networks with non-sigmoid hidden layer activation functions[END_REF]. Although some authors may argue that two hidden layers (2HL) may be better than one [START_REF] Thomas | Two Hidden Layers Are Usually Better than One[END_REF], all authors seem to agree that there is currently no theoretical reason to use a MLP with more than two hidden layers (Heaton 2008, p. 158) References [START_REF] Heaton | Introduction to neural networks with Java[END_REF]) and (Kulkarni and Joshi 2015) recommend the neurons of the hidden layer to be between the size of the input layer and the output layer. Therefore, two models will be used as default in section 4, one with a single hidden layer of size 64 and one with two hidden layers of shape 100 and 40 for the first and second hidden layers respectively. In order to prevent the models from overfitting, dropout regularization technique [START_REF] Srivastava | Dropout: A Simple Way to Prevent Neural Networks from Overfitting[END_REF]) is used on 1HL and 2HL hidden layers. Both CVNN and RVNN are trained with a dropout factor of 0.5.

Equivalent RVNN To define an equivalent RVNN, the strategy used in [START_REF] Hirose | Complex-valued neural networks[END_REF]) is adopted, separating the input z into two real values (x, y) where z = x + j y, giving the network a double amount of inputs. The same is done for the number of neurons in each hidden layer. Although this strategy keeps the same amount of features in hidden layers, it provides a higher capacity for the RVNN with respect to the number of real-valued training parameters [START_REF] Mönning | Evaluation of Complex-Valued Neural Networks on Real-Valued Classification Tasks[END_REF].

Loss function and optimizer Mean square error and Cross-Entropy loss functions are mostly used for RVNN to solve regression and classification problems, respectively. The loss remains the same for CVNN since the training phase still requires the minimization over a real-valued loss function. We currently limit our optimizer to the well-known standard Stochastic Gradient Descent (SGD). The default learning rate used in this work is 0.01 as being Tensorflow's default (v2.1) for its SGD implementation.

Weights initialization For weights initialization, Glorot uniform (also known as Xavier uniform) (Glorot and Bengio 2010) is used, and all biases start at zero as those are Tensorflow's current (v2.1) default initialization methods for dense layers. Glorot initialization generates weight values according to the uniform distribution in (Glorot and Bengio 2010, eq.16) where its boundaries depend on both input and output sizes of the initialized layer. Note that CVNN has halved the number of input and output neurons compared to an equivalent RVNN, meaning the initial values of the real and the imaginary part of its weights are generated using a slightly larger uniform distribution boundary comparing to the real case. Therefore, CVNN might be penalized by starting with a higher initial loss value before any training.

Experimental Results

Dataset setup

As mentioned previously, to respect the equivalence between RVNN and CVNN, we use in the following input vectors of size 128 (resp. 256) for CVNNs (resp. RVNN). Each element of the feature vector is generated according to a noncircular Complex Normal distribution CN (0, σ 2 Z , τ Z). Two sources of non-circularity could occur in practice: σ X = σ Y and/or ρ = 0, or equivalently τ Z = 0. Therefore, we propose to evaluate the classification performance of CVNN and RVNN for three types of datasets presented in Table 1.

Figure 1 shows an example of two classes for dataset A with a feature size of 128. It is possible to see that most features are coincident even if they are from different classes, meaning that several points will yield no information or even confuse the classification algorithm.

Data A Data B Data C Class 1 2 1 2 1 2 ρ 0.5 -0.5 0 0 0.5 -0.5 σ 2 X 1 1 1 2 1 2 σ 2 Y 1 1 2 1 2 1 τ Z j -j -1 1 j -1 1 -j Z j 2 -j 2 -1 2 1 2 j-1 3 1-j 3 Table 1: Dataset characteristics
It is important to note that the distinction between classes is entirely contained in the relationship between the real and imaginary parts. This means that removing, for example, the imaginary part of the dataset will result in both classes being statistically identical, and therefore, rendering the classification impossible.

-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 x = Re(z) y = Im(z)
Class 0 Class 1

Figure 1: Dataset A example

To evaluate the difficulty of classifying this dataset, a Maximum Likelihood Estimation of τ Z was implemented with the prior knowledge of the underlying Gaussian distributions used to generate the dataset. The data are then classified using a threshold on the estimate of τ Z . The accuracy of this classifier gives an upper bound of the optimal accuracy. For a low correlation coefficient, for example ρ = 0.1, this parametric classifier only achieves around 85% accuracy.

1HL and 2HL baseline results

To ensure that the models do not fall short of data, 10000 samples of each class were generated using 80% for the train set and the remaining 20% for testing. Accuracy and loss of both CVNN and RVNN, defined previously in section 3.2, are statistically evaluated over 1000 Monte-Carlo trials. Each trial contained 150 epochs with a batch size of 100.

This number was chosen observing that after 150 epochs, the accuracy and loss presented almost no amelioration.

Only the 2HL case is illustrated in Fig. 2 as their results are more favorable to the RVNN model. CVNN loss starts higher but decreases faster than RVNN. Both losses behave well without significant indication of overfitting. Additionally, the test accuracy of CVNN trials stays above 95%. The test accuracy of RVNN is lower than the CVNN one and presents more outliers. 1978), where IQR is the Inter-Quartile Range, and n is the number of trials. According to [START_REF] Chambers | Graphical methods for data analysis[END_REF], using this error definition, if median values do not overlap there is a 95% confidence that their values differ.

Because the results are skewed, there is a big difference between mean and median accuracy, as the mean is less robust to outliers. For this reason, the median would be a better measure of central tendency in this paper's simulations. For the complex-valued model, the outliers tend to be the bad cases, whereas, for the real model, they are the good cases. This can be verified by the mean being lower than the median for CVNN and higher than the median for RVNN.

For dataset B with 2HL, both models fail to achieve excellent results on average. Despite these poor performances, CVNN still proves to be superior to RVNN by far. For 1HL, CVNN achieves very high accuracy with a median of over 84%. Dataset C presents almost the same results as dataset A with some improvement for both architectures.

From these results, the merits of CVNNs are statistically justified by a higher accuracy than RVNNs with less overfitting and smaller variance.

In general, RVNN performed much better with 2HL than with 1HL. In this report we are trying to prove that CVNN outperforms RVNN regardless of the model architecture and hyper-parameters. To that end, even if all simulations to follow were done with both 1HL and 2HL, 2HL results will be prioritized, bearing in mind that 1HL cases were even more favorable to CVNN.

Case without dropout

The simulations were re-done with no dropout to test the models tendency to overfit. RVNN presented very high overfitting, as can be seen in figure 3.

The impact was so high that the test accuracy of RVNN drop from 92% to 66% for 2HL, whereas for CVNN it dropped less than 2% reaching a test accuracy of 96% for the case without dropout. The totality of the simulations mentioned in this report were also done without dropout. In general, dropout had very little impact on CVNNs performance and a huge amelioration for RVNN. In conclusion, CVNN has a very low tendency to over-fit, whereas for RVNN is decisive to use dropout or at least a regularization technique.

Phase and amplitude

Since the phase information could be relevant for classifying these datasets, polar-RVNN, is defined where the inputs are the amplitude and phase of data. This method is tested for datasets A and B with and without dropout.

Figure 4 shows the results for 2HL tested on dataset A with dropout. It can be seen that polar-RVNN highly improves compared to the conventional RVNN, showing higher mean accuracy but also much less variance, even lower than for CVNN. However, CVNN still outperforms both real models by a wide margin. This higher performance of polar-RVNN against RVNN can be explained by the fact that dataset type A presents more relevant information in the phase. However, the opposite happens with dataset type B for which case, polar-RVNN completely fails to converge and achieves worst results than conventional RVNN for both 1HL and 2HL models, reason why results where omitted.

Parameter sensibility study

In this section, a swipe through several model architectures and hyper-parameters is done to assert that the results obtained are independent of specific parameters. These simulations are done for both 1HL and 2HL networks.

Other sensibility studies were done but are not presented in this work due to paper size limitations. They concern learning rate, dataset size, feature vector size and multiclasses for all combinations of 1HL and 2HL with and without dropout. Correlation coefficient Several correlation coefficients have been tested for 1HL and 2HL models. Figure 5 shows the accuracy of 2HL models tested on datasets similar to data A (see table 1), in which the correlation coefficient varies from 0.1 to 0.8. As expected, for small ρ, both networks fail to distinguish between classes with accuracy values barely above 50%. Note that both models cannot achieve more than 85% for this case, as it was explained in section 4.1. As |ρ| rises, CVNN merits become evident. When |ρ| is close to one, then the link between real and imaginary parts is strengthened, which facilitates the classification of the data for both models. Results for 1HL are even more favorable for CVNN. Hidden layer size We evaluated the accuracy of 1HL for 4 sizes of the hidden layer. All these models were trained on dataset A. Figure 6 shows that the median accuracy of CVNNs is always higher than the one of RVNN, no matter the number of hidden neurons. However, we can note that CVNN has low accuracy outliers for sizes 16 and 32, whereas RVNN has not. This could be explained by RVNN having higher capacity, as explained in section 3.2. Fortunately, this behavior disappears when the hidden size is well dimensioned.

Conclusion

In this paper, we provided a end-to-end tool for the implementation of CVNNs to fully use the complex-valued characteristics of the data. It also allows a more straightforward comparison with real equivalent networks in order to motivate further analysis and use of CVNN [START_REF] Barrachina | Complex-Valued Neural Networks[END_REF]). Moreover we showed that CVNNs stand as attractive networks to obtain higher performances than conventional RVNNs on complex-valued datasets. The latter point was illustrated by several examples of non-circular complexvalued data which cover a large amount of data types that can be encountered in signal processing and radar fields.

All statistical indicators showed that CVNN clearly outperforms RVNN showing higher accuracy, smaller variance and less overfitting, regardless the model architecture and hyperparameters. Conversely, the few cases where RVNN competes with CVNN, occurred when the dataset is small or the correlation coefficient |ρ| is close to zero, rendering the discrimination from feature vectors nearly impossible. For these exceptions, neither CVNN and RVNN were actually of any practical use. Further analysis involving sensitivities to learning rates, feature vector size, multi-class dataset will be investigated to assert the generalisation of our results.

Figure 3 :

 3 Figure 3: Test loss for 2HL CVNN and RVNN without dropout

Figure 4 :

 4 Figure 4: Test accuracy histogram of 2HL CVNN, polar-RVNN and RVNN on dataset A

Figure 5 :Figure 6 :

 56 Figure 5: Test accuracy box plot for different values of correlation coefficient ρ for 2HL model with dropout

Table 2

 2

	summarizes the test accuracy of 1HL and 2HL
	models for all three different datasets. The median error is computed as 1.57 IQR/ √ n (McGill, Tukey, and Larsen

Table 2 :

 2 Test accuracy results (%)

		Data A	Data B	Data C
		CVNN	RVNN	CVNN	RVNN	CVNN	RVNN
		median 95.00 ± 0.03	75.58 ± 0.69	84.38 ± 0.05	58.73 ± 0.07	96.95 ± 0.02	82.90 ± 0.78
	1HL	mean 94.98 ± 0.02	76.71 ± 0.27	84.28 ± 0.03	58.89 ± 0.05	96.96 ± 0.01	82.76 ± 0.26
		median 97.03 ± 0.03	92.90 ± 0.08	69.90 ± 0.88	59.03 ± 0.33	98.43 ± 0.02	96.10 ± 0.04
	2HL	mean 96.98 ± 0.02	92.37 ± 0.07	69.48 ± 0.32	59.10 ± 0.14	98.41 ± 0.01	96.02 ± 0.01

Although not with the same notation, these two types of complex-valued activation functions are also discussed in Section 3.3 of (Hirose

2012)

The authors would like to thank the Délégation Générale de l'Armement (DGA) for funding.