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Real-Time Privacy-Preserving Data Release
for Smart Meters

Mohammadhadi Shateri, Member, IEEE, Francisco Messina, Member, IEEE, Pablo Piantanida, Senior
Member, IEEE, Fabrice Labeau, Senior Member, IEEE

Abstract—Smart Meters (SMs) are able to share the power con-
sumption of users with utility providers almost in real-time. These
fine-grained signals carry sensitive information about users,
which has raised serious concerns from the privacy viewpoint. In
this paper, we focus on real-time privacy threats, i.e., potential
attackers that try to infer sensitive information from SMs data
in an online fashion. We adopt an information-theoretic privacy
measure and show that it effectively limits the performance
of any attacker. Then, we propose a general formulation to
design a privatization mechanism that can provide a target level
of privacy by adding a minimal amount of distortion to the
SMs measurements. On the other hand, to cope with different
applications, a flexible distortion measure is considered. This
formulation leads to a general loss function, which is optimized
using a deep learning adversarial framework, where two neural
networks -referred to as the releaser and the adversary- are
trained with opposite goals. An exhaustive empirical study is then
performed to validate the performance of the proposed approach
and compare it with state-of-the-art methods for the occupancy
detection privacy problem. Finally, we also investigate the impact
of data mismatch between the releaser and the attacker.

Index Terms—Privacy-preserving mechanism, Deep learning,
Adversarial training, Time series data, Recurrent Neural Net-
works, Long-Short Term Memory (LSTM) cell, Directed infor-
mation, Privacy-utility trade-off, Smart meters privacy.

I. INTRODUCTION
A. Motivation

Ms are a cornerstone for the development of smart

electrical grids. These devices are able to report power
consumption measurements of a house to a utility provider
every hour or even every few minutes. This feature generates
a considerably amount of useful data which enables several
applications in almost real-time such as power quality moni-
toring, timely fault detection, demand response, energy theft
prevention, etc. | 1], [2]]. However, this fine-grained power con-
sumption monitoring poses a threat to consumers privacy. As a
matter of fact, it has been shown that simple algorithms, known
in general as Nonlntrusive Load Monitoring (NILM) methods,
can readily be used to infer the types of appliances being used
at a household at a given time from the SMs data |3]. Since
these features are highly correlated with the presence of people
at the dwelling and their personal habits, this induces serious
privacy concerns which can have an impact on the acceptance
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and deployment pace of SMs [4]. The natural challenge raised
here is: how can privacy be enhanced while preserving the
utility of the SMs data? Although the privacy problem has been
widely studied in the field of data science [5], the time series
structure of SMs data requires a particular treatment [6]. For a
recent survey about SMs privacy, the reader is referred to |7].

B. Related work

Simple approaches for preservation of privacy in the context
of SMs include data aggregation and encryption [8], [9],
the use of pseudonyms rather than the real identities of
users [10], downsampling of the data [11], [12] and random
noise addition [13]]. However, these methods often restrict the
potential applications of the SMs data in an uncontrolled way.
For instance, downsampling of the data may incur time delays
to detect critical events, while data aggregation degrades the
positioning and accuracy of the power measurements.

A formal approach to the privacy problem has been pre-
sented in [14] from an information-theoretic perspective,
where it has been proposed to assess privacy by the MI
between the sensitive variables to be hidden and the power
measurements distorted by a privatizer mechanism. More
specifically, the authors model the power measurements of
SMs with a hidden Markov model in which the distribution
of the measurements is controlled by the state of the appli-
ances, and for each particular state, the distribution of power
consumption is assumed to be Gaussian. This model is then
used to obtain the privacy-utility trade-off using tools from
rate-distortion theory |[15]]. Although this approach is very
appealing, it has two important limitations for its application
to real-time privacy problems using actual data. First, the
privacy-preserving data release mechanism works with blocks
of samples, which is not well-suited for real-time processing.
Second, the Gaussian model may be quite restrictive to model
SMs signals. The information-theoretic approach was used in
other privacy-aware SMs studies such as [16] where the MI
between the distorted SMs data and sensitive appliance states
at time slot # was considered as the privacy measure. However,
in this work, the temporal correlation in SMs data is not taken
into account.

More sophisticated approaches consider the wuse of
Rechargeable Batteries (RBs) and Renewable Energy Sources
(RES) in homes in order to modify the actual energy con-
sumption of users with the goal of hiding the sensitive infor-
mation |17]—[22]. The main motivation to introduce the use of
physical resources into the privacy problem comes from the
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observation that this strategy does not require any distortion
in the actual SMs measurements, which means that there is no
loss in terms of utility. However, the incorporation of physical
resources may not only make the problem more complex
and limited in scope, but can also generate a significant cost
to users due to the faster wear and tear of the RBs as a
consequence of the increased charging/discharging rate [7]. On
the other hand, the required level of distortion for a specific
privacy goal in a realistic scenario in which the attacker
threatening privacy has only partial information is still an open
question. Thus, the need and convenience of these solutions is
still questionable. However, it is also important to note that
these approaches are complementary to the ones based on
distorting the power measurements.

The use of neural networks to model a privacy attacker has
been considered in [23]. However, a more powerful formula-
tion of the problem is obtained if one assumes that both the
releaser (i.e., the privatizer) and the attacker are deep neural
networks (DNNs). In this framework, the releaser can be
trained by simulating an attacker based on a minimax game, an
idea that is inspired by the well-known Generative Adversarial
Networks (GANs) [24]. This concept can be referred to as
Generative Adversarial Privacy (GAP) [25] and is the basis
for the approach taken in the present work. It should be
mentioned that the concept of GAP has been studied for
different applications related to image classification [26], [27]
but, to the best of our knowledge, not in the context of SMs. In
these works, the authors consider independent and identically
distributed (i.i.d.) data and deep feed-forward neural networks
for the releaser and attacker, which are unable to capture and
exploit the time correlation in the time series SMs signals. The
idea of time-series generation with an adversarial approach has
been considered in [28|] for medical data based in the principle
of differential privacy.

C. Contributions

In this paper, we adopt a distortion-based real-time privacy-
preserving strategy. For simplicity, we assume that no RBs
and/or RESs are available and thus, the distortion on power
measurements is the only mean to achieve a desired privacy
level. The main contributions of this work, which is an
extension of a short version in [29], are the following:

(i) We applied DI as a privacy measure and show its
theoretical relevance for the privacy problem under con-
sideration. It is worth to mention that DI was first used
in |30] but in a different manner. In addition, unlike
this and other works such as [14] , we impose no
explicit assumptions on the generating model of the
power measurements, but take a more versatile data-
driven approach.

We study different distortion measures to provide more
flexibility to control the specific features to be preserved
in the released signals, i.e., the relevant characteristics
for the targeted applications of the data.

For the sake of computational tractability, we propose a
loss function for training the privacy-preserving releaser
based on an upper bound of the DI. Then, considering

(ii)

(iii)

an attacker that minimizes a Kullback-Leibler divergence
between the true and approximate distributions of the
sensitive variables given the released signal, we provide
a relaxed formulation of the original problem suitable for
a deep learning framework.

We perform an extensive statistical study with actual
data to characterize the utility-privacy trade-offs and the
nature of the distortion generated by the releaser network.
We investigate the data mismatch problem in the context
of SMs privacy, which occurs when the data available to
the attacker is not the same as the one used for training
the releaser mechanism, and show that it has an important
impact on the privacy-utility trade-off. This confirms that,
under some conditions, the privacy-utility trade-off can
indeed be much less severe than expected.

To the best of our knowledge, this is the first time that
the concept of the generative adversarial privacy is used
in the context of the SMs data privacy preservation. In
addition, in this paper we consider deep RNNs to capture
and exploit the time correlation of SMs signals.

(iv)

)

(vi)

D. Organization of the paper

The rest of the paper is organized as follows. In Section
we present the theoretical formulation of the problem.
This leads to the loss functions for the releaser and attacker
posed in Section where the privacy-preserving adversarial
framework is introduced along with the training algorithm.
Extensive results are presented and discussed in Section
Finally, some concluding remarks are presented in Section

II. ProBLEM FORMULATION

The privacy-preserving framework studied in this paper is
presented in Fig As shown, a data releaser (which is aware
of the private attributes that the user wants to hide) manipulates
the actual SM measurements before sharing them to the UP to
prevent leakage of sensitive information that could be inferred
by a malicious attacker such as an eavesdropper.

There are four main types of variables that should be clearly
defined in the privacy-preserving data release setting: (i) the
private/sensitive attribute which we aim to hide X7 (e.g.,
occupancy state of a house over time); (ii) the useful process
for the utility provider Y7 (e.g., actual electricity consumption
of the household), which is generally highly correlated with
the private data; (iii) the observed signal W”, a combination
of private and useful variables, which is the input to the data
release system; (iv) and the released process Z7, a sanitized
version of Y7 which is the output of the data release system.

We assume that X, takes values on a fixed discrete alphabet
X for each t € {1,...,T}. At each time ¢, a releaser produces
the released process Z; based on the observation W', while
an attacker attempts to infer X, based on Z' by using an
approximation of pyrjzr, which we shall denote by pgrir.
Notice that the releaser must be causal in order to avoid delays
in the SMs data report process. In addition, we treat the case
in which the attacker is performing the inference in real-time,
so that it is also causal. This assumption is reasonable for
scenarios in which the sensitive information is valuable in a
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Fig. 1. Privacy-preserving data release framework for SMs.

timely manner (e.g., in the case of targeted burglary based on
occupancy detection |6]). However, it should be noted that not
all privacy threats fall under this umbrella. Alternative attacker
structures, which may be interesting in other scenarios, are left
for future work and are out of the scope of this paper. Note
that due to the previous assumption the distribution prgryr
can be decomposed as follows:

T
o @ & W) = [ | pzw Gw)pg (i), (1)

t=1
In abstract terms, the goal of the releaser is to minimize
the information leakage of the sensitive process X’ while
simultaneously keeping the distortion between the released
time series Z” and the useful signal Y7 small. On the other
hand, the goal of the attacker is to infer px,z, for each t, as
accurately as possible. Note that after the approximation pyg
is obtained, the attacker can estimate the private information x’
from observations z' in an online (causal) fashion, by solving

argmax py . (%12), 2)
xeX
at each r = 1,...,T. Thus, the attacker can be interpreted as

a classifier or hypothesis test, as stated in [31]. However, in
the present case, we consider the more realistic and general
scenario in which the statistical test is sub-optimal due to the
fact that the attacker has no access to the actual conditional
distributions py,z but only to its approximation py .

In order to take into account the causal relation between X7
and X7, the information leakage is quantified by the DI [32]:

T
IXT - &)= ) IXG &I, 3)
=1
where I(X"; X,|X""!) is the conditional MI between X' and X,
conditioned on X! [15].
The normalized expected distortion between Y7 and its
noisy (or disturbed) observation Z7 is defined as:

E[d(Z",Y")]

DZT, YTy = T ,

“4)

where d : RT x RT — R is any distortion function (i.e.,
a metric on R7). To ensure the quality of the release, it is
natural to impose the following constraint: D(Z7,YT) < &
for some given & > 0. In previous works, the normalized
squared-error was considered as a distortion function (e.g.,
[14], [29]). Nevertheless, other distortion measures can also be
relevant within the framework of SMs. For instance, demand
response programs usually require an accurate knowledge of
peak power consumption, so a distortion function closer to the
infinity norm would be more meaningful for those particular
applications. Thus, for the sake of generality and to keep the
distortion function simple, we propose to use an ¢, distance:

T /p
A"y =1 =y = | Y-yl . )

t=1

where p > 2 is a fixed parameter. Note that this distortion func-
tion leads to the root-mean-squared error when p = 2, while
it converges to the maximum error between the components
of 7/ and yT as p — co.

Therefore, the problem of finding an optimal releaser subject
to the optimal (Bayesian) attacker and distortion constraint can
be formally written as follows:

inf I(X" > X") subjectto D(EZ".¥Y")<e (6)

PzT\wT

Note that the solution to this optimization problem requires a
balance between the attacker pgr,r and the releaser pzrwr,
where the optimal attacker consists in inferring the private
information X7 ~ X7 and thus, the attacker attempts to
minimize the Kullback-Leibler divergence [15] between the
corresponding predictors:

Pxiz(X'1Z")
Pz (X'1Z7)

where the expectation is with respect to pxr,r. Note that
solving is equivalent to minimizing E[-log pg.,(X'|Z")],
the so-called cross-entropy.

Unfortunately, the optimization problem @ is, in general,
computationally intractable. For instance, simply computing
the DI would take O(|X|") operations, where |X] is the size of
X, which makes it not scalable for large sequences of data.
However, it can be exploited to obtain a more convenient
surrogate objective function for the releaser, by considering
the following simpler upper bound:

log

inf KL(pxzlpgiz) = inf E ., (D
Ptz

Pxtizt

I(X" - XY= 3" [H&IX ™) - H&IZ ™, X))

IA

~~

=

=
= I
\|M~; L ~

[HEIX™ - HR IR, X', 7))

o T
WS HEIE - HE )
t=1
(iif) Lo
<" TloglXl- ) HXZ), ®)

t=1
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where (i) is due to the fact that conditioning reduces entropy;
equality (ii) is due to the Markov chain (X, X*"!) = Z' = X,,
which follows from ; and (iii) is due to the trivial bounds
HX X HY<HQX) < log(|X]). Note that minimizing the upper
bound (8) corresponds to maximizing Y., H(X/|Z"), which
amounts to maximizing the total uncertainty of the attacker.
In fact, from Fano’s inequality [[15], we have that

f(Pey) = h(P,,) + P, log(X|-1) > HXIX,) > HX,|Z"), (9)

where P,; = P(X; # X,) and h(p) = —plog(p)—(1-p)log(1—
p) is the so-called binary entropy function. In addition, the
bound is tight (i.e., it can not be strengthened without further
assumptions) [15], [33]. It should be noted that this bound
constrains P,, to be in an interval around P,; = (|X|-1)/|X],
which corresponds to the performance of an attacker that does
uniform random guessing to infer the value of X;. Indeed,
in the extreme case in which H(X,|Z") = log(]X]), we have
that P,, = (|X|-1)/|X]. Physically, this means that Z' is
not providing any information to the attacker to infer X,.
Moreover, the length of this interval decreases monotonically
when H(X,lZ’ ) is increased. Fig. |2| is presented to illustrate
the proposed scenario for the binary case. From Fig. [2] it
can be noticed that as H(X,|Z') increases, the interval over
which P,, lies shrinks. Also, in the extreme case in which
H()?,lZ’) = log(2), Fano’s inequality @I) implies P,; =1/2,
which corresponds to the performance of random guessing
the value of X;, meaning that Z' does not provide any valuable
information. Therefore, a releaser which attempts to maximize
H()?,lZ’) is trying to constrain P,; to be close to random
guessing performance. This can be considered as a universal
privacy guarantee and justifies the usefulness of the DI and,
in particular, the surrogate upper bound .

Therefore, in this work, the information leakage is mea-
sured by the following average conditional entropy (ignoring
constant terms):

T
—%;H®WL (10)
where the factor 1/7 has been introduced for normalization
purposes. It is interesting to notice that this is different from
the formulation in |14], in which the authors consider the MI
IXT;ZT) = H(XT) — H(XT|Z") as the information leakage
measure, which can be equivalently written as follows (again
ignoring constant terms and normalizing):

T
_%EZMXQEW”) an

=1
By comparing and , the differences between the two
privacy measures are clear. The fact that we have assumed that
the attacker has a causal structure explains why Z' appears
in (I0) instead of ZT as in (IT). More fundamentally, the
expression (II) corresponds to assuming that the attacker is
optimal (i.e., pg ., = px,z) and has access to X"™! to infer X;.
These latter assumptions are not expected to hold in practice.

H(X,|Z') = log(2)
1 ______________________
0.75
< H(X,|2") = log(2)/2
R R e R - -
0.25
0 H(X,|Z") =0
0 05 1
P

Fig. 2. Plot of the Fano’s function f(P,,) for the case |X|= 2.

III. PrivacY-PRESERVING MODEL

We now shift the focus from the abstract theoretical for-
mulation to a practical one based on deep learning ideas. In
particular, in this section, we model the releaser pzryr and
attacker pgrzr as RNNs, which are well-suited for the time-
series structure of the SMs data and online processing. In
the following, we describe in detail the loss functions, the
network architectures and the learning algorithm used to train
the releaser mechanism.

A. Loss Functions

Considering (6) and (10, the loss function for the releaser
is defined as follows:

T
Lx(0,9.0 = DY) = 4 S HRIZ), (1)
=1

where 4 > 0 controls the privacy-utility trade-off, 6 are the
parameters of the releaser and ¢ are the parameters of the
adversary. It should be mentioned that for 2 = 0, the loss
function Lg(6, ¢, ) reduces to the expected distortion, being
independent from the adversary. In such scenario, the releaser
offers no privacy guarantees. Conversely, for very large values
of A, the loss function Lg(0, ¢, 1) is dominated by the second
term, so that privacy is the main goal of the releaser. In this
regime, we expect the attacker to fail in inferring X7, i.e., to
approach to random guessing performance.

On the other hand, from , the adversary loss function is
defined as follows:

T
La@) = 7 Y B[-logpgpXi2)].  (13)
t=1

where the expectation is with respect to pyx,z.

It should be mentioned that for training the previous loss
functions are approximated by evaluating the expectations
empirically as shown next. Let {(x?T,y®T)}8  be a sample
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of B examples and {z”7}2 | the corresponding outputs of the
releaser. Then, the loss functlons are approximated as follows:

B

1

Lr(O,0,) = 7 Z d(z(b)T’ y(b)r)
A

o Z D% Pz G log py (&P, (14)
b=1 A(b)ex
T B

BT Z 10g g, (2. (15)

B. Recurrent Neural Networks and Long Short-Term Memory

RNNs are a class of neural networks that are able to
process sequential data by modeling the temporal correlation
in data. Therefore, the output of an RNN network at time
step t — 1 generally affects the output at time . Training of
the RNNSs is generally performed by gradient descent using
the backpropagation through time algorithm [34]. However,
learning long-term dependencies of time series data by RNNs
may lead to the gradient vanishing or exploding problems,
thus preventing successful training |35]]. To resolve this issue,
the so-called LSTM cell was introduced in [36] and further
improved in [37]. Fig.@represents the architecture of a LSTM
cell in detail.

cell state(t-1)

output(t) + ht Cf
™ t

X + >
Ct—l I cell state(t)
T tanh
o
g‘; input gate >< % i
& E]
< ﬁ l T £ Ot |0utpu1 gate
g an o
(b, K V)| (b9, A’ Ve (b, K"V (b°, K°,V°)
1
hy
- 1 >
hidden state(t-1) input(t)l we hidden state(t)

Fig. 3. LSTM recurrent network cell diagram at time step ¢.

The LSTM cell includes four gating units to control the flow
of information. All the gating units have a sigmoid activation
function (o) except for the input unit that uses an hyperbolic
tangent activation function (tanh) by default. Considering w’ =
(wi,wa,...,wr) as the input, the formulations of the LSTM
nodes at time step ¢ are represented in equation where
the parameters b, K, V are respectively biases, input weights,
and recurrent weights:

fi=o® + K by + VViwy)

g = o(b* + K8h,_1 + Véw,)

ir =0+ K'h_y + Viw)
=0’ + K°hi_1 + V°w))

Ci=fixCiy+g Xi

h; = o; X tanh (C,)

(16)

In the LSTM architecture, the forget gate f; uses the output
of the previous cell (which is called hidden state h,_;) to

control the cell state C, to remove irrelevant information. On
the other hand, the input gate g, and input unit i, adds new
information to C, from the current input. Finally, the output
gate o, generates the output of the cell from the current input
and cell state. For more details on RNNs and LSTMs, the
reader is referred to [38] and references therein.

C. Privacy-Preserving Adversarial Learning

Based on the previous formulation, an adversarial modeling
framework consisting of two RNNs, a releaser Ry and an
adversary Ay, is considered (see Fig. ' Note that independent
noise UT (with dimension m) is appended to W7 in order
to randomize the released variables Z7, which is a popular
approach in privacy-preserving methods. In addition, the avail-
able theoretical results show that, for Gaussian distributions,
the optimal release contains such a noise component |14], [26].
For both networks, a LSTM architecture is selected. Training
in the suggested framework is performed using the Algorithm

|I| which requires k gradient steps to train Ay followed by

one gradient step to train Ry. It is worth to emphasize that k
should be large enough in order to ensure that Ay represents
a strong adversary. However, if k is too large, this could lead
to overfitting and thus a poor adversary. After the training of
both networks is completed, a new network is trained from
scratch in order to test the privacy achieved by the releaser
network.

IV. REesurrs aND Discussion

We will validate our results on the Electricity Consump-
tion & Occupancy (ECO) dataset. ECO is collected and
published by [41], which includes 1 Hz power consumption
measurements and occupancy information of five houses in
Switzerland over a period of 8 months. Occupancy labels are
determined as 1 for the case that someone is at home and
0 otherwise. Thus, for this application, the privacy attacker
is a binary classifier that attempts to infer if a household
is occupied or not at a given time. In this study, we re-
sampled the data to have hourly samples. We model the
time dependency over each day, so the dataset is reshaped
to sample sequences of length 24. A total number of 11225
sample sequences were collected. The datasets are split into
training and test sets with a ratio of roughly 85:15 while
10% of training data is dedicated to validation which intended
to set the hyperparameters. The network architectures and
hyperparameters values are summarized in Table A stronger
attacker composed of 3 LSTM layers is used for the test.

To clearly assess the distortion with respect to the actual
power consumption measurements, we define the Normalized
Error (NE) for the different £, distortion functions as follows:

B[y - 2",
-~ E[y,]

In addition, performance of the attacker on inferring the private
attributes is quantified based on the balanced accuracy. This
is common in classification problems to deal with the data
imbalance problem, which occurs when the number of samples

a7
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Algorithm 1 Algorithm for training privacy-preserving data releaser neural network.

Input: Dataset (which includes samples of useful data y”, sensitive data x'); seed noise samples u”; seed noise dimension m;
batch size B; number of steps to apply to the Adversary k; gradient clipping value C; ¢, regularization parameter .

Output: Releaser network Ry.

1: for number of training iterations do
for k steps do

Sample minibatch of B examples {w®T = (x®T,y®T

B

uPT)E and generate releases {"7}5_ .

Compute the gradient of L#(¢), empirically approximated with the minibatch B, with respect to ¢.

end for

Sample minibatch of B examples {w®7T = (x®7T y®)T PT))E ~and generate releases {z*7}5_

2
3
4
5: Update ¢ by applying the RMSprop optimizer [39] with clipping value C.
6:
7
8

1"

: Compute the gradient of Lg(6, ¢, 1), approximated with the minibatch 8, with respect to 6.
9:  Use Ridge(L,) regularization [40] with value 8 and update 6 by applying RMSprop optimizer with clipping value C.

10: end for
TABLE I
MODEL ARCHITECTURES AND HYPERPARAMETERS VALUES.
Releaser Adversary Attacker B k m
4 LSTM layers each 2 LSTM layers each 3 LSTM layers each 128 4 8
with 64 cells and g = 1.5 with 32 cells with 32 cells
@ Results of privacy-preserving model
Observation Ro Released data Ay Px, 1zt _ 80 - };?trtl:‘;)rgu%szssing accuracy
wr = (x7,y7,UT) z' te{l,...T) S
Releaser Network Adversary Network 5
. (RNN) (RNN) 2
Private Data x7 s
<
Useful D?ta Y’ Utility Measure Privacy Measure 5
Seed Noise 7T — S
PIVAREY | ‘ I(XIHXI) ‘ 8
3
o
<
Fig. 4. Privacy-Preserving framework. The seed noise U7 is generated from
i.i.d. samples according to a uniform distribution: U; ~ U[O0, 1].

for each class is quite different. Balanced accuracy is defined
as the average recall calculated for each class [42]. Concretely,
let ¢;; represent the fraction of examples of class i classified
as class j. Then, the balanced accuracy can be defined as

22
2 + €2

Balanced Accuracy = l( cu
2\cp +cpn
This metric provides a fair assessment of the quality of the
attacker independently from the degree of data unbalance.
Thus, simplifying the analysis of the results. In the following
we use the term accuracy to refer to the balanced accuracy.

(18)

A. €, Distortion

In this section, we consider the ¢, distortion function (i.e.,
p = 2 in @)). Fig. [5] shows the empirically found privacy-
utility trade-off for this scenario. Note that by increasing the
distortion of the release, the accuracy of the attacker changes
from more than 80% (almost no privacy) to 50% (full privacy).

To assess the quality of the release signal, utility providers
may be interested in several different indicators. These
include, for instance, the mean, skewness, kurtosis, standard
deviation to mean ratio, and maximum to mean ratio [43].

0.4 0.6
NE2

0.8 1

Fig. 5. Privacy-utility trade-off for house occupancy inference using (>
distortion function. The fitted curve is based on an exponential function and
is included only for illustration purposes.

Thus, for completeness, we present these indicators in Table
for three different cases along the privacy-utility trade-off
curve. We observe that in general the errors in these indicators
are small when the privacy constraints are lax and increase
as they become stricter. Nevertheless, no simple relation can
be expected between NE, and the values of those indicators.

1) Comparison with
approach:

regular random noise addition

As it was discussed in Section III, the proposed model in
this study provides privacy through distorting the SMs data.
However, in contrast with the regular random noise addition
approaches | 13| where a random noise E, is added to the SMs
data (i.e. Z; = Y, + E;, for t € {1,2,...,T}), our model distorts
the SMs data by performing a noisy recurrent transformation
on Z'. To compare our method with the regular random noise
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TABLE II
ERRORS IN POWER QUALITY INDICATORS ALONG THE PRIVACY-UTILITY TRADE-OFF.

NE, Accuracy(%) Absolute relative error of quality indicators(%)

Mean  Skewness  Kurtosis  Std. Dev/Mean  Max./Mean
0.04 78 1.42 1.06 0.70 0.67 0.46
0.12 65 9.69 4.32 5.81 4.58 4.92
0.18 57 13.26 12.83 2.57 16.44 13.89

addition method, four different cases for random noise E, were
considered: Laplacian, Gaussian, Uniform, and U-quadratic. In
all cases, the amount of distortion is controlled by the variance
of noise. The same type of attacker as the one presented in
Table is used to infer the private data out of the distorted
one. Fig. |§|sh0ws the privacy-utility trade-off for these random
noise addition approaches as compared with our model. It can
be seen clearly that, for the same amount of distortion, our
method is more successful in preventing the attacker from
inferring the private information. This is expected, as our
method is able to learn the noise distribution to fit the actual
demand load and the sensitive information that is being hidden
from the attacker, which is a much more powerful approach
than just using a fixed noise distribution. Notice also that, as
expected, all results are similar as the distortion approaches
to zero. For some of the random noise addition cases, the
fitted curves cross over the one of our model, but in the
low distortion low privacy area of the graph, which is not
of interest.
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Fig. 6. Privacy-utility trade-off for
random noise addition approach.

house occupancy inference using the

2) Comparison with PPAN model:

The main limitation of the random noise addition approach
is that the noise mechanism is independent of the SMs data. A
more sophisticated strategy that address this issue would be the

PPAN model [26]. This method uses a variational lower bound
on I(X;;Z;) to train a releaser using an adversarial learning
approach. For more details of this approach the readers are
referred to [26]. Fig. shows the privacy-utility trade-off of
the PPAN model as compared with our method using the same
type of attacker as presented in Table For the PPAN, both the
mechanism and adversary networks are deep neural networks
including three hidden layers with 64 nodes and a rectified
linear unit (ReLU) activation function, while the RMSprop
optimizer [44] with learning rate 0.01 is used.

® Results of privacy-preserving model
80! *, 0| O PPAN model [26]
'ta —— Random guessing accuracy

o',

o0

70

Accuracy of Attacker (%)
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Fig. 7. Privacy-utility trade-off for house occupancy inference using the PPAN
approach.

From Fig. [7]it can be seen that our method can clearly
outperform the PPAN. The reason for this gap can be attributed
to both the different cost function formulation (i.e., the fact
that we are using an upper bound on /(X" — X7) instead of
a lower bound on /(X;;Z;)) and the recurrent structure of the
proposed releaser mechanism.

B. ¢, Distortion

As already discussed in Section the distortion function
should be properly matched to the intended application of the
released variables Z7 in order to preserve the characteristics
of the target variables Y7 that are considered essential. In this
section, we consider the £, distortion @) with p =4,5 as an
alternative to the ¢, distortion function used in the previous
section and study their potential benefits.

The privacy-utility trade-off curve for these distortion func-
tions is shown in Fig. As a first observation, it is clear
that the choice of the distortion measure has a non-negligible
impact on the privacy-utility trade-off curve. In fact, it can
be seen that for a given amount of normalized distortion, the
releaser trained with the ¢4 and {5 distortion measures achieve
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a higher level of privacy than the one trained with the ¢,
distortion function. It should also be mentioned that we also
considered other norms, such as the ¢y, and the privacy-utility
trade-off was observed to be similar, but slightly different, than
the one corresponding to the {4 norm.

P ® Results of privacy-preserving model ® Results of privacy-preserving model
801\ |-~ Random guessing accuracy 801 |-- Random guessing accuracy
|\ |— Fitted Curve — Fitted Curve
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Fig. 8. Privacy-utility trade-off for house occupancy inference based on the
different ¢, distortion functions. For each figure, the dashed line, shown for
comparison purposes, is the fitted curve found in Fig. for the ¢, distortion
function.

As we discussed in Section in some applications, such as
demand response programs, the utilities are mostly interested
in the peak power consumption of the customers. It is also
expected that higher-order £, norms are better at preserving
these signal characteristics than the ¢, norm. To verify this
notion, we considered 60 random days of the ECO dataset
in a full privacy scenario (i.e., with an attacker accuracy very
close to 50%) and plotted the actual power consumption along
with the corresponding release signals for both the {4 and ¢,
distortion functions. Results shown in Fig. |§| clearly indicate
that the number of peaks preserved by the releaser trained with
the ¢, distortion function is much higher than the ones kept
by the releaser trained with the ¢, distortion function. This
suggests that for these applications, higher order £, distortion
functions should be considered.

C. Attacker with Data Mismatch Problem

All the previous results are based on the assumption that
the attacker has access to exactly the same training dataset
used by the releaser-adversary system. This case should be
considered as a worst-case analysis of the performance of
the releaser. However, this assumption may not be true in
practice. To examine the impact of this hypothesis, we consider
two different cases. It should be noted that the total number
of samples used for training and testing was kept fixed in
all the different scenarios. In the first case, we assume that,
out of the dataset of the five houses in the ECO dataset, the
releaser uses the data of all the houses for training while the
attacker has only access to the data of houses 1 and 3. In the
second case, we assume that releaser is trained with the data
of houses {1,2,4,5} but the attacker has only access to data
from house 3. These scenarios try to capture different degrees
of the data mismatch problem, which could have an impact on
the privacy-utility trade-off due to the different generalization
errors. The results are presented in Fig. |E| along with the
worst-case scenario. We conclude that the overlapping of the
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Fig. 9. Example of the release power consumption in the time domain

compared with the actual power consumption over 60 random days with
almost full privacy for the ¢4 and ¢, distortion functions.

training datasets of the releaser and the attacker can strongly
affect the performance of the model. In fact, in the case where
the attacker does not have access to the same dataset as the
releaser, its performance largely degrades, which means that
a target level of privacy requires much less distortion. In the
extreme case where the attacker has no access to the releaser
training dataset, a very high level of privacy can be achieved
with negligible distortion. It should be mentioned that we
repeated this experiment with different choices of these 5
houses and similar results were obtained.

’ . Releaser data set: Houses 1-5 ‘

80 Attacker data set: Houses 1-5
o Releaser data set: Houses 1-5
Attacker data set: Houses 1&3
® Releaser data set: Houses 1-2&4-5
70 Attacker data set: Houses 3

Accuracy of Attacker (%)

NE,

Fig. 10. Effect of data mismatch between the releaser and the attacker on the
privacy-utility trade-off for house occupancy inference.

V. DiscussioN AND CONCLUDING REMARKS

Privacy concerns associated with SMs data-sharing are an
important problem since these can have an impact on their
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deployment pace and the advancement of smart grid tech-
nologies. As a consequence, it is essential to understand and
to palliate real privacy risks in order to provide an adequate
solution to conveniently share SMs data. A summary of the
privacy-aware SMs methodology proposed in this study and
the key findings are provided below:

» We proposed to measure the privacy based on the DI
between the sensitive time series and its inference by a
potential attacker optimized for the dedicated task. This
captures the causal time dependencies present in the time
series data and its sequential processing. For the sake of
computational tractability, we propose an upper bound
to the DI which leads to our training objective. Then,
using Fano’s inequality, it was shown that this bound
can constrain the performance of the optimal (Bayesian)
attacker.

» We explored a data release framework that balances the
trade-off between privacy of the sensitive information
and distortion of the useful data. The desired releaser
was trained using RNNs in an adversarial framework to
optimize such objective, while an adversary mimics a real
attacker. After convergence, an actual attacker was trained
to test the level of privacy achieved by the releaser.

o A detailed study of the inference of households occu-
pancy using actual SMs dataset was performed. The
performance of the proposed model was compared with
two methodologies: random noise addition and PPAN-
based. In both cases, the results show that our method
clearly outperforms the other algorithms in limiting the
attacker inference ability. This is not surprising, as our
method is able to fit the noise distribution to the actual
consumer load and the sensitive feature that is trying to
be hidden by the releaser in a more effective manner.

« We showed that the choice of the distortion measure can
have a significant impact on the privacy-utility trade-off
curve. Indeed, it is shown that the £4 distortion measure
generates a release that preserves most of the power
consumption peaks even under a full privacy regime,
which is not the case for the ¢, distortion function.
This result may be of considerable importance for some
applications such as demand response. More generally,
our formulation is amenable to train different release
systems tailored for several potential applications based
on SMs data.

» We studied the impact of the data mismatch problem in
this application, which occurs when the training dataset
of the attacker is not exactly the same as the one used by
the releaser. These results have shown that this effect can
greatly affect the privacy-utility trade-off. Since this phe-
nomenon is expected in practice, at least to some degree,
these findings suggest that the level of required distortion
to achieve desired privacy targets may be negligible in
several cases of interest.

To wrap up the paper, two possible extensions for future
work are briefly discussed. The first one is modeling the
availability of side information at the attacker side to model
prior knowledge of sensitive information as in [45], which

cannot be distorted by the releaser, and study its impact on
the privacy-utility trade-offs. The second is combining this
SM data distortion approach with the ones which rely on
physical resources for demand shaping. This would require
us to incorporate the electricity cost consideration, leading to
the study of the privacy-utility-cost trade-offs.
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