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Abstract

The issue of the optimal planning of inspection and maintenance actions for a randomly deteriorating system con-
stitutes a difficult sequential decision-making problem in which the objective is generally to achieve minimal life-cycle
cost. For mathematical tractability, most approaches rely either on the consideration of specific maintenance strategies,
e.g. Periodic Inspection and Replacement (PIR), whose defining parameters are optimized, or on time-and-space-state
discretization using Markov Decision Process (MDP) models and resolution through policy iteration. In both cases,
optimality may be hard to guarantee. In this paper, the decision-theoretic concept of Value of Information (VoI) is used
as a metric to guide resource prioritization in time, that is, to schedule inspections in a piecewise optimal manner.

An aperiodic sequential inspection policy is proposed, where the determination of the next best time for inspection,
or replacement, is based on the current condition and on the computed expected gain from possible inspections, i.e.
on a VoI metric. This policy can be implemented when the current condition is known from imperfect inspection or
processing of condition-monitoring data. Also, more generally, a discussion is proposed on the use of VoI as a guide for
information collection in life-cycle management.

Keywords: Value of Information, Condition-Based Maintenance, inspection planning, maintenance optimization,
sequential decision-making, renewal theory, imperfect information

Acronyms
VoI Value of Information
CBM Condition-Based Maintenance
PIR Periodic Inspection and Replacement
BR Block Replacement
MDP Markov Decision Process
PHM Prognostic and Health Management

Notations
X(t) Degradation process
F (t) Failure probability function
F|z(t) Conditional failure probability function
z(τ) Condition (degradation) of component

L(s, a) Loss outcome for action a in state s
C∞(a) Unconditional average cost per unit time

for replacement at time a
C∞|z(a) Conditional average cost
VoI(τ) VoI for inspection at τ
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1. Introduction

Systems, structures or components that are subject to
random degradation often require maintenance. Preven-
tive actions such as inspections, repairs or replacements
can be carried out with the objectives to limit the likeli-5

hood of failure, thereby improving reliability and safety,
minimize downtime and associated costs, extend life, etc.
In many practical cases, the issue of maintenance opti-
mization or planning, essentially consists in determining
what actions are necessary and when to apply them, in10

view of achieving minimal life-cycle cost. In mathematical
terms, this issue constitutes a sequential decision-making
problem in an uncertain environment and its resolution is
a difficult challenge.

To address such challenge, it is generally necessary to15

use stochastic models in order to describe and quantify re-
liability, random degradation processes or the outcome of
maintenance decisions, see e.g. early works of [1] and [2].
In this framework, much research effort has been dedicated
to finding ‘optimal’ inspection and maintenance strategies,20

especially in the structural and reliability engineering com-
munity, see e.g. [3, 4, 5, 6]. The formulation of the problem
and the suitability of different resolution approaches may
vary depending on the considered application. The selec-
tion of the most cost-efficient strategy is seldom straight-25
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forward. In this paper, we restrict our attention to pre-
ventive maintenance and single component analysis only.
Good reviews on the extensive literature on maintenance
may be found in [7, 8, 9, 10].

A maintenance strategy or policy can be determined30

by actions that are carried out at specific time instances
and by actions that depend on available information on the
current condition of the component. They are respectively
denoted as time(or age)-based maintenance and condition-
based maintenance (CBM) strategies. Roughly speaking,35

the approach used for the resolution of the maintenance
optimization problem, or equivalently, for the selection of
a preventive maintenance policy, belongs to one of the two
following categories.

In the first category, one may consider policies with40

specific structures, i.e. set of rules depending on time or
condition, that are parametrized by one or several design
values, such as the inspection interval or the preventive
replacement limit, see examples in [4, 6, 11, 12, 13, 14, 15,
16, 17, 18]. Those parameters are then optimized, given45

information on the degradation process, in order to reach
a desired objective, e.g. minimal average life-cycle cost.
Quantitative analysis of the random outcome of such poli-
cies often relies on stochastic models with various degrees
of complexity and on the use of renewal theory [1]. This50

is the type of method considered in this paper.
In the second category, the sequential decision problem

is explicitly formulated, the degradation and decision pro-
cesses are discretised and represented by Markov Decision
Process (MDP) models. In this case, the policy, i.e. the55

mapping between known state and actions, is computed
through adapted resolutions scheme, see seminal work of
[19, 20], and [21] for details on numerical resolution.

Independently of the resolution method, it is gener-
ally recognized that collecting additional information on60

the uncertain state of a component, through inspection
or exploitation of condition-monitoring data, can lead to
better outcomes, as far as subsequent maintenance deci-
sions are concerned. In this paper, it is proposed to make
use of the concept of Value of Information (VoI) to quan-65

tify such improvements and help plan information collec-
tion in a rational manner. This concept was developed
in the field of statistical decision theory, in the seminal
works of [22, 23, 24], and has received increasing atten-
tion recently in the context of structural health monitoring70

[25, 26, 27, 28, 29, 30], risk-based inspection [31, 32, 33]
and maintenance planning [34, 35, 36, 37, 38].

Essentially, VoI quantifies the expected gain, in terms
of decisions outcome, that may be achieved with the col-
lection of an additional piece of information. In this pa-75

per, it is shown that VoI can be a relevant metric to help
decide whether or not and when to collect condition in-
formation. As this operation may come at cost, VoI is
used as a resource prioritization metric in the time do-
main. It helps guiding the resolution of the maintenance80

optimization problem. More specifically, the VoI metric is
employed to construct an aperiodic sequential inspection

policy, where inspections are sequentially scheduled in a
piecewise optimal manner.

The paper is organized as follows. In Section 2, the85

issue of maintenance optimization is addressed in the con-
text of continuous-time degradation and some elements
are given on Gamma process modeling and renewal the-
ory. The notion of Value of Information (VoI) is defined
and discussed in Section 3. The computation of VoI within90

the previously defined framework is detailed in Section 4.
With the VoI metric, an aperiodic sequential inspection
policy is proposed and experimentally tested in Section 5.
The use of VoI for resource prioritization and information
collection is discussed in Section 6. Conclusions are given95

in Section 7.

2. Continuous-time degradation and maintenance

optimization

2.1. Gamma process for degradation modeling

Gamma processes are often used to represent continuous-100

time degradations, as they are strictly non-decreasing and
quite amenable to mathematical treatment. For an exten-
sive review on the use of gamma processes for maintenance
modeling and optimization, see [10]. A stochastic process
X(t) is a gamma process if it has gamma distributed in-105

dependent increments

X(t)−X(s) ∼ Ga(v(t)− v(s), u) (1)

where Ga : x → Ga(x, v, u) is the gamma probability den-
sity function, with shape parameter v and scale parameter
u. At any time, the expectation and variance of the degra-
dation process are:110

E[X(t)] = v(t)/u (2)

V ar[X(t)] = v(t)/u2 (3)

The trend or mean function v : t → v(t), can be any
continuous non-decreasing function, with v(0) = 0. In
this paper, we consider only trends of the form v : t → λtb

with λ > 0 and b = 1, that is, stationary gamma processes,
for ease of computation, with no loss in generality for the115

proposed maintenance policy.
If it is assumed that the component fails when the

degradation reaches a predetermined level y, then the fail-
ure probability at time t, can be obtained, see [10], using:

F (t) = Pr[Ty ≤ t] = Pr[X(t) ≥ y]

=

∫ ∞

x=y

fX(t)(x)dx =
Γ(v(t), yu)

Γ(v(t))

(4)

where Γ(a, x) =
∫∞

z=x
za−1e−zdz is the incomplete gamma120

function for all a > 0 and x > 0, and Γ : x → Γ(x) is the
traditional gamma function.
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2.2. Maintenance modeling and optimization

With random degradation, the outcome of a mainte-
nance policy is stochastic. The purpose of maintenance125

optimization is to plan preventive actions in order to get
the best possible outcome according to some selected cri-
teria, usually expected cost. Here the following actions are
considered: inspection at cost ci, preventive replacement
at cost cr and corrective replacement, upon failure of the130

component, at cost cc, where generally cc >> cr >> ci.
In practice, many different situations may have to be

described, e.g. perfect or imperfect inspections, perfect
or imperfect repairs, instantaneous or non-instantaneous
repairs. Failure may or may not be self-revealing. Main-135

tenance crew may or may not be readily available. The
objective here is not to cover all possible applications and
the ideas presented hereinafter, on a rather simple but suf-
ficiently representative case, could apply to more complex
practical cases, at the expense of more effort in domain140

specific modeling.
The average outcome of the maintenance policy, on an

infinite time horizon, can be more easily computed in the
case of renewal cycles, that is, cycles or times histories that
bring a component back to its original condition. Here,145

this is the case for both preventive replacement or correc-
tive replacement upon failure, whichever occurs first. A
relevant metric to consider in this context is the average
cost per unit time C∞. According to renewal theory, see
e.g. [39, 1, 9], the latter can be computed using:150

C∞ = lim
t→∞

C(t)

t
=

E[C(S)]

E[S]
(5)

where C(t) is the accumulated maintenance cost at time
t, E[C(S)] is the average total maintenance cost of renewal
cycles, E[S] is the average length of renewal cycles.

Let us consider a policy, a so called time(or age)-based
replacement policy, in which the decision variable a is the155

date at which the component is supposed to be preven-
tively replaced. In this case, the cost per unit time may
be computed by averaging over all possible outcomes of
the policy, namely preventive replacements and (instanta-
neous) corrective replacements upon (self-revealing) fail-160

ure:

C∞(a) =
ccF (a) + cr(1− F (a))

(∫ a

0
udF (u)

)

F (a) + a(1− F (a))
(6)

where F (.) is the failure probability function in (4). F (a)
components will be failed before time a with cost cc and
average life

(∫ a

0
udF (u)

)

and 1 − F (a) components will
be replaced at decision time a with cost cr and average165

life a. Using (6), one has a direct relationship between
the selected policy, i.e. the decision variable a, and the
expected outcome C∞(a).

Let us note that, here, the use of renewal theory allows
for a simplification of the sequential decision problem of170

maintenance planning, as for this simple policy, the objec-
tive is only to find a∗ = argmina C∞(a). Roughly said,
by adjusting a one seeks an optimal policy, as waiting too
little will lead to replacements that are too frequent, while
waiting too long will produce an excessively large number175

of failures over time.

3. Value of Information

3.1. Definition of VoI

As described in [25], “the value of a piece of information
depends on its ability to guide our decision”. Value of180

Information (VoI) is a concept rooted in Bayesian theory
and decision theory that provides a rational approach to
attach a value to a piece of information. Formally, see
[22], VoI is calculated as the difference in expected cost
(or loss) between the outcome of the optimal decisions that185

may be taken with and without the collection of additional
information.

If L(s, a) is the loss that is incurred when the compo-
nent is in state s and the decision-maker selects action a,
then VoI can be calculated according to:190

VoI = L∗(∅)− EZ [L
∗(z)] (7)

where L∗(∅) represents the minimal expected loss (i.e. as-
sociated to the optimal decision a∗) when no additional
information is available and L∗(z) represents the minimal
expected loss when the information z has been observed,
thus ‘modifying’ the knowledge on the uncertainty associ-195

ated to the component’s state to the posterior s|z. As one
does not know beforehand what the observation is going
to be, L∗(z) has to be averaged over all possible observa-
tions. Hence, this approach is often called pre-posterior
analysis [22].200

Giving the expression of the minimal expected loss and
making the dependence on uncertainty explicit, (7) be-
comes:

VoI = min
a∈A

∫

L(s, a)p(s)ds

−

∫
(

min
a∈A

∫

L(s, a)p(s|z)ds

)

p(z)dz (8)

where A is the set of all possible actions, p(s) is the prior
distribution over the component’s state and p(s|z) is the205

posterior distribution given an observation z.
Roughly speaking, there is value in collecting infor-

mation z if knowing that the uncertainty is then reduced
from p(s) to p(s|z) allows us to make decisions which out-
come L∗(z) is ‘better’ on average than the optimal out-210

come L∗(∅) that is obtained from an unconditional deci-
sion based on the initial uncertainty on the component’s
state p(s).
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3.2. VoI analysis and use

In general, the computed VoI has to be compared with215

the cost of collecting the considered information. Then,
the collection is worth realizing only if its cost does not
exceed the additional value it can generate on average,
namely VoI. This metric provides a rational approach to
compare inspection devices, mechanisms or procedures that220

provide different pieces of information on the component’s
state and with different levels of precision.

The expression in (8) describes the general framework
for the computation of VoI. For each practical application,
the interest in collecting information according to a col-225

lection (or observation) mechanism specified by the prob-
ability measure p(s|z), will depend on the decision context
via L(s, a) and p(s), which also have to be specified.

From a practical perspective, carrying out a VoI anal-
ysis thus consists in two operations: first, specify the de-230

cision context and observation or uncertainty reduction
mechanism and second, compute both the conditional and
unconditional estimations and optimizations in (8). In this
paper, the decision context is specified via C∞(a) in (6),
which may be written as:235

C∞(a) ⇔

∫

L(s, a)p(s)ds (9)

4. VoI metric for inspection time determination

4.1. Inspection and conditional replacement

Let us consider the maintenance actions proposed in
Section 2.2, namely preventive replacement at cost cr, cor-
rective replacement at cost cc and inspection at cost ci. If240

an inspection is made at time τ and the condition of the
component is noted as z(τ) then, provided the component
is not failed, i.e, z(τ) < y, the conditional average cost
per unit time C∞|z can be computed using (6), adding the
cost of one inspection and substituting F (t) in (4) by:245

F|z(t) =
Γ(v(t− τ), (y − z(τ))u)

Γ(v(t− τ))
(10)

for all t > τ and with v(t) = vt, v > 0. Indeed, when z(τ)
is known, failure occurs when the ‘remaining capacity’ of
the component is consumed, that is, when degradation is
increased by y−z(τ) units, with an increase in mean value
∆v = v∆t. This gives the following expression for the cost250

per unit time, conditional on the observation at time τ

C∞|z(τ)(a) =
ccF|z(a) + cr(1− F|z(a)) + ci

(∫ a

τ
udF|z(u)

)

F|z(a) + a(1− F|z(a))
(11)

for all t > τ and z(τ) < y.
The unconditional and conditional costs per unit time

functions are displayed as an example in Figure 1, with an
inspection at time τ = 100hours, two possible outcomes255

z1 = 30 and z2 = 70, and for the parameters given in
Table 1.
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Figure 1: Unconditional and conditional cost per unit time functions.

Parameter Notation Value
Failure threshold y 100

Power law exponent b 1
Degradation variability u 8

Degradation rate v y/(200bu)
Corrective replacement cost cc 300
Preventive replacement cost cp 50

Inspection cost ci 1

Table 1: Parameters of the considered decision context. Degradation
rate is fixed for failure on average at time t = 200hours for simplicity
of visualization and analysis.

It is seen in Figure 1, that the optimal decision is condi-
tional on the outcome of the inspection. In this example,
when the degradation has progressed more slowly up to260

time τ , z1 < z2, it is better, on average, to wait longer
before proceeding to preventive replacement with :

argmin
a

C∞|z1(a) > argmin
a

C∞|z2(a) (12)

4.2. Calculation of VoI for a single inspection

With the decision context defined in section 4.1 and
with (perfect) inspection taken as the uncertainty reduc-265

tion mechanism, VoI can be computed using (8) and (9),
which becomes here:

VoI(τ) = min
a

C∞(a)− Ez(τ)[min
a

C∞|z(τ)(a)] (13)

where the unconditional C∞(a) and conditional C∞|z(τ)(a)
costs are already expected values, namely on the probabil-
ity measures that have been denoted as p(s) and p(s|z) in270

(8). Here, for the distributions p(s) and p(s|z), s is to be
understood as the ‘resolution of uncertainty’ on the time
interval [0, a], that is, a preventive replacement or a cor-
rective replacement, when the action is originally planned
at time a. The representation of the randomness measured275

by p(s) and p(s|z) is associated to the gamma degradation
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process model, through the use of F (a) = Pr(s[0, a] < y)
and F |z(a) = Pr(s[τ, a] < y|z(τ) = z).

C∞(a) and C∞|z(τ)(a) can be computed using the closed-
form expressions in (6) and (11). The unconditional and280

conditional optimal decisions:

a∗ = argmin
a

C∞(a) (14)

a∗|z = argmin
a

C∞|z(τ)(a) (15)

can be obtained via numerical optimization schemes.
As mentioned in Section 3.1, the outcome of the ob-

servation step z(τ) cannot be known in advance. Thus,
the expected gain has to be averaged over the probability285

measure p(z(τ)). With the choice of a gamma degradation
process, one has:

z(τ) ∼ Ga(v(τ), u). (16)

Also, for values z(τ) > y, failure has occurred and it is no
longer possible to act to prevent the latter. In such case,
let us use the following average cost value C∞|z(τ)>y =290

cc/τ (which is an optimistic estimate as failure may have
occurred prior to τ). In practice, the quantity:

Ez(τ)[min
a

C∞|z(τ)(a)] (17)

is computed using numerical integration and an inner loop
of numerical optimization.

One readily sees that the VoI computed in (13) de-295

pends on the inspection time τ . This inspection time
practically defines the uncertainty reduction or observa-
tion mechanism that is considered. Then, the objective is
to use VoI(τ) as a resource prioritization metric and find
the most relevant time for inspection, as far as average300

cost is concerned. The evolution of VoI as a function of
the inspection time τ is given in Figure 2, for the param-
eters in Table 1. The best value for (the first) inspection
is around τ ≈ 97hours. Inspecting earlier or later is less
profitable.305

Generally, VoI is not negative, according to the princi-
ple that “more information cannot hurt”. Nonetheless, the
choice here is to consider negative VoIs, or more precisely,
allow the possibility of net loss of value. Let us note that
the VoI calculated using (11) and (13) already includes the310

cost of inspection ci. Thus, it is in fact a net gain or loss
of value, corresponding to the expected outcome once the
inspection has been effectively performed. For consistency
of discussion, the metric used to propose a conditional in-
spection policy in this paper will be described as a VoI315

metric regardless.
In Figure 2, negative VoIs occur both for small values

of τ and for high values of τ . For early inspections, there
is no particular improvement on the average outcome of
conditional decisions but cost ci is payed regardless, which320

translate to a net loss. For late inspections, the proportion
of failed components increases when, in theory, the best
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Figure 2: Value of Information (here expressed as a net gain/loss in
terms of cost units) as a function of the inspection time τ .

decision in the sense of (8) is not to wait until failure
and proceed to a preventive replacement at an optimal
time which is then prior to τ . Consequently waiting too325

long for inspections, before effectively acting, yields non-
optimal decisions, driving net loss up. From the theoretical
perspective, the collection of z may restrain the action
space from A to A′ (where preventive replacement is no
longer an option), which is not the standard framework330

for VoI computation in (8) and explains in part why we
get negative VoIs here.

To clarify, let us simply consider that if VoI is negative
at time τ (no matter the magnitude or its exact inter-
pretation), it is not worth inspecting at time τ since that335

decision would correspond to a net loss on average.

4.3. Calculation of VoI for subsequent inspections

With the use of conditional gamma failure probability
functions, it is possible to calculate easily the VoI corre-
sponding to the difference between the unconditional cost340

C∞|z1,τ1(a), starting from the outcome of the first inspec-
tion yielding (z1, τ1), and the conditional cost for a sub-
sequent inspection C∞|z(τ2),z1,τ1(a). Simply said, a new
problem, translated by (z1, τ1), is considered after the first
inspection, i.e. on a new time window, where a new VoI345

can be computed. For this translated problem, the uncon-
ditional and costs are:

C∞|z1,τ1(a) =

ccF
′(a) + cr(1− F ′(a)) + ci

(

∫ a

τ1
udF ′(u)

)

F ′(a) + a(1− F ′(a)) + τ1
(18)

with:

F ′(t) =
Γ(v(t− τ1), (y − z1)u)

Γ(v(t− τ1))
(19)

for t > τ1, z1 < y and:
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C∞|z(τ2),z1,τ1(a) =

ccF
′
|z(a) + cr(1− F ′

|z(a)) + 2ci
(

∫ a

τ2
udF ′

|z(u)
)

F ′
|z(a) + a(1− F ′

|z(a)) + τ1
(20)

with:350

F ′
|z(t) =

Γ(v(t− τ2), (y − z1 − z(τ2)u)

Γ(v(t− τ2))
(21)

for t > τ2, z1 + z(τ2) < y.
The expression for the computation of VoI, for a prob-

lem starting in (z1, τ1) is:

VoIz1,τ1(τ2) =

min
a

C∞|z1,τ1(a)− Ez(τ2)

[

min
a

C∞|z(τ2),z1,τ1(a)
]

(22)

It can be used for any i-th inspection, provided the compo-
nent has lived up to (zi−1, τi−1), which is no longer random355

from that point.
An example of a second rank inspection is given in

Figure 3, after a first inspection at optimal time τ1 ≈
97hours.
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Figure 3: Value of Information for first and second inspections. In
the latter case, three outcomes of the first inspection are considered.

Depending on the outcome of the first inspection at τ1,360

it may or may not be relevant to inspect again, and the
best time for next inspection is dependent on the current
condition of the component at the point where a new VoI
is computed.

4.4. VoI computation with imperfect inspection365

The information obtained from inspection or from the
processing of condition-monitoring data may not be per-
fect. This has to be taken into account when making de-
cisions and estimating VoI. Let us assume that the true

condition z of the component, unknown, is normally dis-370

tributed around the value obtained from inspection zi:

z ∼ N(zi, σi) (23)

This type of error model is quite classical for inspection
or measurement uncertainty and may apply equally well
for the error committed by an imperfect estimation model
in the case of the of processing condition-monitoring data.375

The degree of precision of the inspection can be controlled
via the noise level or inspection dispersion σi.

The solution which is proposed here in order to make a
decision that accounts for inspection uncertainty is the fol-
lowing. The conditional cost function is averaged over the380

Gaussian distribution and the best decision is calculated
according to:

a∗ = argmin
a

Cu
∞|zi

(a) =

argmin
a

Ez∼N(zi,σi)[C∞|z](a) (24)

where Ez∼N(zi,σi)[.] designates the average taken over the
Gaussian distribution, centered on the inspection zi. The
integration is done numerically for different values a, to385

build the numerical function :

Cu
∞|zi

(a) = Ez∼N(zi,σi)[C∞|z](a) (25)

Then, an optimization scheme can be applied to find the
‘optimal’ decision. The latter is described as ‘optimal’
since, on average, i.e. no matter what the true condition,
yet unknown, ends up being, the selected a∗ leads to the390

minimal cost.
The averaged conditional cost function Cu

∞|zi
(a) is vis-

ible in Figure 4. The inspection uncertainty is selected
quite large for clear visualization. It is seen that when un-
certainty is taken into account (averaged conditional cost),395

it is better to proceed to preventive replacement slightly
earlier, as one may have underestimated degradation in
some instances (due to measurement noise).

VoI can then be computed using (13) and substituting
the standard conditional cost function C∞|z(a) by the av-400

eraged conditional cost function Cu
∞|zi

(a) defined in (25).

The integration in (13) is done assuming that the prior
distribution for observation is p(zi) = p(z), where z ∼
Ga(vτ, u). Let us note that this assumption is reasonable
if σi is not too important.405

In Figure 5, VoIs are computed for different intensity of
the inspection uncertainty σi. It is seen that the maximum
value of VoI decreases when there is uncertainty in the
inspection. Simply put, an imperfect inspection reduces
uncertainty less, in the sense of (8), and the improvement410

in terms of decision outcome is not as profitable.
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Figure 5: Effect of inspection uncertainty on VoI.

5. Proposed sequential inspection policy

5.1. Policy definition and illustration

With the elements presented above, the calculation of
VoI can be performed, for an inspection and preventive415

replacement context, using (13) for the first inspection and
(22) for any following i-th inspection conditional on the
observation made at the previous step.

Based on this, the following sequential inspection pol-
icy is proposed. It consists in computing, at each step, the420

VoI as a function of the inspection time τi and observed
condition z(τi), and selecting the next best time for in-
spection as the time when VoI is maximum, provided the
latter in positive. This is repeated until the maximum
of VoI becomes negative and it is no longer profitable to425

inspect. When this happens, the component is preven-
tively replaced at the optimal time conditioned on the last
inspection. The details of the implementation of the se-
quential policy are given in Algorithm 1.

Algorithm 1 Aperiodic sequential inspection policy

Initialization

k = 1
V oIk = maxτ V oI0,0(τ)
tk = argmaxτ V oI0,0(τ)
Policy

if V oIk < 0 then

tr = argmina C∞|0,0(a)
if z(tr) > y then

Corrective replacement at tf
else

Preventive replacement at tr
end if

else

while V oIk > 0 do

‘Inspection’ zk = z(tk)
if zk > y then

Corrective replacement at tf
break

else

k = k + 1
V oIk = maxτ V oIzk−1,tk−1

(τ)
if V oIk > 0 then

tk = argmaxτ V oIzk−1,tk−1
(τ)

else

tr = argmina C∞|zk−1,tk−1
(a)

Preventive replacement at tr
break

end if

end if

end while

end if

As an application of the proposed policy, let us con-430

sider the following problem. A metallic connecting rod
is subject to continuous degradation due to repeated ten-
sion cycles and crack propagation. It is considered to be
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failed after a degradation index, associated to a normal-
ized scale relative to crack length, has reach the value of435

y = 100. A large sample of connecting rods are tested in
normal operating conditions and the time to failure values
are collected. It is seen that the degradation process can
reasonably be modeled by a (stationary) gamma process
and that fitting the failure probability function F (.) in (4)440

on the collected sample yields the parameters v = 0.0625
and u = 8, in Table 1. A rough description of the ran-
dom time to failure can be given with a mean value at
approximately 200 hours and a standard deviation of 55
hours.445

In order to visualize the outcome of the sequential pol-
icy, a path from the identified stationary gamma degrada-
tion process is generated, and the policy is applied in Fig-
ure 6. Inspection, preventive and corrective replacement
costs are given in Table 1. Two other degradation paths450

are displayed to illustrate the variability in the degradation
process.
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Figure 6: Application of the sequential inspection policy to a random
degradation path (thick solid blue line). Other (gamma) degradation
paths are also shown (thin solid black lines).

For this example, four inspections have been realized,
sequentially, at the best time for inspection. After the
fourth inspection, the VoI is no longer positive for a fifth455

inspection and the decision is rather to preventively re-
place at the optimal time conditioned on (z4, τ4). It is
clearly seen that compared to the optimal unconditional
preventive replacement time (around tr = 110hours), the
life of the component is greatly extended with the use of460

the proposed sequential inspection policy, which leads to
a lower cost per unit time.

5.2. Experimental validation

To demonstrate the validity of the proposed sequen-
tial inspection policy, the latter is applied on a sample of465

degradation paths (N = 500 paths) and its average out-
come is compared to that of a simple replacement policy
or block replacement (BR). The comparison is also made
with a more elaborate policy, named Periodic Inspection

and Replacement (PIR), see e.g. [17, 18, 12], where inspec-470

tions are carried out at regular intervals ∆T and where a
crossing of level M at inspection time triggers preventive
replacement. The values ∆T and M are obtained via nu-
merical optimization, with the objective of minimal aver-
age cost per unit time, and for the decision context defined475

in Table 1.
The results of the application of all policies on all (500)

random paths (as in Figure 6) are given in Figure 7.
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Figure 7: Comparison of the outcomes of the BR, PIR and sequential
inspection policy, with varying inspection cost (different markers).
For the sequential inspection policy, groups of 100 paths are consid-
ered to get an idea on the variability of the result. Larger markers
correspond to the average over 500 paths.

It is seen that, no matter the inspection cost, the outcome
of the proposed sequential inspection policy is consistently480

better. Also, with high inspection cost (cross markers),
the sequential inspection policy performs much better than
PIR. Indeed, when inspections are costly, it is especially
relevant to schedule them in an optimal (at least piecewise)
manner.485

The influence of measurement uncertainty can be vi-
sualized in Figure 8. For the latter calculation, at each
inspection, a Gaussian measurement error ǫ ∼ N(0, σi) is
added to the true degradation and the obtained sum is the
quantity considered as the inspection outcome zi and used490

for the computation of VoI, which is then based on the
averaged conditional cost Cu

∞|zi
(a) as in (25). The true

degradation (unknown in principle but used here for val-
idation purposes) is used in order to determine the true
failure time, independently of the policy decisions, and495

compute the outcome of the policy.
It is seen that rather consistently the results are better for
the sequential inspection policy. It is also seen that the
effect of measurement uncertainty is to somehow shorten
the life, as more uncertainty will lead to a more ‘careful’500

policy in order to avoid costly failures. Conditional de-
cisions based on uncertain information happen to be less
optimal, thus diminishing the potential VoI.

Additionally, a comparison is proposed between differ-
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ent configurations of the decision context, see Table 1 and505

Table 2. Such a comparison is visible in Figure 9.
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Figure 9: Comparison of BR, PIR and sequential inspection policy
outputs, and comparison of the predicted VoI for the first inspection
and achieved total VoI, for the different decision contexts. X-axis
legend items are described in Table 2

A few remarks can be made. It is seen again that
with a high inspection cost, the advantage of the sequential
inspection policy over PIR is substantial. This advantage
tends to disappear with lower inspection cost. The effect510

of measurement uncertainty is relatively limited here (but
variability in the results may be substantial, see Figure 8).
Lastly, when the variability of the degradation process is
lower, the interest in collecting information decreases.

In Figure 9, the red line, which denotes the achievable515

outcome with perfect information, is given as an indica-
tion. It could represent the theoretical gain associated
to a continuous (and free) monitoring system, able to de-
tect failures just before they happen, therefore triggering

Labels Meaning
Ref Reference case see Table 1
ci+ Inspection cost ci = 5 istd of ci = 1
ci- Inspection cost ci = 0.2 istd of ci = 1
si+ Inspection uncertainty σi = 5
cc+ Corr repl cost cc = 500 istd of cc = 300
cr- Prev repl cost cr = 30 istd of cr = 50
nu- Degradation variability ν = 2 istd of ν = 8

Table 2: Comparison of different policies’ outcomes, for different
decision contexts.

optimal maintenance. The theoretical limit has been com-520

puted only for the reference case.
Also, in Figure 9 the comparison is made between the

calculated VoI for the first inspection and the average gain
achievable (labeled VoItotal), obtained here numerically,
when applying the aperiodic sequential inspection policy.525

It is seen that the VoI associated to the first inspection
does already contribute to a significant part of the total
gain that can be achieved with multiple inspections. Exact
computation of the expected gain for multiple inspections
is an extremely hard issue, as it would imply integration530

over a multidimensional space of unknown and varying
dimension (the number of inspections, not known in ad-
vance).

Lastly, it has been noted that, no matter the used pol-
icy, there is no consistent difference in terms of the number535

of failed components in the end. No policy is particularly
‘riskier’ than another, even if the tendency is to achieve a
lower average cost for PIR than for BR and an even lower
average cost for the proposed sequential inspection policy.
Also, there is no significant difference in the variability of540

average outcome between PIR and Sequential Inspection
Policy (as displayed only for the latter in Figure 7 and 8)

6. Discussion

The objective of the work presented in this paper is
twofold.545

First, it illustrates a concrete implementation of a VoI
metric, for a rather simple restriction of the maintenance
optimization problem, namely the consideration of only in-
stantaneous and perfect repairs or replacements, of a single
component submitted to a stationary gamma degradation550

process.
Second, it opens the discussion on the assimilation of

the notion of VoI in the field of maintenance optimiza-
tion or more widely for asset life-cycle management. VoI
can be considered as a resource prioritization metric which555

helps rationalizing data collection or integration, inside the
framework of a complex decision-making problem involv-
ing uncertainty.

6.1. Specific remarks on the present case

In the present case, the VoI metric is used as a guide,560

along with other simplifications associated to renewal the-
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ory, in the resolution of the sequential decision-making
problem of maintenance and inspection planning. Essen-
tially, it provides guidance on the question: “given stochas-
tic knowledge on the degradation process and maintenance565

costs, when is it more relevent, if at all, to reduce uncer-
tainty through inspection?”.

Let us now consider limits of the present work, theo-
retical difficulties and potential perspectives.

Unfortunately, for the case of sequential decision mak-570

ing, there is no possible way to compute an optimal policy
without approximation or without the consideration of an
efficient heuristic (e.g. using VoI). No exact validation can
be made as the problem is at least NP-hard, see [40], and
global optimality is thus hard to demonstrate. For the575

aperiodic sequential inspection policy that is proposed in
this paper, only piecewise optimality for sequential (yet
correlated) problems, is achieved, and it is not straightfor-
ward to conclude on the global optimality of the policy.
Numerical results yet point out that the proposed policy580

consistently performs better, no matter the decision con-
text.

The prediction of the total expected gain or VoI for the
multi-inspection (sequential) policy, that is, a prediction
of the average outcome of the sequential inspection pol-585

icy, is hard to compute in advance. The latter would in-
volve mutli-dimensional or conditional integrations, which
is computationally difficult.

It seems that the proposed approach is particularly ap-
propriate when inspections are costly, as it would sched-590

ule a small number of inspections (sometimes only one or
two) with as much gain in expected output as possible.
It is more difficult to predict what happens in the case of
a large number of cheap inspections, to be distributed on
the time domain, and the proposed approach may not be595

globally optimal in this context. Addressing the questions
above, is one perspective to explore.

An interesting problem to consider for sequential decision-
making and maintenance planing is the possibility to pro-
cess information on future states of the component, i.e.600

use predictions instead of inspections/estimations. The
collected piece of information z would concern not only
the current condition but also the future evolution of the
degradation process, thus reducing prior uncertainty even
more strongly. To estimate the average outcome asso-605

ciated to decisions conditioned on such information, one
would have to propose an adequate conditional expression
C∞|z(a) (and the related p(s|z)) and specify p(z), in a
manner that is consistent with the prior p(s) used for the
computation of the unconditional optimal expected cost.610

The authors refer to such issue as VoI computation with
‘prediction uncertainty’, as opposed to ’inspection uncer-
tainty’. This is another perspective to explore.

In theory, an arbitrarily large set of uncertainty reduc-
tion mechanisms p(s|z) can be considered.615

Lastly, the treatment of problems with more complex
decision contexts, e.g. with imperfect repairs or non-
instantaneous repairs, requiring semi-renewal or semi-

Markov formulations, which could be interesting from an
application perspective, holds less value for the research620

on VoI from a theoretical standpoint.

6.2. General and applied remarks on the use of VoI

More generally, the resource prioritization may not only
be needed in the time domain but also in the space domain,
e.g. for a distributed structure [41] or in terms of topology,625

i.e. on different components included in a system struc-
ture [34, 42]. Yet, the philosophy of the approach would
be the same, as one would try to build a policy that seeks
to act, aided by the VoI metric, by collecting information,
where or when it is most profitable to do so.630

The difficult part of the problem generally lies in the
specification of the probability measures of the prior un-
certainty p(s) and of the uncertainty reduction mechanism
p(s|z), as well as the specification of the decision con-
text (here based on C∞(a)). Only when the former are635

specified can a VoI analysis be implemented using (8).
Then, no matter how the problem is formulated, i.e. in
time, in space or for a system, the computed VoI nec-
essarily depends on: the decision context, via costs and
prior uncertainty, and the uncertainty reduction mecha-640

nism. Thus, decisions about information collection will al-
ways be problem-dependent. VoI is only a guide, a support
metric, for resource prioritization (also a decision prob-
lem in itself). For all practical contexts, VoI is a “lo-
cal and often hand-picked (a particular heuristic), among645

a continuous set of potential ‘observation / uncertainty-
reduction mechanisms’, loss sensitivity metric within the
framework of a so-called exploration-exploitation trade-
off”. This, again, explains why the demonstration of opti-
mality is a hard theoretical problem.650

A general and quite sensible trend or rule of thumb to
keep in mind can be loosely formulated as follows: “the
more uncertainty is reduced, in a situation where the av-
erage outcome of the conditional optimal action (i.e. the
quantity mina Es[L(s|z, a)]) is particularly sensitive to the655

outcome of the collected observation z, the more there is a
potential for gain, on average, in collecting the considered
piece of information”.

Lastly, let us note that any ‘predicted expected gain’,
is only as good as the specified stochastic knowledge on660

uncertainty. Indeed, the prior variability p(s) and the un-
certainty reduction mechanism p(s|z) are specified for the
computation of VoI (so called pre-posterior analysis, see
[22]), but they may themselves be imperfect representa-
tions of the ‘true randomness’.665

This is a particularly interesting problem when the re-
duction of uncertainty is gained through the processing of
condition monitoring data. In this latter case, the speci-
fication of the precision of the ‘observation model’, more
often seen as ‘model validation’, is a crucial part for the670

correct prediction of VoI. Herein lies a potential connec-
tion between the questions of optimal decision-making and
that of signal and data processing, health estimation, RUL
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(Remaining Useful Life) prediction and more largely PHM
(Prognostic and Health Management), see e.g. [43, 44].675

The points made in the last two paragraphs are, in
the opinion of the authors, those which deserve the most
attention in an applied research perspective.

7. Conclusion

In this paper, the concept of Value of Information (VoI)680

is used as a guide for the piecewise optimal resolution of
the complex sequential decision-making problem of main-
tenance optimization and inspection planning. In practice,
a VoI metric is computed based on a stationary gamma
process model of degradation, on inspection and preven-685

tive replacement actions, and on the conditional cost per
unit time function, defined in the framework of renewal
theory. This metric is used for the specification of an
aperiodic sequential inspection and condition-based pol-
icy, which schedules inspections when it is most profitable,690

in terms of potential gain on average cost, to do so. In-
spections times are determined sequentially, in a piecewise
optimal manner, until there is no more positive return to
be expected from a new inspection. With experimental
validation, it is shown that the latter policy performs con-695

sistently better than block replacement or periodic inspec-
tion and replacement policies, especially when inspections
are costly.

Through an averaging on the conditional decisions taken
from possible outcomes of an imperfect information col-700

lection mechanism, e.g. a noisy inspection or an uncer-
tain state estimation based on the processing of condition
monitoring data, this policy can be alimented with im-
perfect information while retaining its piecewise optimal
structure.705

On a broader scope, theoretical difficulties and perspec-
tives on the possible use of VoI for the issue of life-cycle
management, have been discussed. A VoI analysis implies
both a formulation step (defining costs, prior uncertainty
and an uncertainty reduction mechanism) and a compu-710

tation step, where unconditional and conditional expecta-
tions and optimizations have to be carried out. Then, for
any particular application, VoI can serve as a resource pri-
oritization metric for time (sequential problems), space or
topology(system)-related information collection problems.715

Different solutions or policies for information collection
or uncertainty reduction can be compared. Eventually,
the information collection problem generally constitutes
only one part of a larger decision-making problem, where
an exploration-exploitation tradeoff is to be reached and720

where optimality is hard to guarantee. For the resolution
of this larger problem, e.g. maintenance optimization, a
VoI metric can be an interesting support.

More precisely, the following perspectives are consid-
ered. The question on the global optimality of sequential725

(multiple) inspections has to be analyzed more deeply. A
study of the consequences of a poor specification of the de-
cision context or of the probability measures necessary for

the computation of VoI would also provide interesting in-
formation. This is especially true in a practical case where730

uncertainty reduction is achieved through the processing
of condition monitoring data. Also, it would be interest-
ing to consider a formulation for a time-varying problem,
in which the information collected relates not only to cur-
rent condition of the component but also to ‘anticipated’735

or ‘predicted’ future conditions, thus reducing uncertainty
in the time domain even more strongly.
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making for systems operating under indirect condition monitor-
ing: value of online information and impact of measurement un-

11



certainty, IEEE Transactions on Reliability 61 (2) (2012) 410–795

425.
[19] S. Madanat, Optimal infrastructure management decisions un-

der uncertainty, Transportation Research Part C: Emerging
Technologies 1 (1) (1993) 77–88.

[20] H. Ellis, M. Jiang, R. B. Corotis, Inspection, maintenance, and800

repair with partial observability, Journal of Infrastructure Sys-
tems 1 (2) (1995) 92–99.

[21] K. G. Papakonstantinou, M. Shinozuka, Planning structural in-
spection and maintenance policies via dynamic programming
and markov processes. part i: theory, Reliability Engineering &805

System Safety 130 (2014) 202–213.
[22] H. Raiffa, Applied statistical decision theory, Div. of Research,

Graduate School of Business Administration, Harvard Univ.,
1961.

[23] M. H. DeGroot, Uncertainty, information, and sequential ex-810

periments, The Annals of Mathematical Statistics 33 (2) (1962)
404–419.

[24] R. A. Howard, Information value theory, IEEE Transactions on
systems science and cybernetics 2 (1) (1966) 22–26.

[25] M. Pozzi, A. Der Kiureghian, Assessing the value of information815

for long-term structural health monitoring, in: Health monitor-
ing of structural and biological systems 2011, Vol. 7984, Inter-
national Society for Optics and Photonics, 2011, p. 79842W.

[26] D. Straub, Value of information analysis with structural relia-
bility methods, Structural Safety 49 (2014) 75–85.820

[27] D. Zonta, B. Glisic, S. Adriaenssens, Value of information: im-
pact of monitoring on decision-making, Structural Control and
Health Monitoring 21 (7) (2014) 1043–1056.

[28] K. Konakli, B. Sudret, M. H. Faber, Numerical investigations
into the value of information in lifecycle analysis of struc-825

tural systems, Asce-asme Journal of Risk and Uncertainty in
Engineering Systems, Part A: Civil Engineering 2 (3) (2015)
B4015007.

[29] D. Straub, E. Chatzi, E. Bismut, W. Courage, M. Döhler, M. H.
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