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Key and Message Semantic-Security over

State-Dependent Channels
Alexander Bunin, Ziv Goldfeld, Haim H. Permuter, Shlomo Shamai (Shitz), Paul Cuff and Pablo Piantanida

Abstract—We study the trade-off between secret message (SM)
and secret key (SK) rates, simultaneously achievable over a state-
dependent (SD) wiretap channel (WTC) with non-causal channel
state information (CSI) at the encoder. This model subsumes
other instances of CSI availability as special cases, and calls
for efficient utilization of the state sequence for both reliability
and security purposes. An inner bound on the semantic-security
(SS) SM-SK capacity region is derived based on a superposition
coding scheme inspired by a past work of the authors. The
region is shown to attain capacity for a certain class of SD-
WTCs. SS is established by virtue of two versions of the strong
soft-covering lemma. The derived region yields an improvement
upon the previously best known SM-SK trade-off result reported
by Prabhakaran et al., and, to the best of our knowledge, upon
all other existing lower bounds for either SM or SK for this
setup, even if the semantic security requirement is relaxed to
weak secrecy. It is demonstrated that our region can be strictly
larger than those reported in the preceding works.

I. INTRODUCTION

A. Background

PHYSICAL layer security (PLS) [3]–[5], rooted in

information-theoretic (IT) principles, is an approach to

provably secure communication that dates back to Wyner’s

celebrated 1975 paper on the wiretap channel (WTC) [6].

By harnessing randomness from the noisy communication

channel and combining it with proper physical layer coding,

PLS guarantees protection against computationally-unlimited

eavesdroppers, with no requirement that the legitimate parties
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share a secret key (SK) in advance. Two fundamental questions

in the field of PLS regard finding the best achievable trans-

mission rate of a secret message (SM) over a noisy channel,

and the highest attainable SK rate that distributed parties can

agree upon based on correlated observations.

The base model for SM transmission is Wyner’s WTC [6],

where two legitimate parties communicate over a noisy chan-

nel in the presence of an eavesdropper. The SM capacity of

the degraded WTC was derived in [6], and the result was

extended to the general case by Csiszár and Körner [7]. The

security analyses in [6] and [7] relied on evaluating particular

conditional entropy terms, named equivocation. This technique

has been widely adopted in the IT community ever since.

Recently, distribution approximation arguments emerged as

the tool of choice for proving security. This approach relies on

a soft-covering lemma (SCL) that originated in another 1975

paper by Wyner [8]. The SCL states that the distribution in-

duced by randomly selecting a codeword from an appropriately

chosen codebook and passing it through a memoryless channel

will be asymptotically indistinguishable from the distribution

of random noise. The SCL was further developed over the

years and stricter proximity measures between distributions

were achieved [9]–[12]. Based on these more advanced ver-

sions, one can make the channel output observed by the

eavesdropper in the WTC seem like noise and, in particular,

be approximately independent of the confidential data. This,

in turn, implies IT security. Notably, [13] and [14] focused on

tight soft-covering exponents with respect to relative entropy

and total variation, respectively.

The study of SK agreement was pioneered by Maurer [15],

and, independently, by Ahlswede and Csiszár [16], who stud-

ied the achievable SK rates based on correlated observations

at the terminals that can communicate via a noiseless and rate

unlimited public link. The SK capacity when only one-way

public communication is allowed was characterized in [16].

This result was generalized in [17] to the case where the public

link has finite capacity. The optimal random coding scheme

for these cases is a combination of superposition coding and

Wyner-Ziv coding [18]. If the encoder controls its source

(rather than just observing it), this source becomes a channel

input and the setup evolves to a WTC. This is a special case

of the SK channel-type model that was also studied in [16].

B. Model and Contributions

A more general framework to consider is the state-

dependent (SD) WTC with non-causal encoder channel state

information (CSI). This model combines the WTC and the

Gelfand and Pinsker (GP) channel [19], and is therefore

http://arxiv.org/abs/1708.04283v2
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Fig. 1. The state-dependent wiretap channel with non-casual encoder channel
state information, exploited for simultaneous secret message transmission and
secret key generation.

sometimes referred to as the GP-WTC. The dependence of

the channel’s transition probability on the state sequence

accounts for the possible availability of correlated sources at

the terminals. The similarity between the SM transmission and

the SK agreement tasks makes their integration in a single

model natural. Adhering to the most general framework, we

study the SM-SK rate pairs that are simultaneously achievable

over a SD-WTC with non-causal encoder CSI.

The scenario where there is only a SM was studied in [20],

where an achievable SM rate formula was established. This

result was improved in [21] based on a novel superposition

coding scheme1. SK agreement over the GP-WTC was the

focus of [24], and, more recently, of [25] (see also references

therein). The combined model was considered by Prabhakaran

et al. [26], who derived a benchmark inner bound on the SM-

SK capacity region. The result from [26] is optimal for several

classes of SD-WTCs.

We propose a superposition coding scheme for the combined

model that subsumes all the aforementioned achievability

results as special cases. Specifically, [20], [21], [24]–[26], as

well as all the other existing inner bounds (on SM transmis-

sion, SK agreement or both) that are known to the authors, are

captured. Furthermore, our inner bound is shown to achieve

strictly higher rates than each of these previous results.

The coding scheme used herein is an extension of the

scheme in [21]. Namely, an over-populated superposition

codebook that encodes the entire confidential message in its

outer layer is utilized. Using the redundancies in the inner and

outer layers, the transmission is correlated with the state se-

quence by means of the likelihood encoder [27]. Constructing

the inner codebook such that it is better observable by the

eavesdropper (thus making the inner layer index decodable

by him/her) enhances the secrecy resources that the legitimate

parties can extract from the outer layer. The legitimate receiver

decodes the entire codeword.

Compared to the scheme from [21], and inspired by [26],

our superposition code introduces an additional binning of the

outer code layer (which also encodes the SM), that results

in an additional redundancy index. Both redundancy indices

are used to correlate the transmission with the observed state

sequence. Based on distribution approximation arguments we

show that the new index is approximately independent of the

SM and uniform. Since the legitimate receiver decodes both

1 The respective causal scenario was recently studied in [22], [23].

layers, securing the new redundancy index along with the SM,

establishes it as a SK.

Our results are derived under the strict metric of semantic-

security (SS). The SS criterion is a cryptographic gold standard

that was adapted to the WTC framework (of computationally

unbounded adversaries with a noisy observation) in [28]. As

was shown in [28], SS is equivalent to negligible mutual

information (MI) between the confidential information (in our

case, the SM-SK pair) and the eavesdropper’s observations,

when maximized over all possible message distributions. Our

security analysis follows [21]: the proof of SS relies on

the strong SCL for superposition [21, Lemma 1] and the

heterogeneous SCL [12, Lemma 1]. Since the past secrecy

results from [20], [24]–[26] were derived under the weak

secrecy metric (i.e., a vanishing normalized MI with respect

to a uniformly distributed message-key pair), our achievability

outperforms those schemes, not only in terms of the achievable

rate pairs, but also in the upgraded sense of security.

To conclude, the contribution of this work is as follows.

We propose a coding scheme that generalizes [21] and [26].

The analysis follows [21], which, in turn, implies SS. Our

result is shown to outperform [21] for SK generation, and [26]

for SM transmission. The latter is done by introducing a

specific example. Our achievable region is also shown to

improve upon the previously best-known inner bound on the

SK capacity [25]. The proposed region is shown to be optimal

for a certain class of SD-WTCs. Finally, we show that a

recently reported inner bound on the SK capacity for this

setup [29], that seemingly achieves higher rates than the

result herein, may, in certain cases, be unachievable. More

specifically, a condition seems to be missing in the result

of [29]. Adding the missing condition, it becomes a special

case of the result herein.

C. Organization

This paper is organized as follows. Section II establishes

notation and definitions and sets up the SD-WTC problem.

Section III states our main result – an inner bound on the

SM-SK optimal trade-off region. In Section IV our inner

bound is shown to be tight for a certain class of channels.

In Section V we discuss past results captured within the

considered framework, and illustrate the improvement our

result yields. The proof of the main result is the content

of Section VI. Finally, Section VII summarizes the main

achievements and outlines the main insights emerging from

this work.

II. PRELIMINARIES AND PROBLEM SET-UP

A. Preliminaries

We use the following notations. As is customary, N is the set

of natural numbers, while R are the reals. We further define

R+ = {x ∈ R|x ≥ 0}. Given two real numbers a, b, we

denote by [a : b] the set of integers
{

n ∈ N
∣

∣a ≤ n ≤ b
}

.

Calligraphic letters denote sets, e.g., X , while |X | stands for

the cardinality of X . Xn denotes the n-fold Cartesian product

of X . An element of Xn is denoted by xn = (x1, x2, . . . , xn);
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whenever the dimension n is clear from the context, vectors

(or sequences) are denoted by boldface letters, e.g., x.

Let
(

Ω,F,P
)

be a probability space, where Ω is the sample

space, F is the σ-algebra and P is the probability measure.

Random variables over
(

Ω,F,P
)

are denoted by uppercase

letters, e.g., X , with conventions for random vectors similar

to those for deterministic sequences. The probability of an

event A ∈ F is denoted by P(A), while P(A
∣

∣B ) denotes the

conditional probability of A given B. We use 1A to denote the

indicator function of A ∈ F. The set of all probability mass

functions (PMFs) on a finite set X is denoted by P(X ), i.e.,

P(X ) =

{

p : X → [0, 1]

∣

∣

∣

∣

∑

x∈X

p(x) = 1

}

. (1)

PMFs are denoted by letters such as p or q, with a subscript

that identifies the random variable and its possible condition-

ing. For example, for two discrete correlated random variables

X and Y over the same probability space, we use pX , pX,Y

and pX|Y to denote, respectively, the marginal PMF of X ,

the joint PMF of (X,Y ) and the conditional PMF of X
given Y . In particular, pX|Y : Y → P(X ) represents the

stochastic matrix whose elements are given by pX|Y (x|y) =
P
(

X = x|Y = y
)

. Expressions such as pX,Y = pXpY |X are

to be understood as pX,Y (x, y) = pX(x)pY |X(y|x), for all

(x, y) ∈ X × Y . Accordingly, when three random variables

X , Y and Z satisfy pX|Y,Z = pX|Y , they form a Markov

chain, which is denoted by X−
−Y−
−Z .

Any PMF q ∈ P(X ) gives rise to a probability measure

on (X , 2X )2, which we denote by Pq; accordingly, Pq

(

A) =
∑

x∈A q(x) for every A ⊆ X . We use Eq to denote an

expectation taken with respect to Pq. Similarly, we use Hq

and Iq to indicate that an entropy or a mutual information term

are calculated with respect to the PMF q. For a random vector

Xn, if the entries of Xn are drawn in an independent and

identically distributed (i.i.d.) manner according to pX , then for

every x ∈ Xn we have pXn(x) =
∏n

i=1 pX(xi) and we write

pXn(x) = pnX(x). Similarly, if for every (x,y) ∈ Xn × Yn

we have pY n|Xn(y|x) =
∏n

i=1 pY |X(yi|xi), then we write

pY n|Xn(y|x) = pn
Y |X(y|x). The conditional product PMF

pn
Y |X given a specific sequence x ∈ Xn is denoted by pn

Y |X=x.

The empirical PMF νx of a sequence x ∈ Xn is νx(x) ,
N(x|x)

n
, where N(x|x) =

∑n
i=1 1{xi=x}. We use T n

ǫ (pX) to

denote the set of letter-typical sequences of length n with

respect to the PMF pX and the non-negative number ǫ, i.e.,

we have

T n
ǫ (pX) =

{

x ∈ Xn
∣

∣

∣

∣

∣νx(x)−pX(x)
∣

∣ ≤ ǫpX(x), ∀x ∈ X
}

.

Definition 1 (Total Variation) Let (Ω,F) be a measurable

space and µ and ν be two probability measures on that space.

The total variation between µ and ν is

||µ− ν||TV = sup
A∈F

∣

∣µ(A) − ν(A)
∣

∣. (2a)

If the sample space Ω is countable, p, q ∈ P(Ω) and Pp and Pq

are the probability measures induced by p and q, respectively,

2Here 2X stands for the power set of X .

then (2a) reduces to

||Pp − Pq||TV =
1

2

∑

x∈Ω

∣

∣p(x) − q(x)
∣

∣ , ||p− q||TV. (2b)

B. Problem Setup

We study the SD-WTC with non-causal encoder CSI, for

which we establish a novel achievable region of semantically

secured message-key rate pairs.

Let S, X , Y and Z be finite sets. The
(

S,X ,Y,Z,WS ,WY,Z|S,X

)

discrete and memoryless

(DM) SD-WTC with non-causal encoder CSI is shown in

Fig. 1. A state sequence s ∈ Sn is sampled in an i.i.d.

manner according to WS and revealed in a non-causal fashion

to the sender. Independently of the observation of s, the

sender chooses a message m from the set
[

1 : 2nRM
]

and

maps the pair (s,m) onto a channel input sequence x ∈ Xn

and a key index k ∈
[

1 : 2nRK
]

(the mapping may be

random). The sequence x is transmitted over the SD-WTC

with transition probability WY,Z|S,X : S × X → P(Y × Z).
The output sequences y ∈ Yn and z ∈ Zn are observed by

the receiver and the eavesdropper, respectively. Based on y,

the receiver produces the pair (m̂, k̂), its estimates of (m, k).
The eavesdropper tries to glean whatever it can about the

message-key pair from z.

Remark 1 (Most General Model) The considered model is

the most general instance of a SD-WTC with non-causal

CSI known at some or all of the terminals. (See also [24,

Section II.C] and references therein.) Seemingly, the broadest

model one may consider is when the SD-WTC WỸ,Z̃|St,X,Sr,Se

is driven by a triple of correlated state random variables

(St, Sr, Se) ∼ WSt,Sr,Se
, where St, Sr and Se are known to

the transmitter, the receiver and the eavesdropper, respectively.

However, setting S = St, Y = (Ỹ, Sr), Z = (Z̃, Se) in a SD-

WTC with non-causal encoder CSI and defining the channel’s

transition probability as

WY,Z|S,X =W(Ỹ,Sr),(Z̃,Se)|S,X
=WSr,Se|St

WỸ,Z̃|St,X,Sr,Se
,

one recovers the aforementioned SD-WTC from the model with

non-causal encoder CSI only. Our model also supports the

existence of a public or a private bit-pipe (respectively, from

the transmitter to the receiver and the eavesdropper, or to the

receiver only), in addition to, or instead of, the noisy channel.

Definition 2 (Code) An (n,RM , RK)-code cn for the SD-

WTC with non-causal encoder CSI and a message set Mn ,
[

1 : 2nRM
]

and a key set Kn ,
[

1 : 2nRK
]

is a pair of

functions (fn, φn) such that

1) fn : Mn ×Sn → P(Kn ×Xn) is a stochastic encoder.

2) φn : Yn → Mn ×Kn is the decoding function.

For any message distribution pM ∈ P(Mn) and any

(n,RM , RK)-code cn, the induced joint PMF is

p(cn)(s,m, k,x,y, z, m̂, k̂)=Wn
S (s)PM (m) (3)

× fn(k,x|m, s)W
n
Y,Z|S,X(y, z|s,x)1{

(m̂,k̂)=φn(y)
} .
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The probability measure induced by p(cn) is Pp(cn) . The

performance of cn is evaluated in terms of its rate pair

(RM , RK), its maximal decoding error probability, the key

uniformity and independence metric, and the SS-metric.

Definition 3 (Error Probability) The error probability of an

(n,RM , RK)-code cn is

e(cn) , max
m∈Mn

em(cn), (4a)

where for any m ∈ Mn

em(cn) , Pp(cn)

(

(

M̂, K̂
)

6= (m,K)
∣

∣

∣
M = m

)

=
∑

(s,x)
∈Sn×Xn

Wn
S (s)fn(k,x|m, s)

∑

y∈Yn:
φn(y) 6=(m,k)

Wn
Y |S,X(y|s,x), (4b)

and subscript p(cn) denotes that the underlying PMF is (3).

Remark 2 (Operational Interpretation of the Error Prob.)

The error probability in (4a) is defined by maximizing (4b)

over the set of messages Mn. The maximization is only

with respect to the message (rather than with respect to

the SM-SK pair) because, while the choice of M ∼ pM is

independent of the code cn, the distribution of the SK, K ,

and its estimate, K̂ , is induced by the code (see (3)). A

similar logic applies for the subsequent definition of the key

uniformity and independence metric.

Definition 4 (Key Uniformity and Independence Metric)

The key uniformity and independence (of the message) metric

under the (n,RM , RK)-code cn is

δ(cn) , max
m∈Mn

δm(cn), (5a)

where for any m ∈ Mn

δm(cn) ,
∣

∣

∣

∣p
(cn)
K|M=m

− p
(U)
Kn

∣

∣

∣

∣

TV
(5b)

and p
(U)
Kn

is the uniform PMF over Kn.

Definition 5 (Information Leakage and SS Metric)

The information leakage to the eavesdropper under the

(n,RM , RK)-code cn and the message PMF pM ∈ P(Mn)
is ℓ(pM , cn) , Ip(cn)(M,K;Z), where Ip(cn) denotes that

the MI is taken with respect to (3). The SS metric with respect

to cn is

ℓSem(cn) , max
pM∈P(Mn)

ℓ(pM , cn). (6)

Definition 6 (Achievability) A pair (RM , RK) ∈ R
2
+ is

called an achievable SS message-key rate pair for the SD-

WTC with non-causal encoder CSI, if for every ǫ > 0 and

sufficiently large n there exists an (n,RM , RK)-code cn with

max
{

e(cn), δ(cn), ℓSem(cn)
}

≤ ǫ. (7)

Definition 7 (SS-Capacity) The SS SM-SK capacity region

CSem of the SD-WTC with non-causal encoder CSI is the

convex closure of the set of all achievable SS message-key rate

pairs. The SM (SK) capacity is the supremum of all achievable

SM (SK) rates.

III. MAIN RESULT

The main result of this work is a novel inner bound on the

SS SM-SK capacity region of the SD-WTC with non-causal

encoder CSI. Our achievable region is at least as good as the

best known achievability results for the considered problem,

and is strictly larger in some cases. To state our main result,

let U and V be finite sets and for any qU,V,X|S : S → P(U ×
V ×X ) define RA

(

qU,V,X|S

)

to be the region of all rate pairs

(RM , RK) ∈ R
2
+ satisfying

RM ≤ I(U, V ;Y )− I(U, V ;S), (8a)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U), (8b)

RM +RK ≤ I(U, V ;Y )− I(V ;Z|U)− I(U ;S), (8c)

where the MI terms are calculated with respect to

the joint PMF WSqU,V,X|SWY,Z|S,X , under which

(U, V )−
−(S,X)−
−(Y, Z) forms a Markov chain.

Theorem 1 (SS SM-SK Capacity Inner Bound) The

following inclusion holds:

CSem ⊇ RA ,
⋃

qU,V,X|S

RA

(

qU,V,X|S

)

, (9)

and one may restrict the cardinalities of U and V to |U| ≤
|X ||S|+ 5 and |V| ≤ |X |2|S|2 + 5|X ||S|+ 3.

The proof of Theorem 1 is given in Section VI, and is

based on a secured superposition coding scheme. An over-

populated two-layered superposition codebook is constructed

(independently of the state sequence), in which the entire

secret message is encoded in the outer layer. Thus, no data

is carried by the inner layer. The likelihood encoder [27]

uses the redundancies in the inner and outer codebooks to

correlate the transmitted codewords with the observed state

sequence. Upon doing so, part of the correlation index from

the outer layer is declared by the encoder as the key. The

inner layer is designed to utilize the part of the channel which

is better observable by the eavesdropper. This saturates the

eavesdropper with redundant information and leaves him/her

with insufficient resources to extract any information on the

SM-SK pair from the outer layer. The legitimate decoder,

on the other hand, decodes both layers of the codebook and

declares the appropriate indices as the decoded message-key

pair.

Remark 3 (Interpretation of Theorem 1) To get some intu-

itive understanding of the result of Theorem 1, we examine

RA(qU,V,X|S) from two different perspectives: when the joint

PMF WSqU,V,X|SWY,Z|S,X is such that I(U ;Y ) ≥ I(U ;S),
and when the opposite inequality holds.

If I(U ;Y ) ≥ I(U ;S), the third rate bound in RA(qU,V,X|S)
becomes redundant and the dominating bounds are

RM ≤ I(U, V ;Y )− I(U, V ;S), (10a)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U). (10b)

The right-hand side (RHS) of (10a) is the total rate of reliable

(secured and unsecured) communication that our superposi-

tion codebook supports (inequalities (33b) and (38b)). This
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clearly bounds the rate of the SM that may be transmitted. For

(10b), the MI difference on the RHS is the total rate of secrecy

resources that are produced by the outer layer of the codebook

(inequalities (38a) and (52)). Since the security of our SM-SK

pair comes entirely from that outer layer, this MI difference

is an upper bound on the sum of rates. Notice that the

reliability (10a) and the security (10b) bounds are reminiscent

of the original GP [19] and Csiszár and Körner [7] results,

respectively.

For the opposite case, if I(U ;Y ) < I(U ;S), then the

second inequality in RA is inactive and we are left with

RM ≤ I(U, V ;Y )− I(U, V ;S), (11a)

RM +RK ≤ I(V ;Y |U)− I(V ;Z|U)

−
[

I(U ;S)− I(U ;Y )
]

. (11b)

While the interpretation of (11a) remains as before, to un-

derstand (11b) consider the following. Since I(U ;S) is ap-

proximately the rate of the inner codebook (inequality (33a)),

I(U ;Y ) < I(U ;S) means that looking solely at the inner

layer, the decoder lacks the resolution to decode it. However,

the success of our communication protocol relies on the

decoder reliably decoding both layers. Therefore, in this case,

some of the rate from the outer layer is allocated to convey

the inner layer index. Recalling that our security analysis is

based on revealing the inner layer to the eavesdropper, this

rate allocation effectively results in a loss of I(U ;S)−I(U ;Y )
in the secrecy resources of the outer layer, giving rise to the

rate bound from (11b).

Remark 4 (Optimization Domain) It was shown in [21]

that when RK = 0, we may restrict the optimization in The-

orem 1 to joint PMFs qU,V,X|S satisfying I(U ;Y ) ≥ I(U ;S)
without inflicting any reduction in the achievable SM-rate.

However, the proof from [21] does not extend to the case

when RK > 0. Currently, it remains unknown whether or

not maximizing only over PMFs with I(U ;Y ) ≥ I(U ;S) is

sufficient to exhaust RA when RK > 0.

Remark 5 (Alternative Representations of RA) By defin-

ing Ṽ = (U, V ), we see that it suffices to restrict the

maximization in (9) to joint PMFs that satisfy the Markov

chain U−
−Ṽ−
−(S,X)−
−(Y, Z).
Regardless of that, the two bounds on RM +RK from (8b)-

(8c) can be equivalently written as the single bound

RM +RK ≤ I(U, V ;Y )− I(U, V ;Z)

−max
{

I(U ;Y ), I(U ;S)
}

+ I(U ;Z). (12)

In this form, it is evident that maximizing only over joint

PMFs satisfying I(U ;Z) ≥ max
{

I(U ;Y ), I(U ;S)
}

attains

optimality. Indeed, if the opposite inequality holds, one could

always choose Ṽ = (U, V ) and Ũ = ∅ to achieve higher rates.

Remark 6 (Cardinality Bounds) The cardinality bounds on

the auxiliary random variables U and V in Theorem 1 are

established by standard application of the Eggleston-Fenchel-

Carathéodory theorem [30, Theorem 18] twice. The details

are omitted.

Remark 7 (Adaptation to the Rate-Equivocation) A confi-

dential transmission of a SM requires channel resources for

both reliability and security. The lesser of the two resources,

therefore, limits the feasible transmission rates. The main focus

of this paper is utilization of the residual secrecy resources

that the SD-WTC offers. However, if secrecy is the lesser

resource, the superior capability of the channel to support

reliable communication may be utilized by considering a Rate-

Equivocation framework.

Equivocation represents the portion of the message that

can be secured from the eavesdropper. (See [7], [31] for

formal definitions.) The rate-equivocation framework enables

communicating at rates higher than the SM capacity, as long

as full secrecy is forfeited.

By adaptation of the arguments from the proof of Theorem 1

(see Section VI), it naturally extends to an inner bound on

the rate-equivocation region of the considered SD-WTC. The

achievable rate-equivocation region is attained from (8) by

substituting RM in the left-hand side (LHS) of (8a) with the

total reliable rate R, and substituting RM +RK in the LHS of

(8b) and (8c) with the equivocation rate RE . For more details

see [2].

IV. TIGHT CAPACITY RESULTS

An operationally appealing special case of the considered

SD-WTC is the following. Assume that WY,Z|S,X is such

that the eavesdropper’s channel is less noisy than the main

channel, but that the legitimate parties share a SK L ∼ Wn
L

(independent of the state sequence S ∼ Wn
S ), using which

they secure the confidential data. The setup is illustrated in

Fig. 2.

Formally, let L, S, X , Y and Z be the alphabets of

the key, the state, the channel input and the two chan-

nel outputs, respectively. The considered instance is the
(

S̃,X , Ỹ,Z,WS̃ ,WỸ,Z|S̃,X

)

SD-WTC with S̃ = L × S,

Ỹ = L×Y , WS̃ =WL ×WS , S̃ = (L, S), Ỹ = (L′, Y ), and

whose channel transition matrix factors as

WỸ,Z|S̃,X =W(L′,Y ),Z|(L,S),X = 1{L′=L}WY,Z|S,X , (13)

where WY,Z|S,X is such that Z is less noisy than Y . A less

noisy Z means that I(U ;Y ) ≤ I(U ;Z) for any random

variable U for which U−
−(S,X)−
−(Y, Z) forms a Markov

chain. We refer to this special case as the SD less-noisy-

eavesdropper WTC with a key.

Theorem 1 applies here since the above case is a certain

instance of a SD-WTC with non-causal encoder CSI. As

subsequently shown, the obtained inner bound is tight, thus

characterizing the SS SM-SK capacity region of the SD less-

noisy-eavesdropper WTC with a key. The following corollary

states the result.

Corollary 1 (SM-SK Capacity Region) The SS SM-SK ca-

pacity region of the SD less-noisy-eavesdropper WTC with

a key is the set of all SM-SK rate pairs (RM , RK) ∈ R
2
+

satisfying

RM ≤ max
qU,X|S

[I(U ;Y )− I(U ;S)] , (14a)
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RK +RM ≤ H(L), (14b)

where the MI terms in (14a) are with respect to the joint PMF

WSqU,X|SWY |S,X .

The proof of Corollary 1 is relegated to Appendix A. Note that

while (14a) bounds the total communication rate as a function

only of the communication channel, (14b) bounds the total

secrecy rate depending solely on the secret source.

A direct consequence of Corollary 1 is that when no SK is

to be established between the legitimate parties, i.e., RK = 0,

the best attainable SM rate is

CSM = min

{

max
qU,X|S

[

I(U ;Y )− I(U ;S)
]

, H(L)

}

. (15)

A simple separation-based coding scheme achieves the SM

capacity from (15). Namely, using a capacity achieving error

correction code, the channel is effectively converted into a

reliable bit-pipe. Each of the legitimate parties compresses L,

which results in a uniform random variable. The latter is used

to encrypt the SM via a one-time pad. The encrypted message

is then transmitted over the reliable bit-pipe. Therefore, The

achievable SM rate is equal to the minimum of the capacity

of the channel maxqU,X|S

[

I(U ;Y )− I(U ;S)
]

and the rate of

the key H(L).
While this scheme may seem very natural, to the best

of our knowledge, none of the past achievability results for

the SD-WTC with non-causal CSI prior to [21] attain its

performance. In Section V-A1, a special case of this setup

is used to demonstrate the improvement of our result over

the previous benchmark achievable SM-SK region for the SD-

WTC from [26].

V. PREVIOUS RESULTS AS SPECIAL CASES

We compare the result of Theorem 1 to those from related

past works. The previously best known inner bound on the

SM-SK trade-off region attainable over the considered SD-

WTC is [26, Theorem 1]. The next subsection restates this

inner bound and shows that Theorem 1 can strictly outperform

it. Afterwards, we provide a comparison to the best past

achievability results for only SM transmission [21] or only SK

agreement [25]. The achievability result from [21] captures the

previous lower bounds on the SM capacity of the SD-WTC

from [20], [32], [33]. The SK achievability results from [25]

subsume previous lower bounds on the SK generation rate,

such as [17], [24], [34]. Relating to one another these three

benchmarks that we use to evaluate the performance of The-

orem 1, we note that while [21] recovers [26] when there is

only a SM (RK = 0), [25] and [26] do not imply one another.

It is noteworthy that many of the above mentioned achiev-

ability results were shown to be optimal for special instances

of the studied model. Naturally, in all those cases, our result

is optimal as well.

Remark 8 Another result on SK generation over SD-WTCs

with non-causal CSI is found in [29]. Theorem 1 therein, which

seemingly attains higher SK rates than both schemes from [25]

and our inner bound, is incorrect. The region suggested in [29,

Theorem 1], in certain cases, exceeds the SK capacity, since

it does not account for the loss in secrecy-rate when the inner

layer codeword cannot be decoded on its own by the legitimate

decoder, i.e., when I(U ;S) > I(U ;Y ). (See the second case

in Remark 3 for a further explanation.) For this reason, we

chose [25] as a benchmark for the SK generation problem.

Looking at the proof of [29, Theorem 1], we conjecture that

an additional constraint was assumed without being explicitly

stated. Following the notations from [29], the missing con-

straint seems to be

Cp + I(W ; Y̌ ) > I(W ;S), (16)

which would assure decodability of the inner code layer by the

legitimate receiver without relying on the outer layer. Taking

the additional constraint into consideration, our inner bound

from Theorem 1 recovers the amended Theorem 1 from [29]

as follows.

We use (Ũ, Ṽ, X̃, S̃, Ỹ, Z̃) to denote the inner layer, the outer

layer, the channel input, the encoder CSI, and the observations

of the legitimate receiver and the eavesdropper, respectively, in

Theorem 1 of [29]. These were originally denoted, respectively,

by W , U , X , S, Y̌ and Ž . To adjust our model to that of [29],

we identify X = (X̃,Φ), Y = (Ỹ,Φ), Z = (Z̃,Φ), S = S̃
in Theorem 1, where Φ is the random variable representing

the input (and the outputs) of the public communication link.

In order to comply with the rate restriction on the public link

from [29], we restrict the distribution of Φ to have H(Φ) ≤
CP . Finally, we set:

1) RM = 0.

2) Φ independent of (Ũ, Ṽ, X̃, S̃, Ỹ, Z̃) with maximal en-

tropy, i.e., such that H(Φ) = CP .

3) U = (Ũ,Φ), V = (Ũ, Ṽ,Φ).

With respect to the above, substituting (U, V,X, Y, Z, S)
into (8) and maximizing only over distributions that satisfy

I(U ;Y )− I(U ;S) > 0 produces the amended version of [29,

Theorem 1].

To conclude the discussion of [29, Theorem 1] in its

original form, a specific example showing the rates from that

achievability formula to be exceeding the SK capacity is given

in Appendix B. We note that the missing condition in [29,

Theorem 1] does not seem to affect the correctness of the bulk

of the other results therein.
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A. SM-SK Trade-off Region

The result of Theorem 1 recovers the previously best known

achievable SM-SK trade-off region over the SD-WTC with

non-causal encoder CSI [26]. In [26, Theorem 1] the following

region was established:

RPER ,
⋃

qUqV,X|U,S

RPER

(

qUqV,X|U,S

)

, (17a)

where, for any qU ∈ P(U) and qV,X|U,S : U×S → P(V×X ),

RPER

(

qU × qV,X|U,S

)

, (17b)
{

(RM , RK) ∈ R
2
+

∣

∣

∣

∣

∣

RM ≤ I(U, V ;Y )− I(U, V ;S),
RM +RK ≤ I(V ;Y |U)− I(V ;Z|U)

}

,

and the MI terms are taken with respect to

WSqUqV,X|U,SWY,Z|S,X , i.e., U and S are independent

and (U, V )−
−(S,X)−
−(Y, Z) forms a Markov chain.

First note that Theorem 1 recovers RPER by restricting U to

be independent of S in RA. This is since for an independent

pair (U, S), we have I(U ;S) = 0, while I(U, V ;Y ) ≥
I(V ;Y |U) always holds. Consequently, the third rate bound

in RA becomes redundant and RPER is recovered.

The result from [26] was derived under the weak secrecy

metric (i.e., a vanishing normalized MI 1
n
I(M,K;Z) between

the SM-SK pair and the eavesdropper’s observation sequence,

where the message is assumed to be uniform). Our achiev-

ability, on the other hand, ensures SS. Theorem 1, therefore,

improves upon [26, Theorem 1] both in the rates it achieves

and in the sense of security it provides.

1) Achieving Strictly Higher Rates: Since [26, Theorem

1] allows only inner layer random variables U that are in-

dependent of the state, Gelfand-Pinsker coding [19], which

generally requires correlating U with S, is not supported in

the inner layer. Instead, only Shannon’s Strategies coding [35],

which operates with independent U and S is allowed. The

latter is optimal if the encoder observes the state causally,

but is generally sub-optimal when non-causal encoder CSI

is available. To demonstrate the improvement of Theorem 1

over [26] we exploit the aforementioned limitation of the

scheme therein, along with the observation that it is beneficial

to exploit any part of a considered SD-WTC that is better

observable by the eavesdropper to transmit the inner layer of

the code.

Let X = G = L = E = {0, 1}, S = {0, 1, 2},

Y = {0, 1, ?}, where ? /∈ {0, 1} and Z = X × S. Consider

the SD less-noisy-eavesdropper WTC with a key (defined in

Section IV) shown in Fig. 3, whose transition probability

WY,Z|S,X , key L ∼ WL and state S ∼ WS are defined by

the three parameters λ, ǫ, σ ∈ (0, 0.5) as follows:

• L, S and E are independent random variables with L ∼
Ber(λ), E ∼ Ber(ǫ) and

WS(0) =WS(1) =
σ

2
; WS(2) = 1− σ. (18)

The joint distribution of (L, S,E) is denoted by

WL,S,E =WLWSWE .

• The Memory with Stuck-at-Faults (MSAF) [36] is a

deterministic SD channel, driven by a ternary state S. The

PSfrag replacements

M M̂

X

X

S

S

S

G Y

L

Wn
L

Wn
S

Encoder Memory

with

Stuck At

Faults

BEC(ǫ) Decoder

Eaves-

dropper

Fig. 3. Section V-A1 example setup.

binary input and output symbols X and G, respectively,

are related through the function g : S ×X → G given by

g(s, x) =

{

s, s ∈ {0, 1}

x, s = 2
. (19)

• The output of the MSAF channel is fed into a Binary

Erasure Channel with erasure probability ǫ (abbreviated

as a BEC(ǫ)). The input G and the ternary output Y of

the BEC(ǫ) are related by means of the erasure random

variable E through the function y : E × G → Y , where

y(e, g) =

{

g, e = 0

?, e = 1
. (20)

• Z = (S,X), i.e., the eavesdropper noiselessly observes

the transmitted symbol X and the state random variable

S.

With respect to the above definitions, the transition matrix

of the SD less-noisy-eavesdropper with channel WY,Z|S,X is

WY,Z|S,X(y′, z|s, x)

=
∑

g′∈{0,1}
e∈{0,1}

WE(e)WG,Y,Z|S,X,E(g
′, y′, z|s, x, e), (21a)

where

WG,Y,Z|S,X,E = 1{G=g(S,X)}∩{Y=y(E,G)}∩{Z=(S,X)}.
(21b)

A possible interpretation of this communication scenario is

when the legitimate parties communicate through a public

database that has memory faults known to the transmitter,

but not to the receiver. The database and the faults are

assumed to be known in full to the eavesdropper. To secure

the communication the legitimate parties share a SK.

For any λ, ǫ, σ ∈ (0, 0.5), we denote the SM capacity of

the corresponding channel by CSM(λ, ǫ, σ). Furthermore, let

RSM
A (λ, ǫ, σ) and RSM

PER(λ, ǫ, σ) denote the maximal achievable

SM rates attained by (9) from Theorem 1 and (17b) from [26,

Theorem 1], respectively. By virtue of Corollary 1 (and, more

specifically, (15)), we have that Theorem 1 is tight for the

considered channel, i.e.,

CSM(λ, ǫ, σ) = RSM
A (λ, ǫ, σ), ∀λ, ǫ, σ ∈ (0, 0.5). (22)

As stated in the following proposition, RSM
PER(λ, ǫ, σ) is strictly
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below capacity.

Proposition 1 There exist λ, ǫ, σ ∈ (0, 0.5) such that

RSM
PER(λ, ǫ, σ) < CSM(λ, ǫ, σ).

Proposition 1 is proven in Appendix C. The proof relies

on the observation that for RSM
PER(λ, ǫ, σ), a full utilization

of the key L implies that RM is upper bounded by the

capacity of the considered channel with causal CSI. In turn,

this capacity is further upper bounded by the capacity of the

MSAF with causal CSI. Choosing the parameters λ, ǫ, σ so that

the SM capacity of the setup is strictly above the causal MSAF

capacity, the superiority of our scheme compared to [26,

Theorem 1] is established.

Remark 9 This example actually demonstrates that [21, The-

orem 1] (which is a special case of Theorem 1, when RK = 0)

achieves strictly higher SM rates than [26, Theorem 1].

B. SM Transmission over SD-WTCs

In [21, Theorem 1] a lower bound was established on the

SS SM capacity (i.e., when RK = 0) over the considered

SD-WTC. The SS SM capacity CSM
Sem was lower bounded by

CSM
Sem ≥ RGCP , max

qU,V,X|S

RGCP

(

qU,V,X|S

)

, (23a)

where, for any qU,V,X|S : S → P(U × V × X ),

RGCP

(

qU,V,X|S

)

, min







I(U, V ;Y )− I(U, V ;S),
I(V ;Y |U)− I(V ;Z|U),
I(U, V ;Y )− I(V ;Z|U)− I(U ;S)







, (23b)

and the MI terms are taken with respect to

WSqU,V,X|SWY,Z|S,X .

RGCP is the projection in the (RM , RK)-plane of RA from

Theorem 1 to the RM axis when RK = 0. The main difference

between the coding scheme from [21] and our superposition

code is the additional index k ∈ Kn in the outer layer of

the codebook (which also encodes the SM m ∈ Mn). Along

with the other redundancy indices, k is used to correlate

the transmission with the observed state sequence via the

likelihood encoder [27]. Based on distribution approximation

arguments we show that K is approximately independent of

the message M and approximately uniform. The pair (M,K)
is known to the transmitter and is reliably decoded by the

receiver. Finally, by securing K along with M in our analysis,

it is established as a SK.

The intuition behind the SK construction is that, unlike the

message, the key does not have to be independent of the

state sequence, nor is it chosen by the user. Therefore, the

redundancy index, used for correlating the codewords with

the state sequence, is a valid key, as long as it is secured.

Observing that any portion of the SM can be allocated in

favor of a SK implies that (23b) is also an achievable SM-SK

trade-off region, when RM above is replaced with RM +RK ;

however, this region is sub-optimal for SK generation. RA

outperforms RGCP, e.g., in settings where an external random

source L ∼Wn
L is observed by both legitimate parties but not

by the eavesdropper, while the capacity of the communication

channel is zero (say, Y = Z = 0). For such a setup, the

legitimate parties may use the random source to generate a

SK of rate H(L). While Theorem 1 supports this strategy,

RGCP nullifies in this case. To see this, let S̃ , L and

Ỹ , (L, Y ) = (L, 0) be the state and the channel output

observed by the legitimate receiver, respectively. Inserting S̃
and Ỹ into the first term inside the minimum from (23b)

produces I(U, V ; Ỹ )− I(U, V ; S̃) = 0, for any qU,V,X|S̃ .

C. SK Agreement over SD-WTCs

In [25] two achievable schemes were proposed for SK

agreement over a WTC when the terminals have access to

correlated sources. The results from [25] do not imply one

another. The difference between them is that [25, Theorem 2]

is based on source and channel separation, while [25, Theorem

3] relies on joint coding.

The setup in [25] consists of three correlated sources Sx, Sy

and Sz that are observed by the encoder, the decoder and the

eavesdropper, respectively, and a SD-WTC in which the triple

(Sx, Sy, Sz) plays the role of the state. Our general framework

is defined through the state distribution WS and the SD-WTC

WỸ,Z̃|S,X . Setting S = Sx, Ỹ = (Sy, Y ) and Z̃ = (Sz, Z)
recovers the model from [25] (see Remark 1).

The first scheme from [25, Theorem 2] operates un-

der the assumption that the SD-WTC decomposes as

W(Sy,Y ),(Sz,Z)|Sx,X = WSy,Sz|Sx
WY,Z|X into a product of

two WTCs, one being independent of the state (given the

input), while the other one depends only on it. Thus, the

legitimate receiver (respectively, the eavesdropper) observes

not only the output Y (respectively, Z) of the WTC WY,Z|X ,

but also Sy (respectively, Sz) - a noisy version of the state

sequence drawn according to the corresponding conditional

marginal of WSy,Sz|Sx
. This scheme shows that the SK

capacity CSK is lower bounded by

CSK ≥ R
(Separate)
BPS ,max

[

I(T ;Y |Q)− I(T ;Z|Q)

+ I(Ṽ ;Sy|Ũ)− I(Ṽ ;Sz|Ũ)
]

, (24)

where the maximization is over all qṼ |Sx
qŨ|Ṽ : Sx →

P(Ṽ × Ũ) and qQ,T qX|T ∈ P(Q×T ×X ) that give rise to a

joint PMF WSx,Sy,Sz
qṼ |Sx

qŨ|Ṽ ×qQ,T qX|TWY,Z|X satisfying

I(Ũ ;Sx|Sy) ≤ I(Q;Y ) and I(Ṽ ;Sx|Sy) ≤ I(T ;Y ). With

respect to this distribution, (Sy , Sz)−
−Sx−
−V−
−U
and Q−
−T−
−X−
−(Y, Z) form Markov chains and

(Sy, Sz, Sx, V, U) are independent of (Q, T,X, Y, Z). This

independence is the essence of separation that uses the

channel for two purposes: carrying communication for SK

agreement based on the sources, and securing part of this

communication using wiretap coding.

Setting RM = 0, U = (Q, Ũ), V = (T, Ṽ ) in The-

orem 1, and limiting the union to joint PMFs that satisfy

I(U ;Sy, Y ) ≥ I(U ;Sx), recovers (24).

The joint coding scheme from [25, Theorem 3] does not

rely on the aforementioned decomposition of the SD-WTC
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W(Sy,Y ),(Sz,Z)|S,Xx
. It lower bounds CSK as

CSK ≥ R
(Joint)
BPS , max

[

I(Ṽ ;Sy, Y |Ũ)− I(Ṽ ;Sz, Z|Ũ)
]

,

(25)

where the maximization is over all qṼ,X|Sx
qŨ|Ṽ :

Sx → P(Ṽ × X × Ũ) that give rise to a joint PMF

WSx
qṼ,X|Sx

qŨ|ṼW(Sy ,Y ),(Sz,Z)|Sx,X satisfying I(Ũ ;Sx) ≤

I(Ũ ;Sy, Y ) and I(Ṽ ;Sx|Ũ) ≤ I(Ṽ ;Sy, Y |Ũ). Setting RM =
0 and (U, V ) = (Ũ, Ṽ ) in Theorem 1, where (Ũ, Ṽ ) is a valid

auxiliary pair for R
(Joint)
BPS , recovers (25).

It was shown in [25] that, in some cases, the separation-

based scheme achieves strictly higher rates than the joint

coding scheme, i.e., that R
(Separate)
BPS > R

(Joint)
BPS . As Theo-

rem 1 captures both these results, it unifies the two schemes

from [25], and, in particular, outperforms R
(Joint)
BPS . Since the

results from [25] were derived under the weak secrecy metric,

Theorem 1 also upgrades them to SS (which is equivalent to

strong secrecy when only SK generation is of interest).

VI. PROOF OF THEOREM 1

The subsequently presented proof follows lines similar to

those from the proof of [21, Theorem 1]. Several claims

herein are recovered from corresponding assertions in [21]

by identifying the index j in [21] with the pair (j, k) in our

scheme. The proofs of such claims are omitted, and the reader

is referred to [21].

Fix ǫ > 0 and a conditional PMF qU,V,X|S : S → P(U×V×
X ). For any n ∈ N, let pM ∈ P(Mn) be the message distri-

bution. We first show that for any (RM , RK) ∈ RA

(

qU,V,X|S

)

there exists a SS sequence of (n,RM , RK)-codes with a key

distribution that is approximately uniform conditioned on any

message, and a vanishing average error probability. We then

use the expurgation technique [37, Theorem 7.7.1] to ensure

a vanishing maximal error probability. This is done without

harming the SS and the statistical properties of the key, since

they hold for each message in the original message set.

Codebook Bn: We use a superposition codebook where the

outer layer carries both the SM and the SK. The codebook is

constructed independently of S, but has sufficient redundancy

to enable correlating the transmission with it.

Define the index sets In ,
[

1 : 2nR1
]

and Jn ,
[

1 : 2nR2
]

.

Let B
(n)
U ,

{

U(i)
}

i∈In
be a random inner layer codebook,

which is a set of random vectors of length n that are i.i.d.

according to qnU . An outcome of B
(n)
U is denoted by B

(n)
U ,

{

u(i)
}

i∈In
.

To describe the outer layer codebook, fix B
(n)
U and, for every

i ∈ In let B
(n)
V (i) ,

{

V(i, j, k,m)
}

(j,k,m)∈Jn×Kn×Mn
be a

collection of i.i.d. random vectors of length n with distribution

qnV |U=u(i). For each i ∈ In, an outcome of B
(n)
V (i) given B

(n)
U

is denoted by B
(n)
V (i) ,

{

v(i, j, k,m)
}

(j,k,m)∈Jn×Kn×Mn
.

We also set BV =
{

BV (i)
}

i∈In
and denote its realizations

by BV . Finally, a random superposition codebook is given by

Bn =
{

B
(n)
U ,B

(n)
V

}

, while Bn =
{

B
(n)
U ,B

(n)
V

}

denotes a fixed

codebook.

Let Bn be the set of all possible outcomes of Bn. The above

codebook construction induces a PMF µ ∈ P(Bn) over the

codebook ensemble. For every Bn ∈ Bn, we have

µ(Bn) =
∏

i∈In

qnU
(

u(i)
)

∏

(

î,j,k,m
)

∈In×Jn×Kn×Mm

qnV |U

(

v
(

î, j, k,m
)

∣

∣

∣
u(̂i)

)

.

(26)

The encoder and decoder are described next for any superpo-

sition codebook Bn ∈ Bn.

Encoder f
(Bn)
n : The encoding function is based on the

likelihood-encoder [27], which allows us to approximate the

induced joint distribution by a simple distribution that we use

for the analysis. Given m ∈ Mn and s ∈ Sn, the encoder

randomly chooses (i, j, k) ∈ In × Jn ×Kn according to

p
(Bn)
LE (i, j, k|m, s) =

qnS|U,V

(

s
∣

∣u(i),v(i, j, k,m)
)

∑

(i′,j′,k′)
∈In×Jn×Kn

qn
S|U,V

(

s
∣

∣u(i′),v(i′, j′, k′,m)
) ,

(27)

where qS|U,V is the conditional marginal of qS,U,V defined by

qS,U,V (s, u, v) =
∑

x∈X WS(s)qU,V,X|S(u, v, x|s), for every

(s, u, v) ∈ S ×U ×V . The encoder declares the chosen index

k ∈ Kn as the key. The channel input sequence is generated by

feeding the chosen u- and v-codewords along with the state

sequence into the DM channel qX|U,V,S , i.e., it is sampled

from the random vector X ∼ qn
X|U=u(i),V=v(i,j,k,m),S=s.

Accordingly, the (stochastic) encoding function fn : Mn ×
Sn → P(Kn ×Xn) is given by

f (Bn)
n (k,x|m, s) =

∑

(i,j)∈In×Jn

[

p
(Bn)
LE (i, j, k|m, s) (28)

×qnX|U,V,S

(

x
∣

∣u(i),v(i, j, k,m), s
)

]

.

Decoder φ
(Bn)
n : Upon observing y ∈ Yn, the decoder

searches for a unique tuple (̂i, ĵ, k̂, m̂) ∈ In×Jn×Kn×Mn

such that
(

u(̂i),v(̂i, ĵ, k̂, m̂),y
)

∈ T n
ǫ (qU,V,Y ). (29)

If such a unique quadruple is found, then set φ
(Bn)
n (y) =

(

m̂, k̂
)

; otherwise, φ
(Bn)
n (y) = (1, 1).

The quadruple (Mn,Kn, f
(Bn)
n , φ

(Bn)
n ) defined with respect

to the codebook Bn is an (n,RM , RK)-code cn. For any

message distribution pM ∈ P(Mn) and codebook Bn ∈ Bn,

the induced joint distribution p(Bn) over Mn × Sn × In ×
Jn ×Kn × Un × Vn ×Xn × Yn ×Zn × M̂n × K̂n is

p(Bn)(m, s, i, j, k,u,v,x,y, z, m̂, k̂)

= pM (m)Wn
S (s)p

(Bn)
LE (i, j, k|m, s)

× 1{
u=u(i)

}

∩
{

v=v(i,j,k,m)
}qnX|U,V,S(x|u,v, s)

×Wn
Y,Z|S,X(y, z|s,x)1{

(m̂,k̂)=φ
(Bn)
n (y)

}. (30)

If pM = p
(U)
Mn

, i.e., the message distribution is uni-

form, we write p̄(Bn) instead of p(Bn). If p(Bn) appears

with no explicitly stated argument, it should be interpreted

as p(Bn)(m, s, i, j, k,u,v,x,y, z, m̂, k̂). This abbreviation is
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used for p̄(Bn) and the approximating distributions, stated next,

as well.

Approximating Distribution: For each pM ∈ P(Mn) and

Bn ∈ Bn, define the distribution

π(Bn)(m, i, j, k,u,v, s,x,y, z, m̂, k̂)

, pM (m)
1

|In||Jn||Kn|
1{

u=u(i),v=v(i,j,k,m)
}

× qnS|U,V (s|u,v)q
n
X|U,V,S(x|u,v, s)

×Wn
Y,Z|S,X(y, z|s,x)1{

(m̂,k̂)=φ
(Bn)
n (y)

}. (31)

As before, π̄(Bn) stands for π(Bn) when pM = p
(U)
Mn

. This

distribution describes a setup where the codeword indices

(i, j, k) are chosen uniformly at random, whereas the state

sequence s is the output of a DM prefix channel qS|U,V .

Consequently, the effective channel from (U, V ) to (Y, Z) in

the approximating setup is

qY,Z|U,V (y, z|u, v) = (32)
∑

(s,x)∈S×X

qS|U,V (s|u, v)qX|U,V,S(x|u, v, s)WY,Z|S,X(y, z|s, x).

Notably, qY,Z|U,V is not SD, which allows simple reliabil-

ity and security analyses. We subsequently show that for a

random codebook Bn with appropriately chosen rates (see

Lemma 1 below), p(Bn) and π(Bn) are close in total variation,

with high probability. Therefore, one may analyze the code’s

performance with respect to either of the two. The simplicity

of π(Bn) makes it preferable for the analysis.

The following lemma states sufficient conditions for π(Bn)

to be a good approximation (in total variation) of p(Bn) with

double-exponential certainty.

Lemma 1 (Sufficient Conditions for Approximation) If

R1 > I(U ;S), (33a)

R1 +R2 +RK > I(U, V ;S), (33b)

then there exist α1, α2 > 0, such that for any n large enough

Pµ

(

max
pM∈P(Mn)

∣

∣

∣

∣

∣

∣
p(Bn) − π(Bn)

∣

∣

∣

∣

∣

∣

TV
> e−nα1

)

≤ e−enα2
.

(34)

In particular, for any such n it also holds that

Eµ

∣

∣

∣

∣

∣

∣
p̄(Bn) − π̄(Bn)

∣

∣

∣

∣

∣

∣

TV
≤ e−nα1 + n log

(

1

ξS

)

e−enα2
, (35)

where ξS = mins∈supp(WS)WS(s) > 0. The subscript µ in

Pµ and Eµ indicates that the probability measure and the

expectation are taken with respect to the random codebook

Bn ∼ µ.

Lemma 1 essentially restates [21, Lemma 7] with the index

j therein replaced here with the pair (j, k). The proof of

Lemma 1 relies on the strong SCL for superposition codes and

some basic properties of total variation. Due to the similarity

to [21, Lemma 7] we omit the proof and the reader is referred

to [21].

Lemma 1 is key for analyzing the performance of the

proposed code. The reliability analysis that is presented next

exploits the convergence of the expected value from (35) to

show that the average error probability can be made arbitrarily

small. The expurgation method [37, Theorem 7.7.1] is used in

a later stage of this proof to upgrade to a vanishing maximal

error probability.

Average Error Probability Analysis: The average error

probability3 ē(Bn) associated with a codebook Bn is

ē(Bn) ,
1

|Mn|

∑

m∈Mn

em(Bn)

= Pp̄(Bn)

((

M̂, K̂
)

6= (M,K)
)

. (36)

Our next step is to establish that the expected value of ē(Bn)
over the codebook ensemble is approximately the same under

p̄ and π̄. Then, the expected average error probability under

π̄ is analyzed and shown to converge to zero as n→ ∞. Due

to the simple structure of π̄, this analysis requires nothing

but standard typicality arguments. To do so we use the two

following lemmas.

Lemma 2 (Average Error Prob. Under p̄(Bn) and π̄(Bn))

The following relation holds:
∣

∣

∣
EµPp̄(Bn) ((M̂,K̂) 6=(M,K))− EµPπ̄(Bn) ((M̂,K̂) 6=(M,K))

∣

∣

∣

≤ Eµ

∣

∣

∣

∣p̄(Bn) − π̄(Bn)
∣

∣

∣

∣

TV
. (37)

Lemma 2 is a simple consequence of the definition of total

variation and the linearity of expectation. For the proof of

Lemma 2 and the following Lemma 3, the reader is referred

to the Average Error Probability Analysis part in Section VI-B

of [21].

Lemma 3 (Average Error Probability Under π̄(Bn)) If the

rate tuple (RM , RK , R1, R2) satisfies

RM +RK +R2 < I(V ;Y |U), (38a)

RM +RK +R1 +R2 < I(U, V ;Y ), (38b)

then

EµPπ̄(Bn)

((

M̂, K̂
)

6= (M,K)
)

−−−−→
n→∞

0. (39)

Since π(Bn) describes a setup where the channel is not SD

(see (31)-(32)), standard typicality decoding arguments for

superposition codes apply, and, in turn, imply the result of

Lemma 3. We stress that the conditions in (38) ensure reliable

decoding of the four indices (i, j, k,m), and, in particular, of

the SM-SK pair (m, k).
Combining the claims of Lemmas 2-3 with (35) from

Lemma 1, we have that as long as (38) and (33) are satisfied

Eµē(Bn) −−−−→
n→∞

0. (40)

Key Analysis: The structure of π(Bn) from (31) implies that

for any Bn ∈ Bn and m ∈ Mn we have π
(Bn)
K|M=m

= p
(U)
Kn

.

Adopting the same abuse of notation we used for the reliability

3We slightly abuse notation here because ē and em are actually functions
of the code cn rather than the codebook Bn. However, since Bn uniquely
defines cn we prefer this presentation for the sake of simplicity.
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analysis, we use Lemma 1 to upper bound the probability

that δ(Bn) does not decay exponentially fast to zero as n
grows. Therefore, assuming (33) holds, we have that there

exists η1, η2 > such that

Pµ

(

δ(Bn) > e−nη1

)

= Pµ

(

max
m∈Mn

∣

∣

∣

∣

∣

∣
p
(Bn)
K|M=m

− p
(U)
Kn

∣

∣

∣

∣

∣

∣

TV
> e−nη1

)

= Pµ

(

max
m∈Mn

∣

∣

∣

∣

∣

∣
p
(Bn)
K|M=m

− π
(Bn)
K|M=m

∣

∣

∣

∣

∣

∣

TV
> e−nη1

)

≤ Pµ

(

max
pM∈P(Mn)

∣

∣

∣

∣

∣

∣
p
(Bn)
M,K − π

(Bn)
M,K

∣

∣

∣

∣

∣

∣

TV
> e−nη1

)

≤ Pµ

(

max
pM∈P(Mn)

∣

∣

∣

∣

∣

∣
p(Bn) − π(Bn)

∣

∣

∣

∣

∣

∣

TV
> e−nη1

)

(a)

≤ e−enη2
, (41)

where (a) is by (34) from Lemma 1. We proceed with the

security analysis.

Security Analysis: This part mainly deals with analyzing

the SS metric under the distribution π(Bn). The following

lemma explains the reason for doing so. It states conditions

under which SS under π(Bn) implies SS under p(Bn). These

conditions are assured, with hight probability, by Lemma 1.

Lemma 4 (SS for p(Bn) and π(Bn)) Let Bn ∈ Bn and β1 >
0, such that for all pM ∈ P(Mn) and n sufficiently large

(independent of pM )
∣

∣

∣

∣

∣

∣
pMp

(Bn)
K,Z|M − pMπ

(Bn)
K,Z|M

∣

∣

∣

∣

∣

∣

TV
≤ e−nβ1 . (42)

Then, there exist β2 > 0 such that for all pM ∈ P(Mn) and

large enough values of n (independent of pM ), we have
∣

∣

∣
Ip(Bn)(M,K;Z)− Iπ(Bn)(M,K;Z)

∣

∣

∣
≤ e−nβ2, (43)

where the subscripts p(Bn) and π(Bn) indicate that a mutual

information term is calculated with respect to the correspond-

ing PMF.

The proof of Lemma 4 extends that of [21, Lemma 8], and

can be found in [2, Appendix D].

For any n ∈ N and β1 > 0, define the collection of

codebooks

An (β1) ,

{

Bn

∣

∣

∣

∣

max
pM∈P(Mn)

∣

∣

∣

∣

∣

∣
p(Bn) − π(Bn)

∣

∣

∣

∣

∣

∣

TV
≤ e−nβ1

}

.

(44)

We note that Lemma 1 guarantees that if (33) is satisfied, then

there exist β1 > 0 such that Pµ

(

Bn /∈ An (β1)
)

vanishes

doubly exponentially fast with n. Lemma 4 then ensures that

if Bn ∈ An(β1), for some β1 > 0 and sufficiently large n,

then there exists β2 > 0, such that

ℓSem(Bn) , max
pM∈P(Mn)

Ip(Bn)(M,K;Z)

≤ max
pM∈P(Mn)

Iπ(Bn)(M,K;Z) + e−nβ2 , (45)

for large enough n. Therefore, to demonstrate that the code

corresponding to any Bn ∈ An(β1) is semantically-secured it

suffices to show that maxpM∈P(Mn) Iπ(Bn)(M,K;Z) can be

made arbitrarily small.

Fix Bn ∈ An(β1) and pM ∈ P(Mn), and consider

Iπ(Bn)(M,K;Z) ≤ Iπ(Bn)(M,K; I,U,Z)

= D

(

π
(Bn)
M,K,Z,I,U

∣

∣

∣

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
Z,I,U

)

(a)
= D

(

π
(Bn)
M,Kπ

(Bn)
I,U π

(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U π

(Bn)
Z|I,U

)

(b)
= D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
π
(Bn)
Z|I,U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

(c)

≤ D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

, (46)

where (a) is because π
(Bn)
M,K,I,U = π

(Bn)
M,Kπ

(Bn)
I,U (see (31)), (b)

is by the relative entropy chain rule, while (c) follows from

D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
π
(Bn)
Z|I,U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

= D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

− D

(

π
(Bn)
Z|I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

(47)

and the non-negativity of relative entropy. Here, qZ|U is

the conditional marginal of the single-letter distribution

WSqU,V,X|SWY,Z|S,X .

Maximizing both sides of (46) over all message distributions

pM ∈ P(Mn), we further have

max
pM∈P(Mn)

Iπ(M,K;Z)

≤ max
pM∈P(Mn)

D

(

π
(Bn)
Z|M,K,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
M,Kπ

(Bn)
I,U

)

= max
pM∈P(Mn)

∑

(m,k)∈Mn×Kn

[

π
(Bn)
M,K(m, k)

× D

(

π
(Bn)
Z|M=m,K=k,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
I,U

)

]

≤ max
pM∈P(Mn)

∑

(m,k)∈Mn×Kn

[

π
(Bn)
M,K(m, k)

× max
(m̃,k̃)∈M×Kn

D

(

π
(Bn)

Z|M=m̃,K=k̃,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
I,U

)

]

= max
(m,k)∈Mn×Kn

D

(

π
(Bn)
Z|M=m,K=k,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
I,U

)

. (48)

Inserting (48) into (45), for a sufficiently large n, we deduce

there exists β2 > 0 such that

ℓSem(Bn) ≤ (49)

max
(m,k)∈Mn×Kn

D

(

π
(Bn)
Z|M=m,K=k,I,U

∣

∣

∣

∣

∣

∣
qnZ|U

∣

∣

∣
π
(Bn)
I,U

)

+ e−nβ2.

The two following lemmas state conditions under which the

probability that the RHS of (49) vanishes exponentially fast

with n is double-exponentially close to 1.

Lemma 5 (Total Variation Dominates Relative Entropy)

Let X and Y be finite sets, and for any n ∈ N let

pX ∈ P(Xn), pY|X : Xn → P(Yn) and qY |X : X → P(Y).
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If pY|X=x ≪ qn
Y |X=x, for all x ∈ Xn, i.e., pY|X=x is

absolutely continuous with respect to qnY |X=x, then

D
(

pY|X

∣

∣

∣

∣qnY |X

∣

∣pX
)

≤
∣

∣

∣

∣pXpY|X − pXq
n
Y |X

∣

∣

∣

∣

TV
(50)

×

(

n log |Y|+ log
1

∣

∣

∣

∣pXpY|X − pXqnY |X

∣

∣

∣

∣

TV

+ n log ξY |X

)

,

where ξY |X is the minimal non-zero value of the transition

matrix qY |X .

Lemma 5 is [21, Lemma 9] and its proof is omitted.

It is readily verified that π
(Bn)
Z|M=m,K=k,I=i,U=u ≪ qn

Z|U=u,

for each (m, i, k,u) ∈ Mn × In × Kn × Un. Combining

Lemma 5 and (49), we see that if Bn ∈ An(β1) and

max
(m,k)

∈Mn×Kn

∣

∣

∣

∣

∣

∣
π
(Bn)
I,U π

(Bn)
Z|M=m,K=k,I,U−π

(Bn)
I,U qnZ|U

∣

∣

∣

∣

∣

∣

TV
≤ e−nζ1 ,

(51a)

for some β1, ζ1 > 0 and n sufficiently large, then there exists

ζ2 > 0 for which

ℓSem(Bn) ≤ e−nζ2 (51b)

as n grows.

Lemma 6 (Sufficient Conditions for SS) If the rate tuple

(RM , RK , R1, R2) ∈ R
4
+ satisfies (33a) and

R2 > I(V ;Z|U), (52)

then there exist γ1, γ2 > 0, such that for n sufficiently large

Pµ

(

max
(m,k)

∈Mn×Kn

∣

∣

∣

∣

∣

∣
π
(Bn)
I,U π

(Bn)
Z|M=m,K=k,I,U

− π
(Bn)
I,U qnZ|U

∣

∣

∣

∣

∣

∣

TV
> e−nγ1

)

≤ e−enγ2
. (53)

Lemma 6 follows by the security analysis from [21] with

(M,K) = (m, k) in the role of M = m therein.

Combining the lemma with Lemma 1 and (51), we deduce

that if (33) and (52) hold, then there exist τ1, τ2, τ3, τ4, τ5 > 0
(dependent among themselves but independent of n), such that

for any sufficiently large n

Pµ

(

ℓSem(Bn) > e−nτ1
)

≤ Pµ

(

ℓSem(Bn)>e
−nτ1

∣

∣

∣
Bn∈An(τ3)

)

+Pµ

(

Bn /∈An(τ3)
)

≤ e−enτ4
+ e−enτ5

≤ e−enτ2
. (54)

Code Extraction: The above derivation shows that if (33),

(38) and (52) are simultaneously satisfied, then

Eµē(Bn) −−−−→
n→∞

0, (55a)

and for sufficiently large n, we also have

Pµ

(

δ(Bn) > e−nη1

)

≤ e−enη2
, (55b)

Pµ

(

ℓSem(Bn) > e−nτ1
)

≤ e−enτ2
. (55c)

The Selection Lemma from [11, Lemma 5] implies the

existence of a sequence of superposition codebooks
{

Bn

}

n∈N

(an outcome of the random codebook sequence
{

Bn

}

n∈N
), for

which

ē(Bn) −−−−→
n→∞

0, (56a)

1{
δ(Bn)>e−nη1

} −−−−→
n→∞

0, (56b)

1{
ℓSem(Bn)>e−nτ1

} −−−−→
n→∞

0. (56c)

Since the indicator functions in (56b)-(56c) take only the

values 0 and 1, we have that for any n large enough

δ(Bn) ≤ e−nη1 , (57a)

ℓSem(Bn) ≤ e−nτ1 . (57b)

On account of (55a) and (57), we have that {Bn}n∈N is

semantically-secured, satisfies the target key statistics, and is

reliable with respect to the average error probability.

Our last step is to upgrade {Bn}n∈N to have a small

maximal error probability. This is a standard step that uses

the expurgation technique (see, e.g., [37, Theorem 7.7.1]).

Namely, pushing the average error probability below ǫ
2 , at least

half of the messages in Mn result in a probability of error that

is at most ǫ. Throwing away the rest of the messages ensures

a maximal error probability that is at most ǫ, while inflicting a

negligible rate loss. Discarding those messages does not harm

the SS or the key uniformity and independence metric, thus

producing a new sequence of codes that satisfies (7). Applying

the Fourier-Motzkin Elimination on (33), (38) and (52) shows

that any SM-SK rate pair (RM , RK) ∈ RA

(

qU,V,X|S

)

is

achievable, which concludes the proof.

VII. SUMMARY AND CONCLUDING REMARKS

We studied the trade-off between the SM and SK rates

that are simultaneously achievable over a SD-WTC with non-

causal encoder CSI. This model subsumes all other instances

of CSI availability as special cases. An inner bound on the

SS SM-SK capacity region was derived based on a superposi-

tion coding scheme, the likelihood encoder and soft-covering

arguments inspired by [21].

We presented a class of SD-WTCs for which our inner

bound achieves capacity, and showed that for this class, the

previously best known SM-SK trade-off region by Prabhakaran

et al. [26] is strictly sub-optimal. Furthermore, we showed

that the inner bound derived here recovers the best lower

bounds on either the SM [21] or the SK [25] rate achievable

over the considered SD-WTC. Our derivations ensure SS, thus

upgrading the security standard from most of the past results,

which were derived under the weak secrecy metric.

As the SM-SK capacity region for this setup remains an

open problem, good outer bounds are of particular interest.

Extensions to multiple terminals, action dependent states [38],

and source reconstruction models should be examined as well.

APPENDIX A

PROOF OF COROLLARY 1

Recall that the SD less-noisy-eavesdropper WTC with a key

is the
(

S̃,X , Ỹ,Z,WS̃ ,WỸ,Z|S̃,X

)

SD-WTC, where S̃ =
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L × S, Ỹ = L × Y , WS̃ = WL × WS , S̃ = (L, S),
Ỹ = (L′, Y ), whose transition matrix satisfies (13) and the

less-noisy condition.

A qU,X|S,L induces a joint distribution over L × S × U ×
X × Y × Z that is given by

qL,S,U,X,Y,Z ,WLWSqU,X|S,LWY,Z|S,X . (58)

We now proceed with the direct and the converse proofs.

Direct: Fix qU,X|S such that (U,X)−
−S−
−L. The struc-

ture of (58) further implies that (S,U,X, Y, Z) ⊥ L. Evalu-

ating the bounds from Theorem 1 with respect to (58), while

setting V = (L,U) and using S̃ = (L, S) and Ỹ = (L, Y ),
we have

RM ≤ I(U, V ; Ỹ )− I(U, V ; S̃)

= I(L,U ;L, Y )− I(L,U ;L, S)

= I(U ;Y |L)− I(U ;S|L)

(a)
= I(U ;Y )− I(U ;S), (59a)

where (a) is because (S,U, Y ) are independent of L. Combin-

ing the two bounds on the sum RM +RK in one, we further

have

RK+RM ≤ I(V ; Ỹ |U)−I(V ;Z|U)−
[

I(U ; S̃)−I(U ; Ỹ )
]+

= I(L;L, Y |U)− I(L;Z|U)−
[

I(U ;L, S)− I(U ;L, Y )
]+

(a)
= H(L)−

[

I(U ;S)− I(U ;Y )
]+
, (59b)

where, similarly to the above, (a) is implied by the in-

dependence of (S,U, Y, Z) and L. Finally, due to (59a),

any joint distribution that produces a non-zero achievable

region satisfies I(U ;Y ) − I(U ;S) ≥ 0; hence, the term
[

I(U ;S) − I(U ;Y )
]+

from (59b) is zero. Maximizing over

all qU,X|S concludes the proof.

Converse: To get (14a), notice that the secret commu-

nication rate of the setup cannot exceed the total reliable

communication rate. Therefore, an upper bound on the SM

capacity is given by the GP channel capacity formula [19]:

max
qU,X|S̃

[

I(U ; Ỹ )− I(U ; S̃)
]

, (60)

where, for each qU,X|S̃ , the underlying joint PMF is

qU,X|S̃WỸ |S̃,X , with S̃ = (L, S) and Ỹ = (L, Y ). We thus

have

RM ≤ max
qU,X|L,S

[

I(U ;L, Y )− I(U ;L, S)
]

= max
qU,X|L,S

[

I(U ;Y |L)− I(U ;S|L)
]

(a)
= max

qU,X|L,S

[

I(U ;Y |L)− I(L,U ;S)
]

≤ max
qU,X|L,S

[

I(L,U ;Y )− I(L,U ;S)
]

≤ max
qL,U,X|S

[

I(L,U ;Y )− I(L,U ;S)
]

(b)
= max

qU,X|S

[

I(U ;Y )− I(U ;S)
]

, (61)

where (a) follows because L and S are independent (see (58)),

while (b) follows by recasting (L,U) as U .

For the bound on RM +RK from (14b), consider

H(M,K)

(a)

≤ I(M,K;L,Y) +H(M,K|L,Y)− I(M,K;Z) + nǫ̃n
(b)

≤ I(M,K;L,Y)− I(M,K;Z) + nǫn

= I(M,K;L|Y) + I(M,K;Y)− I(M,K;Z) + nǫn
(c)

≤ I(M,K;L|Y) + nǫn ≤ n(H(L) + ǫn), (62)

where (a) uses the security hypothesis; (b) is Fano’s inequality;

whereas (c) follows the less-noisy property of the channel

since (M,K)−
−X−
−(Y,Z) is a Markov chain.

Finally, since the code guarantees reliable communication

for any message distribution, we can consider the case that it is

uniform, while the key distribution (approximate) uniformity

is guaranteed by the key properties. Thus

RM +RK ≤
1

n
H(M,K) + ǫ̂n ≤ H(L) + ˆ̂ǫn, (63)

which concludes the proof.

APPENDIX B

COUNTEREXAMPLE TO THEOREM 1 FROM [29]

We first restate [29, Theorem 1] through the notations of this

work. This theorem proposes the following lower bound on the

SK capacity CSK of the SD-WTC with non-causal encoder

CSI: 4

CSK ≥ RZib , max
[

I(V ;Y |U)− I(V ;Z|U)
]

, (64a)

where the maximization is over all conditional PMFs qU|V :
V → P(U) and qV,X|S : S → P(V × X ) satisfying

I(V ;Y ) ≥ I(V ;S). (64b)

All the above MI terms are taken with respect to the

appropriate marginals of WSqU|V qV,X|SWY,Z|S,X , where

U−
−V−
−(S,X)−
−(Y, Z) forms a Markov chain.

We next show that (64) cannot be an inner bound on the

SK capacity of the GP-WTC. This is proven by constructing

an example for which RZib exceeds the SK capacity. Consider

the following:

• Let A, B and Q be three i.i.d. Ber(12 ) random variables.

Also, set An, Bn and Qn as three n-fold random vectors

whose coordinates are i.i.d. copies of A, B and Q,

respectively.

• For each i ∈ [1 : n], let Ti = t(Ai, Bi, Qi), where t :
{0, 1}3 → {0, 1} is the deterministic function

t(a, b, q) =

{

a, q = 0

b, q = 1
. (65)

• Let fn be the stochastic encoder and Ψn be the binary

sequence that fn produces and transmits over a private

binary bit-pipe to the legitimate receiver.

4 [29, Theorem 1] considers a setting with state observations at the receiver
and the eavesdropper, and a public communication link. As explained in
Remark 1, such a setup is a special case of the GP-WTC. Using the technique
described in Remark 8, it can be verified that [29, Theorem 1] (in its original
form) is recoverable from its restatement here.
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• The encoder observes (An, Bn) non-causally and deter-

mines the binary bit-pipe transmission Ψn.

• The decoder observes (Qn, T n,Ψn).
• The eavesdropper observes An ⊕n B

n, where ⊕n stands

for bit-wise addition modulo 2. (At each time instance

the eavesdropper observes Ai +Bi (mod 2).)

Thus, at each channel use i ∈ [1 : n], the encoder observes

two fair coin tosses, Ai and Bi. The decoder observes only

one of them, namely Ti, chosen at random (using a third fair

coin Qi). The decoder knows which coin it observes, but the

encoder does not. There is a private bit-pipe from the encoder

to the decoder, which enables the transmission of a single

noiseless bit each time the coins are flipped. The legitimate

parties wish to agree upon a key that is kept secret from the

eavesdropper, who observes only the modulo 2 addition of the

two coins, Ai ⊕Bi, each time they are flipped.

Denoting the SK generated by the legitimate parties by Kn,

the induced joint PMF of the system is

qAn,Bn,Qn,Tn,Ψn,Kn
(an, bn, qn, tn, ψn, kn)

= fn(kn, ψ
n|an, bn)

×
n
∏

i=1

[

WA(ai)WB(bi)WQ(qi)1{Ti=t(ai,bi,qi)}

]

. (66)

To see that the example falls within the framework of our

model, note that (A,B, T,Q) are correlated random sources

(i.i.d. across time), such that the encoder, decoder and eaves-

dropper observe (A,B), (T,Q) and A ⊕ B, respectively. In

addition, there is a noiseless channel, independent of the

sources, between the legitimate parties. In the notation of

Remark 1 this corresponds to St = (A,B), Sr = (T,Q),
Se = A⊕B, X = Ỹ = Ψ and Z̃ = 0 , such that:

WSr,Se|St
=W(Q,T ),Se|A,B =WQ1{T=t(A,B,Q)}1{Se=A⊕B},

WỸ,Z̃|St,Sr,Se,X
= 1{Ỹ=X=Ψ}1{Z̃=0},

and S = St = (A,B), Y = (Sr, Ỹ ) = (T,Q,Ψ) and Z =
(Se, Z̃) = A⊕B.

A valid choice of random variables for (64) is 5

1) Ψ ∼ Ber(12 ) independent of (A,B,Q),
2) U = Z = A⊕ B,

3) V = (A,B,Ψ),

which achieves RZib = 2. Hence, by showing that the SK

capacity of the proposed setup is strictly less than 2, we

contradict the achievability of RZib from [29, Theorem 1] as a

SK rate for this setup. We do so by showing that the vanishing

average error probability and the weak secrecy of the SK, used

in the definition of achievability in [29], cannot coexist in this

setup while a SK rate of 2 is attained.

Consider a sequence of codes {cn}n∈N achieving RZib = 2
for the above setup. We have that there exists a sequence {ǫn},

with limn→∞ ǫn = 0, such that

H(Kn) ≥ 2n− nǫn, (67a)

H(Ψn) ≤ n, (67b)

5 To use the original notations of [29] we identify U, V, St, Sr , Se, X, Ỹ, Z̃

we use, respectively, with W,U, S,B, E,X, Y, Z from [29], where CP = 0.

H(Kn|Ψ
n, Sn

r ) ≤ nǫn, (67c)

I(Kn;Z
n) ≤ nǫn, (67d)

where:

(67a) follows by the definition of SK rate achievability.

(67b) is because the alphabet of Ψn is of size 2n and since a

uniform distribution maximizes discrete entropy.

(67c) is Fano’s inequality, following the requirement of van-

ishing decoding error.

(67d) is the weak secrecy requirement.

Lemma 7 For the considered setup, the SK capacity is upper

bounded by 2 bits per channel use,

CSK ≤ 2. (68)

Lemma 7 follows because the considered setup, but without an

eavesdropper (i.e., when Z = 0), falls within the framework of

the common randomness (CR) problem in Model i from [39].

Proof: Theorem 4.1 in [39] shows that the CR capacity

is upper bounded by

CCR ≤ R+ I(S;Sr), (69)

where R is the rate of the communication link between the

transmitter and the receiver. Evaluating the RHS of (69) with

respect to the considered setup shows that it equals 2 (CR

bits per channel use). This upper bound remains valid when

a security requirement is introduced, since it can only reduce

the admissible rates.

Lemma 7 guarantees the existence of a sequence {ǫ′n}, with

limn→∞ ǫ′n = 0, such that the following condition may be

added to the set (67):

H(Kn) ≤ 2n+ nǫ′n. (70)

Another technical lemma we need is stated next. Its proof

is omitted due to space limitations. The technique is standard,

and the full proof can be found in [2, Appendix E].

Lemma 8 If (67a)-(67c) hold, then

H(An, Bn|Kn) ≤ 4nǫn. (71)

Now, combining (70) and (71), we have

H(Kn|A
n, Bn) = H(Kn)−H(An, Bn) +H(An, Bn|Kn)

≤ 2n+ nǫ′n − 2n+H(An, Bn|Kn)

≤ (4ǫn + ǫ′n)n. (72)

Using (72) we can finally lower bound the conditional

information leakage term I(Kn; Ψ
n, Zn). To do so, first

consider

H(Kn|Z
n) ≤ H(Kn, A

n, Bn|Zn)

= H(An, Bn|Zn) +H(Kn|A
n, Bn, Zn)

≤ H(An, Bn|Zn) +H(Kn|A
n, Bn)

(a)

≤ H(An, Bn|Zn) + (4ǫn + ǫ′n)n

(b)
= H(An, Bn)−H(Zn) + (4ǫn + ǫ′n)n

(c)
= (1 + 4ǫn + ǫ′n)n, (73)
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where (a) uses (72), (b) follows by the chain rule and because

Zn is deterministically defined by (An, Bn) and (c) is since

An, Bn and Zn = An⊕nB
n are all i.i.d. Ber

(

1
2

)

sequences,

and because An and Bn are independent.

Having (73), we conclude with

I(Kn;Z
n) = H(Kn)−H(Kn|Z

n)

(a)

≥ 2n− nǫn − (1 + 4ǫn + ǫ′n)n = (1− 5ǫn − ǫ′n)n, (74)

where (a) uses (67a) and (73). Evidently, (74) contradicts

(67d).

APPENDIX C

PROOF OF PROPOSITION 1

Fix σ ∈ (0, 0.5) and set

ǫ =
1

2

[

h
(σ

2

)

− σ
]

, (75a)

λ = h−1(1− σ − ǫ), (75b)

where h : [0, 1] → [0, 1] and h−1 : [0, 1] → [0, 0.5] are the

binary entropy function and the inverse of its restriction to

[0, 0.5], respectively. It is readily verified that ǫ, λ ∈ (0, 0.5).
By virtue of (22), the inner bound from Theorem 1 attains the

SM capacity, which is given by (see (15))

CSM = min
{

CGP(WY |S,X), H(L)
}

, (76)

where CGP(WY |S,X) = maxqU,X|S

[

I(U ;Y )−I(U ;S)
]

is the

GP capacity of the SD channel WY |S,X with state distribution

WS . By the corollary to Theorem 2 from [40] we find that

CGP(WY |S,X) = (1 − σ)(1 − ǫ). As H(L) = 1 − σ − ǫ <
(1− σ)(1 − ǫ), we obtain 6

CSM = H(L) = 1− σ − ǫ = 1−
1

2

[

σ + h
(σ

2

)]

. (77)

We now show that RSM
PER(λ, ǫ, σ) < 1− 1

2

[

σ + h
(

σ
2

)]

. Fix a

joint distribution to evaluate the region from (17b) with RK =
0, and S and Y replaced with S̃ = (L, S), Ỹ = (L, Y ). This

distribution factors as

qL,S,U,V,X,G,E,Y,Z,S̃,Ỹ ,WLWSqUqV,X|U,S,L1{G=g(S,X)}

×WE1{Y=y(E,G)}1{Z=(S,X)}1{S̃=(L,S)}∩{Ỹ=(L,Y )}. (78)

Note that the independence of (L, S) and U is a restriction on

the feasible joint distributions in (17a).

Now, assume in contradiction that evaluating (17b) with

respect to q produces a rate that is at least as high as (77).

Specifically, assume that

I(U, V ; Ỹ )− I(U, V ; S̃) ≥ H(L) (79a)

and

I(V ; Ỹ |U)− I(V ;Z|U) ≥ H(L). (79b)

Consider the following upper bound on (79b).

I(V ; Ỹ |U)− I(V ;Z|U) = I(V ;L, Y |U)− I(V ;S,X |U)

= I(V ;Y |U) + I(V ;L|U, Y )− I(V ;S,X |U)

6 The achievability of (77) may also be verified directly from Theorem 1 by
substituting RK = 0, U = G, V = (U, L) and X ∼ Ber

(

1

2

)

independent

of (S,L) into (8).

= I(V ;U, Y ) + I(V ;L|U, Y )− I(V ;U, S,X)

(a)
= I(V ;L|U, Y ) + I(V ;U, Y )− I(V ;U, S,X, Y )

= I(V ;L|U, Y )− I(V ;S,X |U, Y )

= H(L|U, Y )−H(L|U, V, Y )− I(V ;S,X |U, Y )

≤ H(L), (80)

where (a) uses the Markov relation V−
−(S,U,X)−
−Y ,

which follows because Y = y
(

E, g(S,X)
)

and E is inde-

pendent of (S,U, V,X) under the distribution from (78).

On account of (79b), the single inequality from (80) must

hold with equality. For this to happen, all the following

arguments must hold.

1) The conditioning is removed from the first (positive)

term, i.e., H(L) = H(L|U, Y ). This implies that L is

independent of (U, Y ).

2) The second (negative) term is zero, i.e.,

0 = H(L|U, V, Y )
(a)
= H(L|U, V, Y, E)

= (1− ǫ) ·H(L|U, V, Y, E = 0)

+ ǫ ·H(L|U, V, Y, E = 1), (81)

where (a) is because E is deterministically defined by

Y . Now, since ǫ > 0, we have that H(L|U, V, Y, E =
1) = 0. Observing that conditioned on {E = 1}, Y =?
is a constant, we further deduce

H(L|U, V, Y, E = 1) = H(L|U, V,E = 1)

(a)
= H(L|U, V ) = 0, (82)

where (a) relies on the independence of E and

(L,U, V ). The last equality in (82) implies that there

exists a (deterministic) function ℓ : U × V → L such

that L = ℓ(U, V ).

3) Expanding the third (negative) term with respect to E
in a similar manner to that presented in the above 2nd

point, we obtain

I(V ;S,X |U, Y,E = 1) = I(V ;S,X |U,E = 1)

= I(V ;S,X |U) = 0, (83)

which establishes V−
−U−
−(S,X) as a Markov chain.

Since S and U are independent under q from (78), the

Markov relation from point 3) further implies that S is

independent of the pair (U, V ). Observe that this effectively

means that the inability of the scheme from [26, Theorem 1]

to support GP coding in the inner layer implies that GP coding

is not supported at all.

We proceed to analyze (79a) under the above deductions.

Consider

I(U, V ; Ỹ )− I(U, V ; S̃) = I(U, V ;L, Y )− I(U, V ;L, S)

= I(U, V ;Y |L)− I(U, V ;S|L)

≤ I(U, V, L;Y )
(a)

≤ I(U, V, L;G)
(b)
= I(U, V ;G), (84)

where (a) follows by the Data Processing Inequality (see,
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e.g., [37, Section 2.8]) and since (L,U, V )−
−G−
−Y forms a

Markov chain, while (b) is because L = ℓ(U, V ).
Define T = (U, V ) and observe that T is independent of S

(since the pair (U, V ) is) and that T−
−(S,X)−
−G forms a

Markov chain (since G = g(S,X)). We further upper bound

the RHS of (84) with T = (U, V ) by maximizing it over all

conditional distributions that satisfy qT,X|S = qT qX|S,T . We

thus have

I(U, V ; Ỹ )−I(U, V ; S̃) ≤ I(T ;G) ≤ max
qT qX|S,T

I(T ;G). (85)

The expression on the RHS of (85) is the capacity of the

MSAF with causal encoder knowledge of the state sequence

(cf., e.g., [41, p.5469]). However, the causal CSI is useless for

the MSAF encoder, as demonstrated in Section V-A of [41].

Omitting the availability of any CSI from the MSAF encoder,

the channel is equivalent to a binary symmetric channel with

flip probability σ
2 (see (19)), whose capacity equals 1−h

(

σ
2

)

.

We conclude with

I(U, V ; Ỹ )− I(U, V ; S̃) ≤ max
qT qX|TS

I(T ;G)

= 1− h
(σ

2

) (a)
< 1−

1

2

[

σ + h
(σ

2

)]

= H(L), (86)

where (a) is because σ < h(σ2 ) for any σ ∈ (0, 0.5). This is a

contradiction to (79a).
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