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Joint inversion of electromagnetic and acoustic data
with edge-preserving regularization

for breast imaging
Yingying Qin, Thomas Rodet, Marc Lambert, and Dominique Lesselier Senior Member IEEE

Abstract—Joint inversion of microwave and ultrasonic data
for breast imaging is investigated with deterministic edge-
preserving regularization by introducing auxiliary variables in-
dicating whether a pixel is on an edge or not. These edge
markers are shared by dielectric and acoustic parameters and
are the link to fusion between modalities. They can be jointly
optimized from the last parameter profiles of microwave and
ultrasonic cases and guide the next optimization as coefficients
of the regularization term. Alternate minimization is used to
update acoustic contrast, edge markers and dielectric contrast.
Comprehensive numerical experiments are carried out on breast
phantoms, a simple synthetic one and three extracted from a
database. The results show, with comparisons to more classical
approaches involving total variation or cross-gradient regular-
ization developed in parallel, that the joint inversion algorithm
can gain from the high resolution of ultrasonic imaging and the
high contrast of microwave imaging. The quality of microwave
imaging is enhanced in clear fashion and small tumors detected.

Index Terms—breast imaging, microwave, ultrasound, data
fusion, contrast source inversion, edge-preserving regularization

I. INTRODUCTION

Breast cancer is common disease among females. X-ray
mammography, as the standard for breast tumor detection, can
provide high-resolution images. Yet, patients may suffer from
ionizing radiation if too frequent examinations, and discomfort
results from breast compression. Besides, the result is highly
affected by breast density and exhibits low sensitivity.

Therefore, new imaging modalities with non-ionizing and
low-cost features have been developed for breast tumor de-
tection. Microwave imaging, due to the high contrast of the
dielectric parameters between tumorous and normal tissues,
has been investigated for breast imaging [1], [2]. However,
images are of low resolution due to the long wavelength
of the electromagnetic (EM) wave. In contrast, ultrasound
(US) imaging, despite low contrast between different tissues,
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can provide high-resolution image and structure information
[3], [4]. To take advantage of both modalities, inversion
of electromagnetic and ultrasonic data in simultaneouly- or
sequentially-combined fashion is expected to be fruitful.

Yet such a combination appears to still lack application in
the field, beyond recent investigations, like [5] and references
therein —possibly at prototype stage [6], with special embed-
ding since within a closed metal chamber.

One way to exploit the pros of each modality is to extract
structure information from high-resolution image. The authors
have proposed such an approach in [7] based on the edge
information. A reflectometric acoustic analysis is run to get the
boundaries (possibly blurred) between zones in the breast. This
information is employed to guide the smoothness constraint
at each pixel: constraint will only be imposed on the pixels
which are not on the edges pointed by the ultrasound image.
Prior information based on regions is also investigated. After
segmentation of high-resolution images, regions of different
tissues can be obtained. Such information can give a better
initial guess of the contrast at each pixel with parameters from
literature and provide a finite element discretization for the
reconstruction of dielectric parameters [5], [8].

Another way to combine multi-modalities is to invert the
data simultaneously. To achieve joint inversion, physical rela-
tion between different parameters can be used and this leads
to a unique retrieval of the underlying physical parameter. In
[9], petrophysical relation is used for joint inversion of EM
and seismic data. However, this option which relies on much
a priori is not pursued further.

Structure similarity can be employed for joint inversion also.
In [10], a Laplacian operator and two thresholds to measure
the magnitude of the changes in parameters and minimize the
difference of such parameters is investigated. In [11], [12],
cross-gradient constraints as the outer product of the gradients
of different parameters to force the parameters to change into
the same direction are proposed. This method is widely used
in geophysics [13]–[16]. In [17], Joint Total Variation for joint
inversion by combining spatial gradients of both parameters as
the weighting factor in the regularization term is considered. In
[18], a Total-Variation-like regularization operator is to achieve
joint inversion of EM and US data by changing the weight
factor associated with the variation of the other modality. A
review of joint inversion is found, e.g., in [17].

Considering that acoustic and dielectric parameters share
discontinuities at the tissue boundaries and vary relatively
smoothly within each tissue region, it is possible to constrain
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smoothness in the same region yet preserve edges at same
location for parameters of two modalities to achieve joint
inversion. Different functions [19]–[21] with edge-preserving
property have been used in image reconstruction [22], [23], im-
age restoration [24], image fusion [25] and many other tasks.
In edge-preserving regularization [26], usually a nonquadratic
function [27]–[29] is introduced to less severely penalize a
large gradient to preserve edges. Duality between nonquadratic
criterion and a half-quadratic (HQ) criterion with additional
variables is observed, first with binary edge variables [30],
[31], then generalized to continuous ones [32], [33].

With the augmented HQ criterion, the nonlinear optimiza-
tion problem is transformed into a quadratic problem with
respect to the original image and a nonquadratic but separable
criterion for the edge variables. The problem is optimized by
solving a sequence of sub-optimization problems to get the
estimate of original image and edge map alternately [34]–[36].
With such a regularization, joint inversion can be achieved by
introducing the common edge variables for both modalities
and the sub-optimization problems are easy to solve.

In the present work, a new joint inversion algorithm of
EM and US data is developed in a contrast source inversion
(CSI) [37] framework with edge-preserving regularization.
Hidden variables to indicate the parameter discontinuities in
different directions are introduced, which connects inversions
of US and EM data. Edge maps can be computed from the
last parameter distribution and help the optimization at the
next step. Alternate minimization is used to update acoustic
contrast, edge maps and electromagnetic contrast.

In the numerical experiments, a pending breast —in
contrast with the demanding compressed breast of X-ray
mammography— immersed within an unbounded coupling
medium is assumed. Several acoustic frequencies in the sub-
MHz range (then associated to mm local wavelengths) provide
a better estimation of edges, while a single electromagnetic
frequency (1 GHz associated to cm local wavelengths) takes
advantage of the high contrast while achieving enough pene-
tration into the breast.

A 4-zone 2-D model of breast (skin, fatty, fibroglandular
and tumor tissues) and four MRI-derived models from the
UWCEM Breast Phantom Repository [38] are used to validate
the algorithm, with application of a standard Method of
Moments (Fast Fourier Transform being implemented in both
forward and inverse problems to speed up the computations).

The contribution is organized as follows. In Section II the
formulation of the forward problem is presented. In Section
III, the joint inversion algorithm is detailed. In Section IV
numerical experiments on breast phantoms are proposed. A
brief conclusion follows in V.

II. FORWARD PROBLEM

One considers a two-dimensional case. Time-harmonic
waves are assumed with time dependence exp(−iωt) for both
acoustic and electromagnetic cases. The modeled breast is
located inside a domain of interest (DoI) D. The known
background medium is characterized by its complex relative
permittivity εb, permeability µb, and wavenumber kem

b =

S

D ǫb, cb, αb

×: EM transmitter
◦: US transducer

×

×

××

×

×

×

× ×

×

◦

◦

◦
◦

◦

◦

◦

◦

◦
◦

◦

◦

ǫr, c, α

Fig. 1: Schematic diagram of configuration of two modalities
working in a multistatic way

ω
√
ε0εbµb in electromagnetics, and its speed of sound cb,

attenuation αb, and wavenumber kac
b = ω/cb+iαb in acoustics.

Permeability and density are taken constant within the DoI.
The unknown parameters are complex relative permittivity
εr(r) = ε′r(r)+iε′′r (r), sound speed c(r) and attenuation α(r).
For each imaging modality, Ni probes are evenly located at
r′v , v = 1, 2, . . . , Ni on a circle S, as shown in Figure 1. Each
illuminates the DoI and scattered fields are collected by all.

To solve the problem numerically, D is discretized into
M = X × Y small cells centered at rm, m = 1, 2, . . . ,M .
A pulse-basis point-matching method of moments (MoM) is
employed. Every square cell is approximated by a small disk
with same area and with equivalent radius R. Hereafter, a is
used to denote a vector while a a matrix. For the pth incidence,
the fields inside D and on S can be described as

F
t

p = F
i

p +Gddiag(χ)F
t

p (1)

F
s

p = Gsdiag(χ)F
t

p (2)

where F is the pressure field P or the electric field E. Super-
scripts "i" and "t" denote incident and total field, i.e., the field
inside D without and with breast, respectively. In this case,
F
i/t

p is a M×1 vector with F
i/t

p = [F
i/t
p (r1), . . . , F

i/t
p (rM )]T

where superscript "T " denotes transpose. F
s

p is a Ni×1 vector
representing the scattered field collected by the receivers as
F
s

p = [F sp (r′1), . . . , F sp (r′Ni
)]T . Acoustic and electromagnetic

contrasts read as

χac(r) =
(kac(r))2 − (kac

b )2

(kac
b )2

(3)

χem(r) =
(kem(r))2 − (kem

b )2

(kem
b )2

(4)

M × 1 vector χ is the discrete form of χ as χ =
[χ(r1), . . . , χ(rM )]T .
Gd is a M ×M matrix with element

[Gd]m,m′ =


ikbπR

2
J1(kbR) H

(1)
0 (kb|rm − rm′ |),m 6= m′

ikbπR

2
H

(1)
1 (kbR)− 1, otherwise

(5)

where J1 is the 1st-kind Bessel function, H
(1)
1 the 1st-kind

1st-order Hankel function and H
(1)
0 the 1st-kind 0th-order one.
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The Ni ×M matrix Gs is

[Gs]v,m =
ikbπR

2
J1(kbR) H

(1)
0 (kb|r′v − r′m|) (6)

Letting the contrast source be

Jp(r) = χ(r)F tp(r) (7)

and multiplying by χ on both sides of previous equations,
source-type equations in the discrete form follow as

Jp = diag(χ)F
i

p + diag(χ)GdJp (8)

F
s

p = GsJp (9)

Based on those, a contrast source inversion (CSI) method can
be developed and used in the proposed imaging procedure.

III. INVERSION ALGORITHM

A. Deterministic edge-preserving regularization

Here, the edge-preserving regularization proposed in [26]
is followed and only the main steps are shown (for further
details and demonstrations, refer to the latter). Edge-preserving
regularization enables to combine inversions of acoustic and
electromagnetic data once assumed that discontinuities of
corresponding properties occur at same locations. The reg-
ularization is imposed on the spatial gradients of the contrast.
In this work, the first-order difference in horizontal, vertical
and two diagonal directions are used and calculated as

[d1]x,y = χx,y − χx,y+1 (10)

[d2]x,y = χx,y − χx+1,y (11)

[d3]x,y = (χx,y − χx+1,y+1)/
√

2 (12)

[d4]x,y = (χx,y − χx+1,y−1)/
√

2 (13)

with [dk]x,y , k = 1, 2, 3, 4, the spatial gradients for location
(x, y). Here X × Y matrix χ is introduced and χ is the
vectorization of χ by column. For convenience, the above
equations are written in matrix vector form as

Dkχ = dk (14)

with Dk, k = 1, 2, 3, 4, the difference operators. Regulariza-
tion is enforced separately on the real and imaginary parts of
the spatial gradients at all pixels as

QEP(χ) = λr
∑
k

M∑
m

ϕ

(
[Dk<{χ}]m

δr

)

+ λi
∑
k

∑
m

ϕ

(
[Dk={χ}]m

δi

) (15)

Here, λr and λi are regularization parameters, and δr and δi
are scaling parameters to determine the value of the disconti-
nuity that can be detected. ϕ(·) is the potential function.

To simplify the minimization process, half-quadratic regu-
larization [33] is carried out by introducing some auxiliary

variables and the problem is transformed into MinχQEP(χ) =

Min
χ,b
Q∗EP(χ, b), with

Q∗EP(χ, b) = λr
∑
k

∑
m

[bk]m

(
[Dk<{χ}]m

δr

)2

+ ψ
(
[bk]m

)
+ λi

∑
k

∑
m

[bk]m

(
[Dk={χ}]m

δi

)2

+ ψ
(
[bk]m

)
(16)

Additional variables b = [b1, b2, b3, b4] indicate if the point
is at an edge in detecting directions and their values are
continuous in [0, 1] with a small value for large gradients
and vice versa. For the real and imaginary parts, they share
the same edge markers. ψ(·) is a function determined by the
potential function ϕ(·). When the contrast χ is fixed, the value
of b can be calculated directly.

The potential function is chosen as ϕ(t) = t2/(1 + t2)
[29] and correspondingly ψ(t) = t − 2

√
t + 1. Even though

the potential function is not convex, it can give a satisfactory
imaging result in our experiment, also observed in [26].

B. Inversion of electromagnetic data with edge-preserving
regularization

To better illustrate the joint algorithm, separate inversion
with edge-preserving regularization is presented, taking the
EM case as an example. For simplicity, the superscript "em"
is omitted and J = [J1, . . . , JNi

] is used. Based on CSI, the
cost function at the nth iteration is defined as

Q(χ, J, b) = Qd(J) +Qs(J, χ) +Q∗EP(χ, b) (17)

with the normalized data equation and state equation errors
being

Qd =

∑Ni

p=1 ‖E
s

p −GsJp‖2∑Ni

p=1 ‖E
s

p‖2
(18)

Qs =

∑Ni

p=1 ‖diag(χ)E
i

p + diag(χ)GdJp − Jp‖2∑Ni

p=1 ‖diag(χ(n−1))E
i

p‖2
(19)

where χ(n−1) is the reconstruction result at the (n − 1)th
iteration.

To solve the above, the optimization procedures in [26]
and [39] are followed and alternate minimization is run. The
optimization procedure is summarized in Algorithm 1.

1) update J: At lth step, nth iteration, J is updated by
minimizing Q = Qd(J)+Qs(J, χ

(n−1)), which can be solved
by gradient-based optimization methods. The partial gradient
w.r.t. Jp is

∂Q

∂Jp
= − G

†
sρ

(n−1)
p∑Ni

p=1 ‖E
s

p‖2
− o

(n−1)
p −G

†
ddiag(χ(n−1))†o

(n−1)
p∑Ni

p=1 ‖diag(χ(n−1))E
i

p‖2
(20)

where superscript ’†’ denotes conjugate transpose. o(n−1)p =

diag(χ(n−1))E
i

p + diag(χ(n−1))GdJ
(n−1)
p − J

(n−1)
p , and

ρ
(n−1)
p = E

s

p −GsJ
(n−1)
p .
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Algorithm 1 Separate inversion with edge-preserving regular-
ization

Input: E
s

p, E
i

p, p = 1, . . . , Ni, Gs, Gd, regularization
parameter λr, λi, δr, δi
Initialization: J

(0)
, χ(0), step l = 0, iteration n = 0

repeat
l = l + 1
repeat
n = n+ 1

With χ(n−1) and b
(l−1)

, update J by Equation (21)

With J
(n)

and b
(l−1)

, update χ by Equation (22, 23)
until a stopping criterion is satisfied

With J
(n)

and χ(n), update b by Equation (27)
until a stopping criterion is satisfied
Output: χ, b1, b2, b3, b4, J

With such a gradient, Jp is updated with the conjugate
gradient method using the Polak-Ribière search direction as

J
(n)

p = J
(n−1)
p + β(n)v(n)p (21)

where v(n)p is the search direction and β(n) the step size. More
details are found in [39].

2) update χ: χ is updated directly by minimizing Q =

Qs(J
(n)
, χ) + Q∗EP (χ, b

(l−1)
). The solution can be obtained

directly by letting ∂Q/∂<{χ} = 0 and ∂Q/∂={χ} = 0, given
as

<{χ(n)} = (H
(n)

+ λr∆
(l−1)

/δ2r)−1<{z(n)} (22)

={χ(n)} = (H
(n)

+ λi∆
(l−1)

/δ2i )−1={z(n)} (23)

where H is a diagonal matrix with mth diagonal entry

H
(n)

m =

∑
p ‖[E

t(n)

p ]m‖2∑
p ‖diag(χ(n−1))E

i

p‖2
(24)

with total field E
t(n)

p = E
i

p +GdJ
(n)

p . z is a vector with mth
entry

z(n)m =

∑
p conj([E

t(n)

p ]m)[J
(n)

p ]m∑
p ‖diag(χ(n−1))E

i

p‖2
(25)

and ∆ is a matrix calculated by

∆
(l−1)

=
∑
k

(Dk)Tdiag(b
(l−1)
k )Dk (26)

3) update b: At the end of lth step, b is updated by mini-
mizing Q = Q∗EP (χ(n), b). To remind, the potential function
is ϕ(t) = t2/(1+t2) and correspondingly ψ(t) = t−2

√
t+1.

Letting ∂Q/∂bk = 0, every element of bk is obtained by

[b
(l)

k ]m =

(
λr + λi

λr + λi +
(
Lk
)
m

)2

(27)

where Lk is a vector with mth element

[Lk]m = λr

(
[Dk<{χ(n)}]m

δr

)2

+ λi

(
[Dk={χ(n)}]m

δi

)2

(28)
In this work, initial guesses of J and χ are obtained by
backpropagation [40]. The above algorithm can be employed
also in the acoustic case, by changing electric field E and
dielectric contrast χem to pressure field P and acoustic contrast
χac and changing regularization parameters λem

r/i, δ
em
r/i to λac

r/i
and δac

r/i accordingly.

C. Joint inversion of electromagnetic and acoustic data

Based on the assumption that dielectric and acoustic param-
eters share the same distribution of discontinuity, b indicates
edges for both parameters and is used to combine the modal-
ities. The cost function for joint inversion is written as

Q = Qd(J
em

) +Qs(J
em
, χem) +Q∗EP(χem, b)

+ γ
(
Qd(J

ac
) +Qs(J

ac
, χac) +Q∗EP(χac, b)

) (29)

The regularization parameter γ is to balance the weight of
acoustic and electromagnetic contrasts in calculating b.

Similar with separate inversion, alternate minimization is
employed. In the optimization procedure, the cost function
w.r.t. acoustic data is minimized first to obtain an initial
estimate of b to exhibit the discontinuities since acoustic
imaging can indeed capture the fine structures. This value
of b is then used to obtain the electromagnetic image. Due
to the large wavelength, the retrieval will be smoother, thus
edges denoted by acoustic parameters caused by noise can be
eliminated. The new b is used in acoustic imaging again, and
one works this way until convergence.

The joint inversion algorithm does not change the update
of contrast current and contrast for both modalities compared
with the separate inversion. Only the update of b needs
modification. At each step, b is updated twice after the update
of χac and χem, respectively. b is updated by minimizing
Q = Q∗EP(χac, b) + γQ∗EP(χem, b). The solution is

[bk]m =

 γ(λem
r + λem

i ) + λac
r + λac

i

γ
(
λem
r + λem

i + [L
em
k ]m

)
+ λac

r + λac
i + [L

ac
k ]m

2

(30)
where L

em/ac
k is given in Equation (28) with corresponding

regularization parameters and contrast.
Notice that γ = 0 for the first update of b, which means

that only acoustic parameters are used at the start.
The whole optimization procedure is sketched in Algorithm

2. One stops the update of contrast when the relative difference
in contrast is less than some threshold θ and one stops
the whole optimization when the change of electromagnetic
contrast in two successive steps is less than θ, or when the
maximum iteration number is reached.
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Algorithm 2 Joint inversion with edge-preserving regulariza-
tion

Input: Esp, E
i

p, P
s

p, P
i

p, p = 1, . . . , Ni, G
em

s , G
em

d , G
ac

s , G
ac

d ,
regularization parameters γ, λac

r , λac
i , λem

r , λem
i , δac

r , δac
i , δem

r ,
δem
i

Initialization: χac(0), χem(0), J
ac(0)

, J
em(0)

repeat
repeat

Update J
ac

with Equation (21)
Update χac with Equations (22) and (23)

until a stopping criterion is satisfied
Update b1, b2, b3, b4, with Equation (30)
repeat

Update J
em

with Equation (21)
Update χem with Equations (22) and (23)

until a stopping criterion is satisfied
Update b1, b2, b3, b4, with Equation (30)

until a stopping criterion is satisfied
Output χac, χem, b1, b2, b3, b4, J

ac
, J

em

IV. NUMERICAL EXPERIMENTS

In this section, numerical experiments are conducted on
several breast models. First the algorithm is validated on a
synthetic model with regular tissue shapes, then is investigated
on three realistic breast models which have more complicated
inner structures. All simulations are run on Matlab R2018b.

In the simulation, for the electromagnetic case, 40 antennas
are evenly set on a circle, working as sources and receivers
simultaneously at a single 1 GHz operation frequency.

For the acoustic case, 64 transducers operate at three
frequencies, namely 100, 150 and 200 kHz, to get a better
estimate of the structure in the first step. Considering the
acoustic wavenumber kac = ω/c + iα wherein attenuation
α = α0f , α0 the attenuation at frequency f =1 MHz (here a
linear dependence is assumed [41]), the approximation can
be made that the acoustic contrast does not change with
frequency.

The DoI is discretized by MoM into a grid which is at least
twice finer than the one used in inversion. The synthetic data
are obtained by solving the forward problem with two steps:
first, the contrast current is calculated by solving Equation
8 with a conjugate-gradient fast Fourier transform (CG-FFT)
algorithm, then, the scattered field is obtained directly based
on Equation 9. Additive Gaussian noise is added to the data.

For the inversion, the breast is assumed known to be in a
given disk. The reconstruction is confined within this region
and pixels outside it are restricted to have the same dielectric
and acoustic properties as those of the coupling medium.
Besides, the dielectric and acoustic parameters are bounded
as 1 6 ε′r 6 70, 0 6 ε′′r 6 40, 1200 6 c 6 1800, and
0 6 α 6 5 at each iteration by a projection method.

Two separate inversion and one joint inversion algo-
rithms are run for comparison: CSI with deterministic edge-
preserving regularization (CSI-EP) described in Section III-B,
CSI with multiplicative weighted L2-norm total variation

TABLE I: Acoustic sound speed in m/s and attenuation in
dB/MHz/cm, and relative dielectric permittivity εr at 1 GHz,
for different tissues and background.

Tissue/Media sound speed c attenuation α0 permittivity εr

skin 1615 0.35 39.8816 + 15.6363i
fatty 1478 0.48 4.7950 + 0.8185i

glandular 1510 0.75 48.8218 + 15.8941i
tumor 1548 1.45 56.2672 + 17.9652i

background 1568 0.056 10 + 4i

(MR-CSI) [42], [43] and cross-gradient function [16] as a joint
inversion method incorporated in CSI (JCSI-CG).

Imaging quality is evaluated in quantitative fashion via the
relative error between reconstructed parameters ζ and ground
truth ξ calculated as

Err =
‖ζ − ξ‖2
‖ξ‖2

(31)

and via the Structural Similarity (SSIM) Index [44]

SSIM =
(2µζµξ + C1)(2σζξ + C2)

(µ2
ζ + µ2

ξ + C1)(σ2
ζ + σ2

ξ + C2)
(32)

where µζ and σζ are the mean and standard deviation of ζ,
respectively. σζξ is the covariance between ζ and ξ. C1 =
(K1L)2 and C2 = (K2L)2 are used to avoid instability. In
our calculation, K1 = 0.01, K2 = 0.03, L = 70, 40, 600 and
5 are set for ε′r, ε

′′
r , c and α respectively.

A. Reconstruction of synthetic breast model

Model 1 is a simple synthetic breast model which consists
of skin, fatty, fibroconnective/glandular and tumorous tissues.
Each tissue type has regular shape and uniform dielectric
property. The skin thickness is 2 mm and the tumor is of 6
mm-diameter. In this model, the DoI is 0.1 m× 0.1 m-sized.

Acoustic and dielectric parameters of tissue types [2], [41],
[45] and coupling medium are in Table I. Figure 2 (1st column)
shows the distribution of sound speed, attenuation, real and
imaginary parts of the relative permittivity of this model.

The EM antennas are set on a circle of 0.057 m radius, the
US transducers on one of 0.08 m radius. The DoI is discretized
into 200× 200 pixels for the electromagnetic case and 350×
350 pixels for the acoustic one. Gaussian noise with SNR =
30 dB is added to the synthetic data.

For the inversion, the domain is discretized into 80 × 80
pixels. The breast is assumed within a disk of 0.045 m radius
(the radius of the outer boundary of the model is 0.042 m).

The hyperparameter δ controls the discontinuity that can
be detected, λ is to balance the trade-off between data and
regularization terms, and γ to control the weight of acoustic
and electromagnetic data when updating edge maps. Numeri-
cal experimentation provides their values as follows.
δ is chosen as δac

r = δac
i = 5 × 10−3, δem

r = 10−1 and
δem
i = 10−2. δac

i = δac
r is as such since the reconstruction

of attenuation is usually not satisfactory and one attempts to
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Fig. 2: Model 1 – Ground truth (1st column), separate reconstruction results of CSI-EP (2nd), MR-CSI (3rd) and joint inversion
results of JCSI-CG (4th) and JCSI-EP (5th) with speed of sound c (1st row), attenuation α (2nd), real part ε′r (3rd) and imaginary
part ε′′r (4th) of relative permittivity.

decrease the effect of attenuation on calculating b. λr = λi is
simply set for both acoustic and electromagnetic cases with
λac = 5 × 10−7 and λem = 5 × 10−7. γ = 0.5 is set to give
comparable weights to electromagnetic and acoustic contrasts.
As for the threshold θ in the stopping criterion, it must be
small enough to maintain accuracy, yet not too small to avoid
lengthy computations, and it is taken as 10−3.

Figure 2 (2nd and 3rd columns) shows the separate inversion
results of two modalities by CSI-EP with the same regulariza-
tion parameter values and MR-CSI. The speed of sound can be
well retrieved by both algorithms, yet the dielectric parameters
are more difficult to estimate while the tumor cannot be seen
for either one.

Results of JCSI-CG and proposed JCSI-EP are shown in
the 4th and 5th columns. Compared with separate inversion,
the tumor can be clearly seen in the real part of dielectric
parameter profiles in both joint inversion algorithms and the
quality of EM reconstruction is enhanced. Our algorithm also
has a better reconstruction result of the imaginary part than
JCSI-CG on this model. Besides, the noise is well smoothed.

Figure 3 displays the edge variables at different steps
of JCSI-EP algorithm. The edges are well retrieved. After
the first update, the edge map is not accurate but as the
optimization proceeds, the edges becomes sharper and the
noise is smoothed.

The assessment results associated with the algorithms above

are shown in Table II. Though acoustic imaging benefits little
from joint inversion, it appears that the quality of microwave
imaging can be greatly improved. In particular, the proposed
algorithm yields a smaller relative error and a higher SSIM
value compared with cross-gradient method.

TABLE II: Model 1 – Imaging quality assessment in the
reconstruction of acoustic and dielectric parameters

Index Methods acoustic parameter dielectric parameter
c α ε′r ε′′r

Err

CSI-EP 0.0077 0.3370 0.3619 0.4004
MR-CSI 0.0061 0.5653 0.3808 0.7233
JCSI-CG 0.0080 0.8900 0.2971 0.4596
JCSI-EP 0.0078 0.3406 0.2664 0.3002

SSIM

CSI-EP 0.9667 0.8834 0.8498 0.8163
MR-CSI 0.9794 0.7237 0.8166 0.5097
JCSI-CG 0.9649 0.5148 0.9001 0.8077
JCSI-EP 0.9655 0.8798 0.9198 0.9088

B. Reconstruction of realistic breast phantoms
To better validate the proposed approach, experiments are

conducted on several more realistic breast models, which are
slices extracted from breast phantoms in the UWCEM reposi-
tory [38] and are categorized in different classes according to
radiographic density. The grid size is 0.5 mm and it is used in
simulations for generation of synthetic data in both acoustic
and electromagnetic cases. The thickness of skin is changed
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Fig. 3: Model 1 - Joint reconstruction of edge variables bx,
by , dd1 and bd2 (from top to bottom) after 1st, 5th and 40th
update (from left to right).

from 1.5 mm to 2 mm. The acoustic parameters are the same
as with Model 1 and assigned according to the tissue type
of each pixel and the type "transitional" is given the average
value of fatty and glandular tissues. The Debye parameters of
dielectric properties for normal tissues are from [2]. As for
the hypothesized antennas, they are set on a circle of 0.08 m
radius and the transducers on one of 0.1 m radius.

To test resolution of the separate and joint procedures, a
synthetic tumor is added into each model and the relative
permittivity is chosen as the 75th percentile curve in [46].

For inversion, a cell size of 2 mm is adopted. Notice that
some columns or rows of pixels are added as background in the
initial breast phantoms to make the numbers of columns and
rows multiples of 4. The region of the breast is also assumed
known with a three-pixel margin left.

In this section, δ is kept unchanged as δac
r = δac

i = 5×10−3,
δem
r = 10−1 and δem

i = 10−2. The regularization parameters
are chosen as λem = 2 × 10−6 and λac = 2 × 10−6 for all
breast phantoms. The threshold in the stopping criterion is
θ = 5× 10−4. Two levels of SNR are considered: 30 dB and
10 dB. The effect of γ is studied for different phantoms. Three
values of γ are set as γ = 0, 0.5 and 5.

1) Class 3 model: The first phantom (ID 080304, slice
s1=150) is heterogeneously dense. Two models are developed
from this phantom. The slice contains 332 × 204 pixels for
simulation and 83 × 51 pixels for inversion. In Model 2, a
synthetic 1 cm-diameter tumor at position (1.2 cm, −0.5 cm)
is inserted while in Model 3, a tumor with an irregular shape

TABLE III: Model 2 – Imaging quality assessment in the
reconstruction of acoustic and dielectric parameters

Index Methods acoustic parameter dielectric parameter
c α ε′r ε′′r

Err

CSI-EP 0.0097 0.3915 0.4808 0.5901
MR-CSI 0.0098 0.6413 0.4715 0.5750
JCSI-CG 0.0100 0.9070 0.4473 0.5619

JCSI-EP (γ = 0) 0.0097 0.3915 0.4406 0.4640
JCSI-EP (γ = 0.5) 0.0097 0.3977 0.4411 0.4771
JCSI-EP (γ = 5) 0.0099 0.3763 0.4486 0.4856

SSIM

CSI-EP 0.9424 0.8718 0.6446 0.5323
MR-CSI 0.9426 0.7113 0.6768 0.5414
JCSI-CG 0.9404 0.5558 0.7164 0.6107

JCSI-EP(γ = 0) 0.9424 0.8718 0.7129 0.7019
JCSI-EP(γ = 0.5) 0.9420 0.8678 0.7221 0.6946
JCSI-EP(γ = 5) 0.9420 0.8796 0.7143 0.6777

TABLE IV: Model 2 – Imaging quality assessment in acoustic
and dielectric parameters with different SNR

Index SNR (dB) acoustic parameter dielectric parameter
AC EM c α ε′r ε′′r

Err

10 10 0.0131 1.0786 0.4770 0.5226
10 30 0.0130 1.0697 0.4719 0.5157
30 10 0.0098 0.3934 0.4436 0.4828
30 30 0.0097 0.3977 0.4411 0.4771

SSIM

10 10 0.9002 0.0183 0.6844 0.6347
10 30 0.9010 0.0212 0.6831 0.6380
30 10 0.9410 0.8707 0.7218 0.6932
30 30 0.9420 0.8678 0.7221 0.6946

is considered at same location.
Figures 4 and 5 (1st column) show the distributions of

acoustic and electromagnetic parameters of these two models.
With noise of 30 dB, separate reconstruction results of CSI-EP,
MR-CSI and joint inversion results of JCSI-CG and JCSI-EP
with γ = 0.5 for these two models are also shown. Similarly,
in separate imaging, the speed of sound can be retrieved well,
while the results of dielectric parameters are unsatisfactory.
The tumor cannot be identified and the results of these two
models are quite similar.

JCSI-CG can image the tumor with a slight distortion in
the real part of relative permittivity of Model 2, but in Model
3, the imaging result gets worse and the tumor is almost
indistinguishable. Still, the imaginary parts are unsatisfactory
and cannot estimate the tissue structures well. In contrast, the
tumor can be well identified in all parameters with JCSI-EP
for both models. The skin is difficult to image since only one-
pixel wide. The difference in the shape of tumor can also be
seen when comparing the results of these two models, and the
shapes fit the ground truth.

The effect of regularization parameter γ is also investigated.
These two models have quite similar results and Figure 6
shows the results of Model 3 by JCSI-EP with γ = 0, 0.5
and 5. As γ increases, the contrast between the tumor and the
background becomes lower. The tumor can still be seen in all
cases and overall the results are satisfactory.

Table III and V show the quantitative assessment of the
imaging quality. Joint inversion algorithms have a better
reconstruction than separate ones in dielectric parameters.
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Fig. 4: Model 2 – Ground truth (1st column), separate reconstruction results of CSI-EP (2nd), MR-CSI (3rd) and joint inversion
results of JCSI-CG, JCSI-EP (5th) with speed of sound c (1st row), attenuation α (2nd), real part ε′r (3rd) and imaginary part
ε′′r (4th) of relative permittivity.
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Fig. 5: Model 3 – Ground truth (1st column), separate reconstruction results of CSI-EP (2nd), MR-CSI (3rd) and joint inversion
results of JCSI-CG (4th) and JCSI-EP (5th) with speed of sound c (1st row), attenuation α (2nd), real part ε′r (3rd) and imaginary
part ε′′r (4th) of relative permittivity.

JCSI-CG has a higher SSIM value in the real part of the
dielectric parameter but the smallest value in the imaginary
part among all the joint inversion results. JCSI-EP with γ = 0
has the smallest relative error in dielectric parameters for both
models which may be because the dielectric parameters are
not uniform in each region and combining EM data may
oversmooth the reconstruction result.

With γ = 0.5, the imaging quality with different levels of
noise are given in Tables IV and VI. As can be seen from
the tables, a decrease in SNR of acoustic data can result
in a more severe degradation in imaging quality than with
electromagnetic data. Thus, a high quality of acoustic data is

needed for a satisfactory result. Since the hyperparameters are
fixed for all breast phantoms, this choice may be not optimal
for every one. Therefore, as shown in Table VI, a lower SNR
of electromagnetic data may lead to a better result than the
one obtained with a higher SNR.

2) Class 4 model: The phantom (ID 012304, slice s1=100)
is very dense. The slice contains 328 × 212 pixels for the
forward problem, 82× 53 pixels for inversion. In Model 4, a
synthetic tumor of irregular shape is added at (1.8 cm, 1.2 cm).

Figure 7 shows the distributions of acoustic and electro-
magnetic parameters and the reconstruction results of different
algorithms and Figure 8 compares the results with different
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Fig. 6: Model 3 – Joint reconstruction results of speed of
sound c (1st row), attenuation α (2nd), real part ε′r (3rd) and
imaginary part ε′′r (4th) of relative permittivity by JCSI-EP
with γ = 0 (left), γ = 0.5 (middle) and γ = 5 (right).

TABLE V: Model 3 – Imaging quality assessment in the
reconstruction of acoustic and dielectric parameters

Index Methods acoustic parameter dielectric parameter
c α ε′r ε′′r

Err

CSI-EP 0.0097 0.3927 0.4805 0.5890
MR-CSI 0.0098 0.6377 0.4712 0.5741
JCSI-CG 0.0101 0.9620 0.4445 0.5822

JCSI-EP (γ = 0) 0.0097 0.3927 0.4421 0.4658
JCSI-EP (γ = 0.5) 0.0098 0.3983 0.4430 0.4811
JCSI-EP (γ = 5) 0.0099 0.3807 0.4498 0.4894

SSIM

CSI-EP 0.9419 0.8708 0.6443 0.5325
MR-CSI 0.9425 0.7141 0.6768 0.5415
JCSI-CG 0.9394 0.5289 0.7260 0.5946

JCSI-EP(γ = 0) 0.9419 0.8708 0.7088 0.6977
JCSI-EP(γ = 0.5) 0.9411 0.8672 0.7172 0.6862
JCSI-EP(γ = 5) 0.9400 0.8765 0.7091 0.6685

TABLE VI: Model 3 – Imaging quality assessment in acoustic
and dielectric parameters with different SNR

Index SNR (dB) acoustic parameter dielectric parameter
AC EM c α ε′r ε′′r

Err

10 10 0.0126 1.0036 0.4689 0.5100
10 30 0.0125 0.9991 0.4692 0.5145
30 10 0.0098 0.3962 0.4432 0.4767
30 30 0.0098 0.3983 0.4430 0.4811

SSIM

10 10 0.9081 0.0293 0.6868 0.6452
10 30 0.9083 0.0294 0.6811 0.6384
30 10 0.9408 0.8685 0.7225 0.6944
30 30 0.9411 0.8672 0.7172 0.6862

TABLE VII: Model 4 – Imaging quality assessment in the
reconstruction of acoustic and dielectric parameters

Index Methods acoustic parameter dielectric parameter
c α ε′r ε′′r

Err

CSI-EP 0.0089 0.3521 0.4505 0.5861
MR-CSI 0.0090 0.5817 0.4391 0.5576
JCSI-CG 0.0093 0.8499 0.4285 0.6591

JCSI-EP (γ = 0) 0.0089 0.3523 0.4160 0.4415
JCSI-EP (γ = 0.5) 0.0089 0.3513 0.4157 0.4523
JCSI-EP (γ = 5) 0.0089 0.3258 0.4158 0.4544

SSIM

CSI-EP 0.9429 0.9056 0.6872 0.5449
MR-CSI 0.9433 0.7739 0.7206 0.5813
JCSI-CG 0.9398 0.6215 0.7423 0.5020

JCSI-EP(γ = 0) 0.9429 0.9056 0.7473 0.7265
JCSI-EP(γ = 0.5) 0.9432 0.9056 0.7495 0.7246
JCSI-EP(γ = 5) 0.9428 0.9173 0.7492 0.7192

TABLE VIII: Model 4 – Imaging quality assessment in
the reconstruction of acoustic and dielectric parameters with
different SNR

Index SNR (dB) acoustic parameter dielectric parameter
AC EM c α ε′r ε′′r

Err

10 10 0.0108 1.0097 0.4427 0.4764
10 30 0.0108 1.0262 0.4429 0.4817
30 10 0.0089 0.3502 0.4134 0.4473
30 30 0.0089 0.3513 0.4157 0.4523

SSIM

10 10 0.9189 0.1374 0.7356 0.6982
10 30 0.9189 0.1335 0.7159 0.6813
30 10 0.9412 0.8685 0.7523 0.7361
30 30 0.9432 0.9056 0.7495 0.7246

values of γ. The quality assessment is given in Table VII.
As before, in separate inversion, the speed of sound can be

reconstructed well and fine structures can be identified in the
acoustic case, but the reconstructions of dielectric parameters
are not satisfactory and the tumor cannot be seen.

Joint inversion algorithms have improved the reconstruction
of dielectric parameters. In detail, JCSI-CG can show the
structure of glandular part but the tumor is not obvious in
dielectric parameters, while JCSI-EP can give a better estimate
of the location and shape of the tumor. According to the
quantitative assessment, JCSI-EP performs best in the recon-
struction of real part of relative permittivity when γ = 0.5,
while for the imaginary part, γ = 0 gives the best result.
When γ = 5, the images of JCSI-EP are oversmoothed and
the tumor cannot emerge well from the dielectric parameters
while in the other cases the tumor can be identified clearly
and the overall results are satisfactory.

Table VIII provides the quality assessment with different
levels of noise with γ = 0.5. As with the results above, the
noise level of acoustic data has a higher influence on the final
result. A relative low level of noise is needed for successful
tumor detection.

V. CONCLUSION

In the present work, a joint inversion algorithm of electro-
magnetic and acoustic data based on edge-preserving regular-
ization has been proposed by introducing additional variables
indicating the existence of an edge. Acoustic contrast, dielec-
tric contrast and these edge markers are updated alternately.
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Fig. 7: Model 4 – Ground truth (1st column), separate reconstruction results of CSI-EP (2nd), MR-CSI (3rd) and joint inversion
results of JCSI-CG (4th) and JCSI-EP (5th) with speed of sound c (1st row), attenuation α (2nd), real part ε′r (3rd) and imaginary
part ε′′r (4th) of relative permittivity.
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Fig. 8: Model 4 – Joint reconstruction results of speed of
sound c (1st row), attenuation α (2nd), real part ε′r (3rd) and
imaginary part ε′′r (4th) of relative permittivity by JCSI-EP
with γ = 0 (left), γ = 0.5 (middle) and γ = 5 (right).

Comprehensive numerical experiments, with due compari-
son with approaches involving total variation or cross-gradient,
show that by joint inversion, electromagnetic imaging can gain
from the high resolution of acoustic imaging and map out
small tumors, which is very difficult when electromagnetic
data are the only ones involved. A good quality of acoustic
data is required to get a satisfactory joint inversion result.

For the three realistic models as introduced, increasing
the weight of electromagnetic data in updating the edge
variables may decrease the contrast between the tumor and

the background. Overall, the electromagnetic imaging quality
is much enhanced by joint inversion however.

As for the choice of hyperparameters, here dealt with
by thorough numerical experimentation beforehand, it still
remains an open question. Forthcoming work should in partic-
ular focus onto a Bayesian methodology in order to estimate
the hyperparameters jointly, so as to achieve a proper choice
for each model under investigation.
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