
HAL Id: hal-02951653
https://centralesupelec.hal.science/hal-02951653v2

Submitted on 21 Sep 2021 (v2), last revised 22 Jun 2023 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fundamental Limits of Decentralized Data Shuffling
Kai Wan, Daniela Tuninetti, Mingyue Ji, Giuseppe Caire, Pablo Piantanida

To cite this version:
Kai Wan, Daniela Tuninetti, Mingyue Ji, Giuseppe Caire, Pablo Piantanida. Fundamental Limits of
Decentralized Data Shuffling. IEEE Transactions on Information Theory, 2020, 66 (6), pp.3616-3637.
�10.1109/tit.2020.2966197�. �hal-02951653v2�

https://centralesupelec.hal.science/hal-02951653v2
https://hal.archives-ouvertes.fr

1

Fundamental Limits of Decentralized Data Shuffling
Kai Wan, Member, IEEE, Daniela Tuninetti, Senior Member, IEEE, Mingyue Ji, Member, IEEE, Giuseppe

Caire, Fellow, IEEE, and Pablo Piantanida, Senior Member, IEEE

Abstract—Data shuffling of training data among different
computing nodes (workers) has been identified as a core element
to improve the statistical performance of modern large-scale
machine learning algorithms. Data shuffling is often considered as
one of the most significant bottlenecks in such systems due to the
heavy communication load. Under a master-worker architecture
(where a master has access to the entire dataset and only
communication between the master and the workers is allowed)
coding has been recently proved to considerably reduce the
communication load. This work considers a different communi-
cation paradigm referred to as decentralized data shuffling, where
workers are allowed to communicate with one another via a
shared link. The decentralized data shuffling problem has two
phases: workers communicate with each other during the data
shuffling phase, and then workers update their stored content
during the storage phase. The main challenge is to derive novel
converse bounds and achievable schemes for decentralized data
shuffling by considering the asymmetry of the workers’ storages
(i.e., workers are constrained to store different files in their
storages based on the problem setting), in order to characterize
the fundamental limits of this problem.

For the case of uncoded storage (i.e., each worker directly
stores a subset of bits of the dataset), this paper proposes converse
and achievable bounds (based on distributed interference align-
ment and distributed clique-covering strategies) that are within
a factor of 3/2 of one another. The proposed schemes are also
exactly optimal under the constraint of uncoded storage for either
large storage size or at most four workers in the system.

Index Terms—Decentralized Data shuffling, uncoded storage,
distributed clique covering.

I. INTRODUCTION

RECENT years have witnessed the emergence of big data
and machine learning with wide applications in both

business and consumer worlds. To cope with such a large

A short version of this paper was presented the 56th Annual Allerton
Conference (2018) on Communication, Control, and Computing in Monticello,
USA.

K. Wan and G. Caire are with the Electrical Engineering and Computer
Science Department, Technische Universität Berlin, 10587 Berlin, Germany
(e-mail: kai.wan@tu-berlin.de; caire@tu-berlin.de). The work of K. Wan and
G. Caire was partially funded by the European Research Council under the
ERC Advanced Grant N. 789190, CARENET.

D. Tuninetti is with the Electrical and Computer Engineering Depart-
ment, University of Illinois at Chicago, Chicago, IL 60607, USA (e-mail:
danielat@uic.edu). The work of D. Tuninetti was supported in parts by NSF
1527059 and NSF 1910309.

M. Ji is with the Electrical and Computer Engineering Department, Univer-
sity of Utah, Salt Lake City, UT 84112, USA (e-mail: mingyue.ji@utah.edu).
The work of M. Ji was supported by NSF 1817154 and NSF 1824558.

P. Piantanida is with CentraleSupélec–French National Center for
Scientific Research (CNRS)–Université Paris-Sud, 91192 Gif-sur-
Yvette, France, and with Montreal Institute for Learning Algorithms
(MILA) at Université de Montréal, QC H3T 1N8, Canada (e-mail:
pablo.piantanida@centralesupelec.fr). The work of P. Piantanida was
supported by the European Commission’s Marie Sklodowska-Curie Actions
(MSCA), through the Marie Sklodowska-Curie IF (H2020-MSCAIF-2017-
EF-797805-STRUDEL).

size/dimension of data and the complexity of machine learning
algorithms, it is increasingly popular to use distributed com-
puting platforms such as Amazon Web Services Cloud, Google
Cloud, and Microsoft Azure services, where large-scale dis-
tributed machine learning algorithms can be implemented. The
approach of data shuffling has been identified as one of the
core elements to improve the statistical performance of modern
large-scale machine learning algorithms [1], [2]. In particular,
data shuffling consists of re-shuffling the training data among
all computing nodes (workers) once every few iterations,
according to some given learning algorithms. However, due
to the huge communication cost, data shuffling may become
one of the main system bottlenecks.

To tackle this communication bottleneck problem, under a
master-worker setup where the master has access to the entire
dataset, coded data shuffling has been recently proposed to
significantly reduce the communication load between master
and workers [3]. However, when the whole dataset is stored
across the workers, data shuffling can be implemented in a
distributed fashion by allowing direct communication between
the workers1. In this way, the communication bottleneck be-
tween a master and the workers can be considerably alleviated.
This can be advantageous if the transmission capacity among
workers is much higher than that between the master and
workers, and the communication load between this two setups
are similar.

In this work, we consider such a decentralized data shuffling
framework, where workers, connected by the same communi-
cation bus (common shared link), are allowed to communi-
cate2. Although a master node may be present for the initial
data distribution and/or for collecting the results of the training
phase in a machine learning application, it is not involved in
the data shuffling process which is entirely managed by the
worker nodes in a distributed manner. In the following, we
will review the literature of coded data shuffling (which we
shall refer to as centralized data shuffling) and introduce the
decentralized data shuffling framework studied in this paper.

A. Centralized Data Shuffling

The coded data shuffling problem was originally proposed
in [3] in a master-worker centralized model as illustrated in

1In practice, workers communicate with each other as described in [1].
2 Notice that putting all nodes on the same bus (typical terminology in

Compute Science) is very common and practically relevant since this is
what happens for example with Ethernet, or with the Peripheral Component
Interconnect Express (PCI Express) bus inside a multi-core computer, where
all cores share a common bus for intercommunication. The access of such
bus is regulated by some collision avoidance protocol such as Carrier Sense
Multiple Access (CSMA) [4] or Token ring [5], such that once one node
talks at a time, and all other listen. Therefore, this architecture is relevant in
practice.

2

Fig. 1a. In this setup, a master, with the access to the whole
dataset containing N data units, is connected to K = N/q
workers, where q := N/K is a positive integer. Each shuffling
epoch is divided into data shuffling and storage update phases.
In the data shuffling phase, a subset of the data units is
assigned to each worker and each worker must recover these
data units from the broadcasted packets of the master and its
own stored content from the previous epoch. In the storage
update phase, each worker must store the newly assigned data
units and, in addition, some information about other data units
that can be retrieved from the storage content and master
transmission in the current epoch. Such additional information
should be strategically designed in order to help the coded
delivery of the required data units in the following epochs.
Each worker can store up to M data units in its local storage.
If each worker directly copies some bits of the data units in
its storage, the storage update phase is said to be uncoded.
On the other hand, if the workers store functions (e.g., linear
combinations) of the data objects’ bits, the storage update is
said to be coded. The goal is, for a given (M,N, q), to find
the best two-phase strategy that minimizes the communication
load during the data shuffling phase regardless of the shuffle.

The scheme proposed in [3] uses a random uncoded storage
(to fill users’ extra memories independently when M > q)
and a coded multicast transmission from the master to the
workers, and yields a gain of a factor of O(K) in terms of
communication load with respect to the naive scheme for
which the master simply broadcasts the missing, but required
data bits to the workers.

The centralized coded data shuffling scheme with coordi-
nated (i.e., deterministic) uncoded storage update phase was
originally proposed in [6], [7], in order to minimize the worst-
case communication load R among all the possible shuffles,
i.e., R is smallest possible such that any shuffle can be
realized. The proposed schemes in [6], [7] are optimal under
the constraint of uncoded storage for the cases where there is
no extra storage for each worker (i.e., M = q) or there are
less than or equal to three workers in the systems. Inspired by
the achievable and converse bounds for the single-bottleneck-
link caching problem in [8]–[10], the authors in [11] then
proposed a general coded data shuffling scheme, which was
shown to be order optimal to within a factor of 2 under
the constraint of uncoded storage. Also in [11], the authors
improved the performance of the general coded shuffling
scheme by introducing an aligned coded delivery, which was
shown to be optimal under the constraint of uncoded storage
for either M = q or M ≥ (K− 2)q.

Recently, inspired by the improved data shuffling scheme
in [11], the authors in [12] proposed a linear coding scheme
based on interference alignment, which achieves the optimal
worst-case communication load under the constraint of un-
coded storage for all system parameters. In addition, under
the constraint of uncoded storage, the proposed coded data
shuffling scheme in [12] was shown to be optimal for any
shuffles (not just for the worst-case shuffles) when q = 1.

B. Decentralized Data Shuffling

An important limitation of the centralized framework is the
assumption that workers can only receive packets from the
master. Since the entire dataset is stored in a decentralized
fashion across the workers at each epoch of the distributed
learning algorithm, the master may not be needed in the data
shuffling phase if workers can communicate with each other
(e.g., [1]). In addition, the communication among workers
can be much more efficient compared to the communication
from the master node to the workers [1], e.g., the connection
between the master node and workers is via a single-ported
interface, where only one message can be passed for a given
time/frequency slot. In this paper, we propose the decentral-
ized data shuffling problem as illustrated in Fig. 1b, where
only communications among workers are allowed during the
shuffling phase. This means that in the data shuffling phase,
each worker broadcasts well designed coded packets (i.e.,
representations of the data) based on its stored content in
the previous epoch. Workers take turn in transmitting, and
transmissions are received error-free by all other workers
through the common communication bus. The objective is to
design the data shuffling and storage update phases in order to
minimize the total communication load across all the workers
in the worst-case shuffling scenario.

Importance of decentralized data shuffling in practice: In
order to make the decentralized topology work in practice, we
need to firstly guarantee that all the data units are already
stored across the nodes so that the communication among
computing nodes is sufficient. This condition is automatically
satisfied from the definition of the decentralized data shuffling
problem. Although the decentralized coded data shuffling
incurs a larger load compared to its centralized counterpart,
in practice, we may prefer the decentralized coded shuffling
framework. This is due to the fact that the transmission
delay/latency of the data transmission in real distributed com-
puting system may depend on other system properties besides
the total communication load, and the decentralized topology
may achieve a better transmission delay/latency. This could be
due to that 1) the connection between the master node and the
worker clusters is normally via a single-ported interference,
where only one message can be transmitted per time/frequency
slot [1]; 2) computing nodes are normally connected (e.g., via
grid, or ring topologies) and the link bandwidth is generally
much faster, in addition, computing nodes can transmit in
parallel.

C. Relation to Device-to-device (D2D) Caching and Dis-
tributed Computing

The coded decentralized data shuffling problem considered
in this paper is related to the coded device-to-device (D2D)
caching problem [13] and the coded distributed computing
problem [14] – see also Remark 1 next.

The coded caching problem was originally proposed in [8]
for a shared-link broadcast model. The authors in [13] ex-
tended the coded caching model to the case of D2D networks
under the so-called protocol model. By choosing the com-
munication radius of the protocol model such that each node

3

Worker 2

Storage:

Library:
N data units

broadcasts
X

Master

t

Worker 1 Worker 3

Z
t-1

1

Storage:
Z

t-1
2

Storage:
Zt-1

3

Data shuffling phase of time slot t:

Worker kBased on (X , Z),t t-1
k updates its storage by Z , which must contain t

k

all data units in A .k
t

Storage Update Phase of time slot t:

(a) Centralized data shuffling.

Worker 2

Storage:

Worker 1

Worker 3

Z
t-1
1

Storage:
Z t-1

2

Storage:
Z

t-1
3

Data shuffling phase of time slot t:

Worker kBased on (X , X , X , Z),t
1 k

updates its storage by Z , which mustt
k

contain all data units in A .k
t

Storage Update Phase of time slot t:

broadcasts
X1

broadcasts
X2

broadcasts
X

tt

3
t

t t t-1
2 3

(b) Decentralized data shuffling.

Fig. 1: The system models of the 3-worker centralized and
decentralized data shuffling problems in time slot t. The data units

in At
k are assigned to worker k, where k ∈ {1, 2, 3} at time t.

can broadcast messages to all other nodes in the network,
the delivery phase of D2D coded caching is resemblant (as
far as the topology of communication between the nodes is
concerned) to the shuffling phase of our decentralized data
shuffling problem.

Recently, the scheme for coded D2D caching in [13]
has been extended to the coded distributed computing prob-
lem [14], which consists of two stages named Map and
Reduce. In the Map stage, workers compute a fraction of
intermediate computation values using local input data ac-
cording to the designed Map functions. In the Reduce stage,

according to the designed Reduce functions, workers exchange
among each other a set of well designed (coded) intermediate
computation values, in order to compute the final output
results. The coded distributed computing problem can be seen
as a coded D2D caching problem under the constraint of
uncoded and symmetric cache placement, where the symmetry
means that each worker uses the same cache function for
each file. A converse bound was proposed in [14] to show
that the proposed coded distributed computing scheme is
optimal in terms of communication load. This coded dis-
tributed computing framework was extended to cases such
as computing only necessary intermediate values [15], [16],
reducing file partitions and number of output functions [16],
[17], and considering random network topologies [18], random
connection graphs [19], [20], stragglers [21], storage cost [22],
and heterogeneous computing power, function assignment and
storage space [23], [24].

Compared to coded D2D caching and coded distributed
computing, the decentralized data shuffling problem differs
as follows. On the one hand, an asymmetric constraint on the
stored contents for the workers is present (because each worker
must store all bits of each assigned data unit in the previous
epoch, which breaks the symmetry of the stored contents
across data units of the other settings). On the other hand, each
worker also needs to dynamically update its storage based on
the received packets and its own stored content in the previous
epoch. Therefore the decentralized data shuffling problem over
multiple data assignment epochs is indeed a dynamic system
where the evolution across the epochs of the node stored
content plays a key role, while in the other problems reviewed
above the cache content is static and determined at a single
initial placement setup phase.

D. Relation to Centralized, Distributed, and Embedded Index
Codings

In a distributed index coding problem [25], [26], there are
multiple senders connected to several receivers, where each
sender or receiver can access to a subset of messages in the
library. Each receiver demands one message and according
to the users’ demands and side informations, the senders
cooperatively broadcast packets to all users to satisfy the
users’ demands. The difference in a centralized index coding
problem [27] compared to the distributed one is that only one
sender exists and this sender can access the whole library.
Very recently, the authors in [28] considered a special case
of distributed index coding, referred to as embedded index
coding, where each node acts as both a sender and a receiver
in the system. It was shown in [28] that a linear code for
this embedded index coding problem can be obtained from a
linear index code for the centralized version of the problem
by doubling the communication load.

The centralized and decentralized data shuffling phases
with uncoded storage are special cases of centralized and
embedded index coding problems, respectively. By using the
construction in [28] we could thus design a code for the
decentralized data shuffling problem by using the optimal
(linear) code for the centralized case [12]; this would give

4

a decentralized data shuffling scheme with a load twice that
of [12]. It will be clarified later (in Remark 2) that the proposed
decentralized data shuffling schemes are strictly better than the
those derived with the construction in [28]. This is so because
the construction in [28] is general, while our design is for the
specific topology considered.

E. Contributions

In this paper, we study the decentralized data shuffling prob-
lem, for which we propose converse and achievable bounds as
follows.

1) Novel converse bound under the constraint of uncoded
storage. Inspired by the induction method in [14, Thm.1]
for the distributed computing problem, we derive a
converse bound under the constraint of uncoded storage.
Different from the converse bound for the distributed
computing problem, in our proof we propose a novel
approach to account for the additional constraint on the
“asymmetric” stored content.

2) Scheme A: General scheme for any M. By extending the
general centralized data shuffling scheme from [11] to
our decentralized model, we propose a general decen-
tralized data shuffling scheme, where the analysis holds
for any system parameters.

3) Scheme B: Improved scheme for M ≥ (K − 2)q. It can
be seen later that Scheme A does not fully leverage
the workers’ stored content. With the storage update
phase inspired by the converse bound and also used in
the improved centralized data shuffling scheme in [11],
we propose a two-step scheme for decentralized data
shuffling to improve on Scheme A. In the first step we
generate multicast messages as in [8], and in the second
step we encode these multicast messages by a linear
code based on distributed interference alignment (see
Remark 3).
By comparing our proposed converse bound and
Scheme B, we prove that Scheme B is exactly optimal
under the constraint of uncoded storage for M ≥ (K −
2)q. Based on this result, we can also characterize the
exact optimality under the constraint of uncoded storage
when the number of workers satisfies K ≤ 4.

4) Scheme C: Improved scheme for M = 2q. The delivery
schemes proposed in [8], [11], [13] for coded caching
with a shared-link, D2D caching, and centralized data
shuffling, all belong to the class of clique-covering
method from a graph theoretic viewpoint. By a non-
trivial extension from a distributed clique-covering ap-
proach for the two-sender distributed index coding prob-
lems [29] to our decentralized data shuffling problem for
the case M = 2q, we propose a novel decentralized data
shuffling scheme. The resulting scheme outperforms the
previous two schemes for this specific storage size.

5) Order optimality under the constraint of uncoded stor-
age. By combing the three proposed schemes and com-
paring with the proposed converse bound, we prove the
order optimality of the combined scheme within a factor
of 3/2 under the constraint of uncoded storage.

F. Paper Organization

The rest of the paper is organized as follows. The system
model and problem formulation for the decentralized data
shuffling problem are given in Section II. Results from de-
centralized data shuffling related to our work are compiled in
Section III. Our main results are summarized in Section IV.
The proof of the proposed converse bound can be found
in Section V, while the analysis of the proposed achievable
schemes is in Section VI. Section VII concludes the paper. The
proofs of some auxiliary results can be found in the Appendix.

G. Notation Convention

We use the following notation convention. Calligraphic
symbols denote sets, bold symbols denote vectors, and sans-
serif symbols denote system parameters. We use | · | to
represent the cardinality of a set or the length of a vector;
[a : b] := {a, a+ 1, . . . , b} and [n] := {1, 2, . . . , n}; ⊕
represents bit-wise XOR; N denotes the set of all positive
integers.

II. SYSTEM MODEL

The (K, q,M) decentralized data shuffling problem illus-
trated in Fig. 1b is defined as follows. There are K ∈ N
workers, each of which is charged to process and store q ∈ N
data units from a dataset of N := Kq data units. Data units
are denoted as (F1, F2, . . . , FN) and each data unit is a binary
vector containing B i.i.d. bits. Each worker has a local storage
of MB bits, where q ≤ M ≤ Kq = N. The workers are
interconnected through a noiseless multicast network.

The computation process occurs over T time slots/epochs.
At the end of time slot t− 1, t ∈ [T], the content of the local
storage of worker k ∈ [K] is denoted by Zt−1k ; the content of
all storages is denoted by Zt−1 := (Zt−11 , Zt−12 , . . . , Zt−1K).
At the beginning of time slot t ∈ [T], the N data units are
partitioned into K disjoint batches, each containing q data
units. The data units indexed by Atk ⊆ [N] are assigned to
worker k ∈ [K] who must store them in its local storage by the
end of time slot t ∈ [T]. The dataset partition (i.e., data shuffle)
in time slot t ∈ [T] is denoted by At = (At1,At2, . . . ,AtK) and
must satisfy

|Atk| = q, ∀k ∈ [K], (1a)

Atk1 ∩ A
t
k2 = ∅, ∀(k1, k2) ∈ [K]2 : k1 6= k2, (1b)

∪k∈[K] Atk = [N] (dataset partition). (1c)

If q = 1, we let Atk = {dtk} for each k ∈ [K].
We denote the worker who must store data unit Fi at the

end of time slot t by uti, where

uti = k if and only if i ∈ Atk. (2)

The following two-phase scheme allows workers to store
the requested data units.

5

Initialization: We first focus on the initial time slot t =
0, where a master node broadcasts to all the workers. Given
partition A0, worker k ∈ [K] must store all the data units Fi
where i ∈ A0

k; if there is excess storage, that is, if M > q,
worker k ∈ [K] can store in its local storage parts of the data
units indexed by [N] \ A0

k. The storage function for worker
k ∈ [K] in time slot t = 0 is denoted by ψ0

k, where

Z0
k := ψ0

k

(
A0, (Fi : i ∈ N)

)
(initial storage placement) :

(3a)

H
(
Z0
k

)
≤ MB, ∀k ∈ [K] (initial storage size constraint),

(3b)

H
((
Fi : i ∈ A0

k

)
|Z0
k

)
= 0 (initial storage content constraint).

(3c)

Notice that the storage initialization and the storage update
phase (which will be described later) are without knowledge
of later shuffles. In subsequent time slots t ∈ [T], the master
is not needed and the workers communicate with one another.

Data Shuffling Phase: Given global knowledge of the
stored content Zt−1 at all workers, and of the data shuffle
from At−1 to At (indicated as At−1 → At) worker k ∈ [K]
broadcasts a message Xt

k to all other workers, where Xt
k is

based only on the its local storage content Zt−1k , that is,

H
(
Xt
k|Zt−1k

)
= 0 (encoding). (4)

The collection of all sent messages is denoted by Xt :=
(Xt

1, X
t
2, . . . , X

t
K). Each worker k ∈ [K] must recover all data

units indexed by Atk from the sent messages Xt and its local
storage content Zt−1k , that is,

H
((
Fi : i ∈ Atk

)
|Zt−1k , Xt

)
= 0 (decoding). (5)

The rate K-tuple (RA
t−1→At

1 , . . . ,RA
t−1→At

K) is said to be
feasible if there exist delivery functions φtk : Xt

k = φtk(Zt−1k)
for all t ∈ [T] and k ∈ [K] satisfying the constraints (4)
and (5), and such that

H
(
Xt
k

)
≤ BRA

t−1→At

k (load). (6)

Storage Update Phase: After the data shuffling phase in
time slot t, we have the storage update phase in time slot
t ∈ [T]. Each worker k ∈ [K] must update its local storage
based on the sent messages Xt and its local stored content
Zt−1k , that is,

H
(
Ztk|Zt−1k , Xt

)
= 0 (storage update), (7)

by placing in it all the recovered data units, that is,

H
((
Fi : i ∈ Atk

)
|Ztk
)

= 0, (stored content). (8)

Moreover, the local storage has limited size bounded by

H
(
Ztk

)
≤ MB, ∀k ∈ [K], (storage size). (9)

A storage update for worker k ∈ [K] is said to be feasible
if there exist functions ψtk : Ztk = ψtk(Atk, Z

t−1
k , Xt) for all

t ∈ [T] and k ∈ [K] satisfying the constraints in (7), (8) and
(9).

Note: if for any k1, k2 ∈ [K] and t1, t2 ∈ [T] we have
Ψt1
k1
≡ Ψt2

k2
(i.e., Ψt1

k1
is equivalent to Ψt2

k2
), the storage phase

is called structural invariant.
Objective: The objective is to minimize the worst-case

total communication load, or just load for short in the follow-
ing, among all possible consecutive data shuffles, that is we
aim to characterized R? defined as

R? := lim
T→∞

min
ψt′

k ,φ
t′
k :

t′∈[T],k∈[K]

max
(A0,...,AT)

{
max
t∈[T]

∑
k∈[K]

RA
t−1→At

k :

the rate K-tuple and the storage are feasible
}
. (10)

The minimum load under the constraint of uncoded storage
is denoted by R?u. In general, R?u ≥ R?, because the set of
all general data shuffling schemes is a superset of all data
shuffling schemes with uncoded storage.

Remark 1 (Decentralized Data Shuffling vs D2D Caching).
The D2D caching problem studied in [13] differs from our
setting as follows:

1) in the decentralized data shuffling problem one has the
constraint on the stored content in (8) that imposes that
each worker stores the whole requested files, which is
not present in the D2D caching problem; and

2) in the D2D caching problem each worker fills its local
cache by accessing the whole library of files, while in
the decentralized data shuffling problem each worker
updates its local storage based on the received packets
in the current time slot and its stored content in the
previous time slot as in (7).

Because of these differences, achievable and converse bounds
for the decentralized data shuffling problem can not be ob-
tained by trivial renaming of variables in the D2D caching
problem.

�

III. RELEVANT RESULTS FOR CENTRALIZED DATA
SHUFFLING

Data shuffling was originally proposed in [3] for the central-
ized scenario, where communications only exists between the
master and the workers, that is, the K decentralized encoding
conditions in (4) are replaced by H(Xt|F1, . . . , FN) = 0
where Xt is broadcasted by the master to all the workers.
We summarize next some key results from [11], which will
be used in the following sections. We shall use the subscripts
“u,cen,conv” and “u,cen,ach” for converse (conv) and achiev-
able (ach) bounds, respectively, for the centralized problem
(cen) with uncoded storage (u). We have

1) Converse for centralized data shuffling: For a (K, q,M)
centralized data shuffling system, the worst-case com-
munication load under the constraint of uncoded storage
is lower bounded by the lower convex envelope of the
following storage-load pairs [11, Thm.2](

M

q
= m,

R

q
=

K−m
m

)
u,cen,conv

, ∀m ∈ [K]. (11)

6

2) Achievability for centralized data shuffling: In [11] it
was also shown that the lower convex envelope of the
following storage-load pairs is achievable with uncoded
storage [11, Thm.1](
M

q
= 1 + g

K− 1

K
,
R

q
=

K− g
g + 1

)
u,cen,ach

, ∀g ∈ [0 : K].

(12)

The achievable bound in (12) was shown to be within a
factor K

K−1 ≤ 2 of the converse bound in (11) under the
constraint of uncoded storage [11, Thm.3].

3) Optimality for centralized data shuffling: It was shown
in [12, Thm.4] that the converse bound in (11) can be
achieved by a scheme that uses linear network coding
and interference alignement/elimination. An optimality
result similar to [12, Thm.4] was shown in [11, Thm.4],
but only for m ∈ {1,K− 2,K− 1}; note that m = K is
trivial.

Although the scheme that achieves the load in (12) is not
optimal in general, we shall next describe its inner workings as
we will generalize it to the case of decentralized data shuffling.

Structural Invariant Data Partitioning and Storage: Fix
g ∈ [0 : K] and divide each data unit into

(
K
g

)
non-overlapping

and equal-length sub-blocks of length B/
(
K
g

)
bits. Let each

data unit be Fi = (Gi,W : W ⊆ [K] : |W| = g), ∀i ∈ [N].
The storage of worker k ∈ [K] at the end of time slot t is as
follows,3

Ztk

=
(
(Gi,W : ∀W,∀i ∈ Atk)︸ ︷︷ ︸

required data units

∪ (Gi,W : k ∈ W,∀i ∈ [N] \ Atk)︸ ︷︷ ︸
other data units

)
(13)

=
(
(Gi,W : k 6∈ W,∀i ∈ Atk)︸ ︷︷ ︸

variable part of the storage

∪ (Gi,W : k ∈ W,∀i ∈ [N])︸ ︷︷ ︸
fixed part of the storage

)
.

(14)

Worker k ∈ [K] stores all the
(
K
g

)
sub-blocks of the required q

data units indexed by Atk, and also
(
K−1
g−1
)

sub-blocks of each
data unit indexed by [N] \ Atk (see (13)), thus the required
storage space is

M = q + (N− q)

(
K−1
g−1
)(

K
g

) =
(

1 + g
K− 1

K

)
q. (15)

It can be seen (see (14) and also Table I) that the storage of
worker k ∈ [K] at time t ∈ [T] is partitioned in two parts: (i)
the “fixed part” contains all the sub-blocks of all data points
that have the index k in the second subscript; this part of the
storage will not be changed over time; and (ii) the “variable
part” contains all the sub-blocks of all required data points at
time t that do not have the index k in the second subscript;
this part of the storage will be updated over time.

3 Notice that here each sub-block Gi,W is stored by workers {uti}∪W . In
addition, later in our proofs of the converse bound and proposed achievable
schemes for decentralized data shuffling, the notation Fi,W denotes the sub-
block of Fi, which is stored by workers in W .

Initialization (for the achievable bound in (12)): The
master directly transmits all data units. The storage is as in (14)
given A0.

Data Shuffling Phase of time slot t ∈ [T] (for the
achievable bound in (12)): After the end of storage update
phase at time t − 1, the new assignment At is revealed. For
notation convenience, let

G′k,W =
(
Gi,W : i ∈ Atk \ At−1k

)
, (16)

for all k ∈ [K] and all W ⊆ [K], where |W| = g and k /∈ W .
Note that in (16) we have |G′k,W | ≤ B q

(K
g)

, with equality (i.e.,

worst-case scenario) if and only if Atk ∩ A
t−1
k = ∅. To allow

the workers to recover their missing sub-blocks, the central
server broadcasts Xt defined as

Xt = (W t
J : J ⊆ [K] : |J | = g + 1), (17)

where W t
J = ⊕k∈JG′k,J\{k}, (18)

where in the multicast message W t
J in (18) the sub-blocks

G′k,W involved in the sum are zero-padded to meet the length
of the longest one. Since worker k ∈ J requests G′k,J\{k}
and has stored all the remaining sub-blocks in W t

J defined
in (18), it can recover G′k,J\{k} from W t

J , and thus all its
missing sub-blocks from Xt.

Storage Update Phase of time slot t ∈ [T] (for the
achievable bound in (12)): Worker k ∈ [K] evicts from the
(variable part of its) storage the sub-blocks (Gi,W : k 6∈
W,∀i ∈ At−1k \ Atk) and replaces them with the sub-blocks
(Gi,W : k 6∈ W,∀i ∈ Atk \ A

t−1
k). This procedure maintains

the structural invariant storage structure of the storage in (14).
Performance Analysis (for the achievable bound in (12)):

The total worst-case communication load satisfies

R ≤ q

(
K
g+1

)(
K
g

) = q
K− g
g + 1

, (19)

with equality (i.e., worst-case scenario) if and only if Atk ∩
At−1k = ∅ for all k ∈ [K].

IV. MAIN RESULTS

In this section, we summarize our main results for the
decentralized data shuffling problem. We shall use the sub-
scripts “u,dec,conv” and “u,dec,ach” for converse (conv) and
achievable (ach) bounds, respectively, for the decentralized
problem (dec) with uncoded storage (u). We have:

1) Converse: We start with a converse bound for the
decentralized data shuffling problem under the constraint
of uncoded storage.
Theorem 1 (Converse). For a (K, q,M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage is lower bounded by the
lower convex envelope of the following storage-load
pairs(

M

q
= m,

R

q
=

K−m
m

K

K− 1

)
u,dec,conv

, ∀m ∈ [K].

(20)

7

TABLE I: Example of file partitioning and storage in (14) at the end of time slot t for the decentralized data shuffling
problem with (K, q,M) = (3, 1, 7/3) and At = (3, 1, 2) where g = 2.

Workers Sub-blocks of F1 Sub-blocks of F2 Sub-blocks of F3

Worker 1 stores G1,{1,2}, G1,{1,3} G2,{1,2}, G2,{1,3} G3,{1,2}, G3,{1,3}, G3,{2,3}
Worker 2 stores G1,{1,2}, G1,{1,3}, G1,{2,3} G2,{1,2}, G2,{2,3} G3,{1,2}, G3,{2,3}
Worker 3 stores G1,{1,3}, G1,{2,3} G2,{1,2}, G2,{1,3}, G2,{2,3} G3,{1,3}, G3,{2,3}

Notice that the proposed converse bound is a piecewise
linear curve with the corner points in (20) and these
corner points are successively convex.
The proof of Theorem 1 can be found in Section V and
is inspired by the induction method proposed in [14,
Thm.1] for the distributed computing problem. However,
there are two main differences in our proof compared
to [14, Thm.1]: (i) we need to account for the additional
constraint on the stored content in (8), (ii) our storage
update phase is by problem definition in (8) asymmetric
across data units, while it is symmetric in the distributed
computing problem.

2) Achievability: We next extend the centralized data shuf-
fling scheme in Section III to our decentralized setting.
Theorem 2 (Scheme A). For a (K, q,M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage is upper bounded by the
lower convex envelope of the following storage-load
pairs(
M

q
= 1 + g

K− 1

K
,
R

q
=

K− g
g

)
u,dec,ach

, ∀g ∈ [K− 1].

(21)

and (smallest storage)
(
M

q
= 1,

R

q
= K

)
u,dec,ach

,

(22)

and (largest storage)
(
M

q
= K,

R

q
= 0

)
u,dec,ach

.

(23)

The proof is given in Section VI-A.

A limitation of Scheme A in Theorem 2 is that, in time
slot t ∈ [T] worker k ∈ [K] does not fully leverage
all its stored content. We overcome this limitation by
developing Scheme B described in Section VI-B.
Theorem 3 (Scheme B). For a (K, q,M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage for M ≥ (K−2)q is upper
bounded by the lower convex envelope of the following
storage-load pairs(

M

q
= m,

R

q
=

K−m
m

K

K− 1

)
u,dec,ach

,

∀m ∈ {K− 2,K− 1,K}. (24)

We note that Scheme B is neither a direct extension
of [11, Thm.4] nor of [12, Thm.4] from the centralized
to the decentralized setting. As it will become clear from
the details in Section VI-B, our scheme works with a
rather simple way to generate the multicast messages

transmitted by the workers, and it applies to any shuffle,
not just to the worst-case one. In Remark 4, we also
extend this scheme for the general storage size regime.

Scheme B in Theorem 3 uses a distributed clique-
covering method to generate multicast messages similar
to what is done for D2D caching [8], where distributed
clique cover is for the side information graph (more
details in Section V-A). Each multicast message corre-
sponds to one distributed clique and includes one linear
combination of all nodes in this clique. However, due
to the asymmetry of the decentralized data shuffling
problem (not present in D2D coded caching), the lengths
of most distributed cliques are small and thus the multi-
cast messages based on cliques and sent by a worker
in general include only a small number of messages
(i.e., small multicast gain). To overcome this limitation,
the key idea of Scheme C for M/q = 2 (described in
Section VI-C) is to augment some of the cliques and
send them in M/q = 2 linear combinations.
Theorem 4 (Scheme C). For a (K, q,M) decentralized
data shuffling system, the worst-case load under the
constraint of uncoded storage for M/q = 2 is upper
bounded by(

M

q
= 2,

R

q
=

2K(K− 2)

3(K− 1)

)
u,dec,ach

. (25)

It will be seen later that the proposed schemes only use
binary codes, and only XOR operations are needed for
the decoding procedure.
Finally, we combine the proposed three schemes (by
considering the one among Schemes A, B or C that
attains the lowest load for each storage size).
Corollary 1 (Combined Scheme). For a (K, q,M) de-
centralized data shuffling system, the achieved storage-
load tradeoff of the combined scheme is the lower convex
envelope of the corner points is as follows:
• M = q. With Scheme A, the worst-case load is

qK−m
m

K
K−1 .

• M = 2q. With Scheme C, the worst-case load is
qK−m

m
K

K−1
4
3 .

• M =
(
1 + g K−1

K

)
q where g ∈ [2 : K − 3]. With

Scheme A, the worst-case load is qK−g
g .

• M = mq where m ∈ [K − 2 : K]. With Scheme B,
the worst-case load is qK−m

m
K

K−1 .
3) Optimality: By comparing our achievable and converse

bounds, we have the following exact optimality results.
Theorem 5 (Exact Optimality for M/q ≥ K − 2).
For a (K, q,M) decentralized data shuffling system, the

8

optimal worst-case load under the constraint of uncoded
storage for M/q ∈ [K−2,K] is given in Theorem 1 and
is attained by Scheme B in Theorem 3.

Note that the converse bound on the load for the
case M/q = 1 is trivially achieved by Scheme A in
Theorem 2.

From Theorem 5 we can immediately conclude the
following.

Corollary 2 (Exact Optimality for K ≤ 4). For a
(K, q,M) decentralized data shuffling system, the op-
timal worst-case load under the constraint of uncoded
storage is given by Theorem 1 for K ≤ 4.

Finally, by combining the three proposed achievable
schemes, we have the following order optimality result
proved in Section VI-D.

Theorem 6 (Order Optimality for K > 4). For a
(K, q,M) decentralized data shuffling system under the
constraint of uncoded storage, for the cases not covered
by Theorem 5, the combined scheme in Corollary 1
achieves the converse bound in Theorem 1 within a fac-
tor of 3/2. More precisely, when mq ≤ M ≤ (m+ 1)q,
the multiplicative gap between the achievable load in
Corollary 1 and the converse bound in Theorem 1 is
upper bounded by

• 4/3, if m = 1;
• 1− 1

K + 1
2 , if m = 2;

• 1− 1
K + 1

m−1 , if m ∈ [3 : K− 3];
• 1, if m ∈ {K− 2,K− 1}.

4) Finally, by directly comparing the minimum load for
the centralized data shuffling system (the master-worker
framework) in (12) with the load achieved by the
combined scheme in Corollary 1, we can quantify the
communication cost of peer-to-peer operations (i.e., the
multiplicative gap on the minimum worst-case load
under the constraint of uncoded storage between decen-
tralized and centralized data shufflings), which will be
proved in Section VI-D.

Corollary 3. For a (K, q,M) decentralized data shuf-
fling system under the constraint of uncoded storage,
the communication cost of peer-to-peer operations is no
more than a factor of 2. More precisely, when K ≤ 4,
this cost is K

K−1 ; when K ≥ 5 and mq ≤ M ≤ (m+1)q,
this cost is upper bounded by

• 4K
3(K−1) , if m = 1;

• 1 + K
2(K−1) , if m = 2;

• 1 + K
(m−1)(K−1) , if m ∈ [3 : K− 3];

• K
K−1 , if m ∈ {K− 2,K− 1}.

Remark 2 (Comparison to the direct extension from [28]). As
mentioned in Section I-D, the result in [28] guarantees that
from the optimal (linear) centralized data shuffling scheme
in [12] one can derive a linear scheme for the decentral-
ized setting with twice the number of transmissions (by the

construction given in [28, Proof of Theorem 4]), that is, the
following storage-load corner points can be achieved,(

M

q
= m,

R

q
= 2

K−m
m

)
, ∀m ∈ [K]. (26)

The multiplicative gap between the data shuffling scheme
in (26) and the proposed converse bound in Theorem 1, is
2(K−1)

K , which is close to 2 when K is large. Our proposed
combined scheme in Corollary 1 does better: for K ≤ 4, it
exactly matches the proposed converse bound in Theorem 1,
while for K > 4 it is order optimal to within a factor of 3/2.

In addition, the multiplicative gap 2(K−1)
K is independent

of the storage size M. It is shown in Theorem 6 that the
multiplicative gap between the combined scheme and the
converse decreases towards 1 when M increases.

Similar observation can be obtained for the communication
cost of peer-to-peer operations. With the data shuffling scheme
in (26), we can only prove this cost upper is bounded by 2,
which is independent of M and K. With the combined scheme,
it is shown in Corollary 3 that this cost decreases towards to
1 when M and K increase.

We conclude this section by providing some numerical
results. Fig. 2 plots our converse bound and the best convex
combination of the proposed achievable bounds on the worst-
case load under the constraint of uncoded storage for the
decentralized data shuffling systems with K = 4 (Fig. 2a)
and K = 8 (Fig. 2b) workers. For comparison, we also plot
the achieved load by the decentralized data shuffling scheme
in Remark 2, and the optimal load for the corresponding
centralized system in (11) under the constraint of uncoded
storage. For the case of K = 4 workers, Theorem 1 is
tight under the constraint of uncoded storage. For the case
of K = 8 workers, Scheme B meets our converse bound when
M/q ∈ [6, 8], and also trivially when M/q = 1.

V. PROOF OF THEOREM 1: CONVERSE BOUND UNDER THE
CONSTRAINT OF UNCODED STORAGE

We want to lower bound maxAt

∑
k∈[K] R

At−1→At

k for a
fixed t ∈ [T] and a fixed At−1. It can be also checked that
this lower bound is also a lower bound on the worst-case total
communication load in (10) among all t ∈ [T] and all possible
(A0, . . . ,AT). Recall that the excess storage is said to be
uncoded if each worker simply copies bits from the data units
in its local storage. When the storage update phase is uncoded,
we can divide each data unit into sub-blocks depending on the
set of workers who store them.

A. Sub-block Division of the Data Shuffling Phase under
Uncoded Storage

Because of the data shuffling constraint in (1), all the bits
of all data units are stored by at least one worker at the end of
any time slot. Recall that the worker who must store data unit
Fi at the end of time slot t is denoted by uti in (2). In the case
of excess storage, some bits of some files may be stored by
multiple workers. We denote by Fi,W the sub-block of bits of
data unit Fi exclusively stored by workers inW where i ∈ [N]

9

1 1.5 2 2.5 3 3.5 4

M/q

0

1

2

3

4

5

6

R
/q

Decentralized data shuffling

scheme in Remark 2

Scheme B

Converse bound in Theorem 1

Optimal centralized data shuffling scheme

under the constraint of uncoded storage

in [12, Elmahdy and Mohajer, ISIT 18]

(a) K = 4.

1 2 3 4 5 6 7 8

M/q

0

2

4

6

8

10

12

14

R
/q

Decentralized data shuffling

scheme in Remark 2

Scheme A

Scheme B

Scheme C

Converse bound in Theorem 1

Optimal centralized data shuffling scheme

under the constraint of uncoded storage

in [12, Elmahdy and Mohajer, ISIT 18]

(b) K = 8.

Fig. 2: The storage-load tradeoff for the decentralized data
shuffling problem.

and W ⊆ [K]. By definition, at the end of step t− 1, we have
that ut−1i must be in W for all sub-blocks Fi,W of data unit
Fi; we also let Fi,W = ∅ for allW ⊆ [K] if ut−1i 6∈ W . Hence,
at the end of step t− 1, each data unit Fi can be written as

Fi = {Fi,W :W ⊆ [K], ut−1i ∈ W}, (27)

and the storage content as

Zt−1k = {Fi,W :W ⊆ [K], {ut−1i , k} ⊆ W, i ∈ [N]}
= {Fi : i ∈ At−1k }︸ ︷︷ ︸

required data units

∪{Fi,W : i 6∈ At−1k , {ut−1i , k} ⊆ W}︸ ︷︷ ︸
other data units

.

(28)

We note that the sub-blocks Fi,W have different content at
different times (as the partition in (27) is a function of At−1
through (ut−11 , . . . , ut−1N)); however, in order not to clutter the
notation, we will not explicitly denote the dependance of Fi,W
on time. Finally, please note that the definition of sub-block
Fi,W , as defined here for the converse bound, is not the same
as Gi,W defined in Section VI for the achievable scheme (see
Footnote 3).

B. Proof of Theorem 1

We are interested in deriving an information theoretic lower
bound on the worst-case communication load. We will first
obtain a number of lower bounds on the load for some
carefully chosen shuffles. Since the load of any shuffle is at
most as large as the worst-case shuffle, the obtained lower
bounds are valid lower bounds for the worst-case load as well.
We will then average the obtained lower bounds.

In particular, the shuffles are chosen as follows. Consider a
permutation of [K] denoted by d = (d1, . . . , dK) where dk 6= k
for each k ∈ [K] and consider the shuffle

Atk = At−1dk
, ∀k ∈ [K]. (29)

We define Xt
S as the messages sent by the workers in S

during time slot t, that is,

Xt
S :=

{
Xt
k : k ∈ S

}
. (30)

From Lemma 1 in the Appendix with S = [K], which is the
key novel contribution of our proof and that was inspired by
the induction argument in [14], we have

R?u
B
≥ H

(
Xt

[K]

)
≥

K∑
m=1

∑
k∈[K]

∑
i∈At

k

∑
W⊆[K]\{k}: ut−1

i ∈W, |W|=m

|Fi,W |
m

.

(31)

To briefly illustrate the main ingredients on the derivation
of (31), we provide the following example.

Example 1 (K = N = 3). We focus on the decentralized data
shuffling problem with K = N = 3. Without loss of generality,
we assume

At−11 = {3}, At−12 = {1}, At−13 = {2}. (32)

Based on (At−11 ,At−12 ,At−13), we can divide each data unit
into sub-blocks as in (27). More precisely, we have

F1 = {F1,{2}, F1,{1,2}, F1,{2,3}, F1,{1,2,3}};
F2 = {F2,{3}, F2,{1,3}, F2,{2,3}, F2,{1,2,3}};
F3 = {F3,{1}, F3,{1,2}, F3,{1,3}, F3,{1,2,3}}.

At the end of time slot t−1, each worker k ∈ [3] stores Fi,W
if k ∈ W . Hence, we have

Zt−11 ={F1,{1,2}, F1,{1,2,3}, F2,{1,3}, F2,{1,2,3},

F3,{1}, F3,{1,2}, F3,{1,3}, F3,{1,2,3}};
Zt−12 ={F1,{2}, F1,{1,2}, F1,{2,3}, F1,{1,2,3}, F2,{2,3},

F2,{1,2,3}, F3,{1,2}, F3,{1,2,3}};
Zt−13 ={F1,{1,3}, F1,{1,2,3}, F2,{3}, F2,{1,3}, F2,{2,3},

F2,{1,2,3}, F3,{1,3}, F3,{1,2,3}}.

Now we consider a permutation of [3] denoted by d =
(d1, d2, d3) where dk 6= k for each k ∈ [3] and assume the
considered permutation is (2, 3, 1). Based on d, from (29), we
consider the shuffle

At1 = At−12 = {1}, At2 = At−13 = {2}, At3 = At−11 = {3}.
(33)

10

We first prove

H(Xt
[2]|Z

t−1
3 , F3) ≥ |F1,{2}|. (34)

More precisely, by the decoding constraint in (5), we have

H(F1,{2}|Zt−11 , Xt
[3]) = 0, (35)

which implies

H(F1,{2}|Zt−11 , Xt
[3], Z

t−1
3 , F3) = 0. (36)

Since F1,{2} is not stored by workers 1 and 3, we have

|F1,{2}| ≤ H(F1,{2}, X
t
[2]|Z

t−1
1 , Xt

3, Z
t−1
3 , F3) (37a)

= H(Xt
[2]|Z

t−1
1 , Xt

3, Z
t−1
3 , F3)+

H(F1,{2}|Zt−11 , Xt
[3], Z

t−1
3 , F3) (37b)

= H(Xt
[2]|Z

t−1
1 , Xt

3, Z
t−1
3 , F3) (37c)

≤ H(Xt
[2]|X

t
3, Z

t−1
3 , F3) (37d)

= H(Xt
[2]|Z

t−1
3 , F3), (37e)

where (37c) comes from (36) and (37e) comes from the fact
that Xt

3 is a function of Zt−13 . Hence, we prove (34).
Similarly, we can also prove

H(Xt
{1,3}|Z

t−1
2 , F2) ≥ |F3,{1}|. (38)

H(Xt
{2,3}|Z

t−1
1 , F1) ≥ |F2,{3}|. (39)

In addition, we have

H(Xt
[3]) =

1

3

∑
k∈[3]

(
H(Xt

k) +H(Xt
[3]\{k}|X

t
k)
)

(40a)

≥ 1

3

H(Xt
[3]) +

∑
k∈[3]

H(Xt
[3]\{k}|X

t
k)

 , (40b)

and thus

2H(Xt
[3]) ≥

∑
k∈[3]

H(Xt
[3]\{k}|X

t
k) (40c)

≥
∑
k∈[3]

H(Xt
[3]\{k}|Z

t−1
k) (40d)

=
∑
k∈[3]

H(Xt
[3]\{k}, Fk|Z

t−1
k) (40e)

=
∑
k∈[3]

H(Fk|Zt−1k) +H(Xt
[3]\{k}|Fk, Z

t−1
k), (40f)

where (40d) comes from the fact that Xt
k is a function of Zt−1k

and conditioning cannot increase entropy, and (40e) comes
from the decoding constraint for worker k in (5).

Let us focus on worker 1 and we have

H(F1|Zt−11) = |F1,{2}|+ |F1,{2,3}|. (41)

In addition, we have H(Xt
{2,3}|Z

t−1
1 , F1) ≥ |F2,{3}|

from (39). Hence,

H(F1|Zt−11) +H(Xt
{2,3}|Z

t−1
1 , F1)

≥ |F1,{2}|+ |F1,{2,3}|+ |F2,{3}|. (42)

Similarly, we have

H(F2|Zt−12) +H(Xt
{1,3}|Z

t−1
2 , F2)

≥ |F2,{3}|+ |F2,{1,3}|+ |F3,{1}|; (43)

H(F3|Zt−13) +H(Xt
{1,2}|Z

t−1
3 , F3)

≥ |F3,{1}|+ |F3,{1,2}|+ |F1,{2}|. (44)

By taking (42)-(44) to (40f), we have

H(Xt
[3]) ≥

1

2

∑
k∈[3]

H(Fk|Zt−1k) +H(Xt
[3]\{k}|Fk, Z

t−1
k)

(45a)

= |F1,{2}|+ |F2,{3}|+ |F3,{1}|+
|F1,{2,3}|

2
+
|F2,{1,3}|

2

+
|F3,{1,2}|

2
, (45b)

coinciding with (31). �

We now go back to the general proof of Theorem 1. We next
consider all the permutations d = (d1, . . . , dK) of [K] where
dk 6= k for each k ∈ [K], and sum together the inequalities in
the form of (31). For an integer m ∈ [K], by the symmetry
of the problem, the sub-blocks Fi,W where i ∈ [N], ut−1i ∈
W and |W| = m appear the same number of times in the
final sum. In addition, the total number of these sub-blocks in
general is N

(
K−1
m−1

)
and the total number of such sub-blocks in

each inequality in the form of (31) is N
(
K−2
m−1

)
. So we obtain

R?u ≥
K∑

m=1

∑
i∈[N]

∑
W⊆[K]: ut−1

i ∈W, |W|=m

(
K−2
m−1

)
m
(
K−1
m−1

) |Fi,W | qK
NB

(46)

=

K∑
m=1

qK xm
1− (m− 1)/(K− 1)

m
(47)

=

K∑
m=1

q xm
K−m
m

K

K− 1
, (48)

where we defined xm as the total number of bits in the sub-
blocks stored by m workers at the end of time slot t − 1
normalized by the total number of bits NB, i.e.,

0 ≤ xm :=
∑
i∈[N]

∑
W⊆[K]: ut−1

i ∈W, |W|=m

|Fi,W |
NB

, (49)

which must satisfy∑
m∈[K]

xm = 1 (total size of all data units), (50)

∑
m∈[K]

mxm ≤
KM

N
=

M

q
(total storage size). (51)

We then use a method based on Fourier-Motzkin elimina-
tion [30, Appendix D] for to bound R?u from (47) under the
constraints in (50) and (51), as we did in [9] for coded caching
with uncoded cache placement. In particular, for each integer
p ∈ [K], we multiply (50) by −N(2Kp−p

2+K−p)
p(p+1) to obtain

−N(2Kp− p2 + K− p)
p(p+ 1)

=

K∑
m=1

−N(2Kp− p2 + K− p)
p(p+ 1)

xm,

(52)

11

and we multiply (51) by NK
(K−1)p(p+1) to have

NK

(K− 1)p(p+ 1)

KM

N
≥

K∑
m=1

NK

(K− 1)p(p+ 1)
mxm. (53)

We then add (52), (53), and (47) to obtain,

R?u ≥
K∑

m=1

NK(p−m)(p+ 1−m)

m(K− 1)p(p+ 1)
xm −

NK

(K− 1)p(p+ 1)

KM

N

+
N(2Kp− p2 + K− p)

p(p+ 1)
(54)

≥ − NK

(K− 1)p(p+ 1)

KM

N
+

N(2Kp− p2 + K− p)
p(p+ 1)

.

(55)

Hence, for each integer p ∈ [K], the bound in (55) becomes
a linear function in M. When M = qp, from (55) we have
R?u ≥

N(K−p)
(K−1)p . When M = q(p+ 1), from (55) we have R?u ≥

N(K−p−1)
(K−1)(p+1) . In conclusion, we prove that R?u is lower bounded
by the lower convex envelope (also referred to as “memeory
sharing”) of the points

(
M = qm,R = N(K−m)

(K−1)m

)
, where m ∈

[K].
This concludes the proof of Theorem 1.

C. Discussion

We conclude this session the following remarks:
1) The corner points from the converse bound are of the

form
(
M/q = m,R/q =

K(K−2
m−1)

m(K−1
m−1)

)
, which may suggest

the following placement.
At the end of time slot t−1, each data unit is partitioned
into

(
K−1
m−1

)
equal-length sub-blocks of length B/

(
K−1
m−1

)
bits as Fi = (Fi,W : W ⊆ [K], |W| = m, ut−1i ∈ W);
by definition Fi,W = ∅ if either ut−1i /∈ W or |W| 6= m.
Each worker k ∈ [K] stores all the sub-blocks Fi,W if
k ∈ W; in other words, worker k ∈ [K] stores all the(
K−1
m−1

)
sub-blocks of the desired data units, and

(
K−2
m−2

)
sub-blocks of the remaining data units.
In the data shuffling phase of time slot t, worker k ∈
[K] must decode the missing

(
K−1
m−1

)
−
(
K−2
m−2

)
=
(
K−2
m−1

)
sub-blocks of data unit Fj for all j ∈ Atk\A

t−1
k . An

interpretation of the converse bound is that, in the worst
case, the total number of transmissions is equivalent to
at least qK

m

(
K−2
m−1

)
sub-blocks.

We will use this interpretation to design the storage
update phase our proposed Schemes B and C.

2) The converse bound is derived for the objective of
minimizing the “sum load”

∑
k∈[K] R

At−1→At

k , see (10).
The same derivation would give a converse bound for
the “largest individual load” maxk∈[K] R

At−1→At

k . In the
latter case, the corner points from converse bound are of

the form
(
M/q = m,R/q =

(K−2
m−1)

m(K−1
m−1)

)
. This view point

may suggest that, in the worst case, all the individual
loads RA

t−1→At

k are the same, i.e., the burden of com-
municating missing data units is equally shared by all
the workers.

Our proof technique for Theorem 1 could also be
directly extended to derive a converse bound on the
average load (as opposed to the worst-case load) for all
the possible shuffles in the decentralized data shuffling
problem when N = K.

VI. ACHIEVABLE SCHEMES FOR DECENTRALIZED DATA
SHUFFLING

In this section, we propose three schemes for the decentral-
ized data shuffling problem, and analyze their performances.

A. Scheme A in Theorem 2

Scheme A extends the general centralized data shuffling
scheme in Section III to the distributed model. Scheme A
achieves the load in Theorem 2 for each storage size M =(
1 + g K−1

K

)
q, where g ∈ [K − 1]; the whole storage-load

tradeoff piecewise curve is achieved by memory-sharing4 be-
tween these points (given in (21)) and the (trivially achievable)
points in (22)-(23).

Structural Invariant Data Partitioning and Storage: This
is the same as the one in Section III for the centralized case.

Initialization: The master directly transmits all data units.
The storage is as in (14) given A0.

Data Shuffling Phase of time slot t ∈ [T]: The data shuf-
fling phase is inspired by the delivery in D2D caching [13].
Recall the definition of sub-block G′k,W in (16), where each
sub-block is known by |W| = g workers and needed by
worker k. Partition G′k,W into g non-overlapping and equal-
length pieces G′k,W = {G′k,W(j) : j ∈ W}. Worker j ∈ J
broadcasts

W t
j,J = ⊕

k∈J\{j}
G′k,J\{k}(j), ∀J ⊆ [K] where |J | = g + 1,

(56)

in other words, one linear combination W t
J in (17) for the

centralized setting becomes g + 1 linear combinations W t
j,J

in (56) for the decentralized setting, but of size reduced by a
factor g. Evidently, each sub-block in W t

j,J is stored in the
storage of worker j at the end of time slot t− 1. In addition,
each worker k ∈ J \{j} knows G′k1,J\{k1}(j) where k1 ∈ J \
{k, j} such that it can recover its desired block G′k,J\{k}(j).

Since |G′k,W | ≤ qB/
(
K
g

)
, the worst-case load is

R ≤ q
(g + 1)

(
K
g+1

)
g
(
K
g

) = q
K− g
g

=: RAch.A, (57)

as claimed in Theorem 2, where the subscript “Ach.A” in (57)
denotes the worst-case load achieved by Scheme A.

4 Memory-sharing is an achievability technique originally proposed by
Maddah-Ali and Niesen in [8] for coded caching systems, which is used
to extend achievability in between discrete memory points. More precisely,
focus one storage size M′ = αM1 + (1 − α)M2, where α ∈ [0, 1],
M1 =

(
1 + g K−1

K

)
q, M2 =

(
1 + (g + 1)K−1

K

)
q, and g ∈ [K − 1].

We can divide each data unit into two non-overlapping parts,with αB and
(1−α)B bits, respectively. The first and second parts of the N data units are
stored and transmitted based on the proposed data shuffling scheme for M1

and M2, respectively.

12

Storage Update Phase of time slot t ∈ [T]: The storage
update phase is the same as the general centralized data
shuffling scheme in Section III, and thus is not repeated here.

B. Scheme B in Theorem 3

During the data shuffling phase in time slot t of Scheme A,
we treat some sub-blocks known by g + 1 workers as if they
were only known by g workers (for example, if ut−1i /∈ W ,
Gi,W is stored by workers {ut−1i } ∪W , but Scheme A treats
Gi,W as if it was only stored by workers in W), which
may be suboptimal as more multicasting opportunities may be
leveraged. In the following, we propose Scheme B to remedy
for this shortcoming for M = mq for m ∈ {K− 2,K− 1}.

Structural Invariant Data Partitioning and Storage: Data
units are partitions as inspired by the converse bound (see
discussion in Section V-C), which is as in the improved
centralized data shuffling scheme in [11]. Fix m ∈ [K].
Partition each data unit into

(
K−1
m−1

)
non-overlapping equal-

length sub-block of length B/
(
K−1
m−1

)
bits. Write Fi = (Fi,W :

W ⊆ [K], |W| = m, uti ∈ W), and set Fi,W = ∅ if either
uti /∈ W or |W| 6= m. The storage of worker k ∈ [K] at the
end of time slot t is as follows,

Ztk =
(

(Fi,W : i ∈ Atk,∀W)︸ ︷︷ ︸
required data units

∪ (Fi,W : i 6∈ Atk, k ∈ W)︸ ︷︷ ︸
other data units

)
,

(58)

that is, worker k ∈ [K] stores all the
(
K−1
m−1

)
sub-blocks of data

unit Fi if i ∈ Atk, and
(
K−2
m−2

)
sub-blocks of data unit Fj if

j /∈ Atk (the sub-blocks stored are such that k ∈ W), thus the
required storage space is

M = q + (N− q)

(
K−2
m−2

)(
K−1
m−1

) = q + (m− 1)
N− q

K− 1
= mq. (59)

In the following, we shall see that it is possible to maintain
the storage structure in (58) after the shuffling phase.

Initialization: The master directly transmits all data units.
The storage is as in (58) given A0.

Data Shuffling Phase of time slot t ∈ [T] for m = K−1:
Each data unit has been partitioned into

(
K−1
m−1

)
= K− 1 sub-

blocks and each sub-block is stored by m = K − 1 workers.
Similarly to Scheme A, define the set of sub-blocks needed
by worker k ∈ [K] at time slot t and not previously stored as

F ′k,[K]\{k} =
(
Fi,W : i ∈ Atk \ At−1k ,W = [K] \ {k}

)
,∀k ∈ [K].

(60)

Since F ′k,[K]\{k} (of length qB/(K − 1) bits in the worst
case) is desired by worker k and known by all the remaining
m = K − 1 workers, we partition F ′k,[K]\{k} into m = K − 1

pieces (of length qB/(K − 1)2 bits in the worst case), and
write F ′k,[K]\{k} =

(
F ′k,[K]\{k}(j) : j ∈ [K] \ {k}

)
. Worker

j ∈ [K] broadcasts the single linear combination (of length
qB/(K− 1)2 bits in the worst case) given by

W t
j = ⊕

k 6=j
F ′k,[K]\{k}(j). (61)

Therefore, the worst-case satisfies

R ≤ K

(K− 1)2
q =

K−m
m

K

K− 1
q

∣∣∣∣
m=K−1

=: RAch.B|M=(K−1)q

(62)

which coincides with the converse bound.
Storage Upadte Phase of time slot t ∈ [T] for m =

K − 1: In time slot t − 1 > 0, we assume that the above
storage configuration of each worker k ∈ [K] can be done
with Zt−2k and Xt−1

j where j ∈ [K] \ {k}. We will show
next that at the end of time slot t, we can re-create the same
configuration of storage, but with permuted data units. Thus
by the induction method, we prove the above storage update
phase is also structural invariant.

For each worker k ∈ [K] and each data unit Fi where i ∈
Atk\A

t−1
k , worker k stores the whole data unit Fi in its storage.

For each data unit Fi where i ∈ At−1k \Atk, instead of storing
the whole data unit Fi, worker k only stores the bits of Fi
which was stored at the end of time slot t− 1 by worker uti.
For other data units, worker k does not change the stored bits.
Hence, after the storage phase in time slot t, we can re-create
the same configuration of storage as the end of time slot t−1
but with permuted data units.

Data Shuffling Phase of time slot t ∈ [T] for m = K−2:
We partition the N data units into q groups as [N] = ∪

i∈[q]
Hi,

where each group contains K data units, and such that for
each group Hi, i ∈ [q], and each worker k ∈ [K] we have
|Hi ∩ Atk| = 1 and |Hi ∩ At−1k | = 1. In other words, the
partition is such that, during the data shuffling phase of time
slot t, among all the K data units in each group, each worker
requests exactly one data unit and knows exactly one data
unit. Such a partition can always be found [12, Lemma 7].
The dependance of Hi on t is not specified so not to clutter
the notation. For group Hi, i ∈ [q], we define

U(Hi) := {k ∈ [K] : Hi ∩ Atk ⊆ At−1k }, ∀i ∈ [q], (63)

as the set of workers in the group who already have stored the
needed data point (i.e., who do not need to shuffle). Since each
worker has to recover at most one data unit in each group, the
delivery in each group is as if q = 1. Hence, to simplify the
description, we focus on the case q = 1, in which case there
is only one group and thus we simplify the notation U(Hi)
to just U . We first use the following example to illustrate the
main idea.

Example 2. Consider the (K, q,M) = (5, 1, 3) decentralized
data shuffling problem, where m = M/q = 3. Let At−1 =
(5, 1, 2, 3, 4). During the storage update phase in time slot t−1,
we partition each data unit into 6 equal-length sub-blocks, each
of which has B/6 bits, as

F1 =(F1,{1,2,3}, F1,{1,2,4}, F1,{1,2,5}, F1,{2,3,4}, F1,{2,3,5},

F1,{2,4,5}}, (64a)
F2 =(F2,{1,2,3}, F2,{1,3,4}, F2,{1,3,5}, F2,{2,3,4}, F2,{2,3,5},

F2,{3,4,5}}, (64b)
F3 =(F3,{1,2,4}, F3,{1,3,4}, F3,{1,4,5}, F3,{2,3,4}, F3,{2,4,5},

F3,{3,4,5}}, (64c)

13

F4 =(F4,{1,2,5}, F4,{1,3,5}, F4,{1,4,5}, F4,{2,3,5}, F4,{2,4,5},

F4,{3,4,5}}, (64d)
F5 =(F5,{1,2,3}, F5,{1,2,4}, F5,{1,2,5}, F5,{1,3,4}, F5,{1,3,5},

F5,{1,4,5}}, (64e)

and each worker k stores Fi,W if k ∈ W .
In the following, we consider various shuffles in time slot

t. If one sub-block is stored by some worker in U , we let
this worker transmit it and the transmission is equivalent to
centralized data shuffling; otherwise, we will introduce the
proposed scheme B to transmit it.

We first consider At = (1, 2, 3, 4, 5). For each set J ⊆ [K]
of size |J | = m+ 1 = K− 1 = 4, we generate

V tJ = ⊕
k∈J

Fdtk,J\{k}, (65)

where dtk represents the demanded data unit of worker k in
time slot t if q = 1. The details are illustrated in Table II.
For example, when J = {1, 2, 3, 4}, we have V t{1,2,3,4} =
F1,{2,3,4}+F2,{1,3,4}+F3,{1,2,4}+F4,{1,2,3} where F4,{1,2,3}
is empty and we replace F4,{1,2,3} by B/6 zero bits. Since
F1,{2,3,4}, F2,{1,3,4}, and F3,{1,2,4} are all stored by worker
4, V t{1,2,3,4} can be transmitted by worker 4. Similarly, we
let worker 3 transmit V t{1,2,3,5}, worker 2 transmit V t{1,2,4,5},
worker 1 transmit V t{1,3,4,5}, and worker 5 transmit V t{2,3,4,5}.
It can be checked that each worker can recover its desired sub-
blocks and the achieved load is 5/6, which coincides with the
proposed converse bound.

Let us then focus on At = (5, 2, 3, 4, 1). For this shuffle,
At−11 = At1 such that worker 1 needs not to decode anything
from what the other workers transmit. We divide all desired
sub-blocks into two sets, stored and not stored by worker 1 as
follows

S{1} = {F1,{1,2,3}, F1,{1,2,4}, F2,{1,3,4}, F2,{1,3,5}, F3,{1,2,4},

F3,{1,4,5}, F4,{1,2,5}, F4,{1,3,5}},
S∅ = {F1,{2,3,4}, F2,{3,4,5}, F3,{2,4,5}, F4,{2,3,5}}.

Since the sub-blocks in S{1} are all stored by worker 1,
we can treat worker 1 as a central server and the transmis-
sion of S{1} is equivalent to centralized data shuffling with
Keq = 4, Meq = 2 and qeq = 1, where Ueq = ∅. For
this centralized problem, the data shuffling schemes in [11],
[12] are optimal under the constraint of uncoded storage.
Alternatively, we can also use the following simplified scheme.
By generating V t{1,2,3,4} as in (65), and it can be seen that
V t{1,2,3,4} is known by workers 1 and 4. Similarly, V t{1,2,3,5}
is known by workers 1 and 3, V t{1,2,4,5} is known by workers
1 and 2, and V t{1,3,4,5} is known by workers 1 and 5.
Hence, we can let worker 1 transmit V t{1,2,3,4} ⊕ V t{1,2,3,5},
V t{1,2,3,4} ⊕ V t{1,2,4,5}, and V t{1,2,3,4} ⊕ V t{1,3,4,5}. Hence,
each worker can recover V t{1,2,3,4}, V

t
{1,2,3,5}, V

t
{1,2,4,5}, and

V t{1,3,4,5}. We then consider the transmission for S∅ =
{F1,{2,3,4}, F2,{3,4,5}, F3,{2,4,5}, F4,{2,3,5}}, which is equiva-
lent to decentralized data shuffling with Keq = 4, Meq = 3
and qeq = 1, where Ueq = ∅ defined in (63). Hence, we
can use the proposed Scheme B for m = K − 1. More

precisely, we split each sub-block in V t{2,3,4,5} into 3 non-
overlapping and equal-length sub-pieces, e.g., F2,{3,4,5} =
{F2,{3,4,5}(3), F2,{3,4,5}(4), F2,{3,4,5}(5)}. We then let

worker 2 transmit F3,{2,4,5}(2)⊕ F4,{2,3,5}(2)⊕ F1,{2,3,4}(2);

worker 3 transmit F2,{3,4,5}(3)⊕ F4,{2,3,5}(3)⊕ F1,{2,3,4}(3);

worker 4 transmit F2,{3,4,5}(4)⊕ F3,{2,4,5}(4)⊕ F1,{2,3,4}(4);

worker 5 transmit F2,{3,4,5}(5)⊕ F3,{2,4,5}(5)⊕ F4,{2,3,5}(5).

In conclusion, the total load for At = (5, 2, 3, 4, 1) is 3
6 + 2

9 =
13
18 .

Finally, we consider At = {5, 1, 3, 4, 2}. For this shuffle,
At−11 = At1 and At−12 = At2 such that workers 1 and 2
need not to decode anything from other workers. We divide
all desired sub-blocks into three sets

S{1,2} = {F2,{1,2,3}, F3,{1,2,4}, F4,{1,2,5}},

stored by workers 1 and 2,

S{1} = {F2,{1,3,4}, F3,{1,4,5}, F4,{1,3,5}},

stored by worker 1 and not by worker 2, and

S{2} = {F2,{2,3,4}, F3,{2,4,5}, F4,{2,3,5}}

stored by worker 2 and not by worker 1.
The transmission for S{1,2} is equivalent to a centralized

data shuffling with Keq = 3, Meq = 1 and qeq = 1. We
use the following simplified scheme to let worker 1 transmit
V t{1,2,3,4}⊕V

t
{1,2,3,5} and V t{1,2,3,4}⊕V

t
{1,2,4,5} such that each

worker can recover V t{1,2,3,4}, V
t
{1,2,3,5}, and V t{1,2,4,5} (as

illustrated in Table II, V t{1,2,3,4} = F3,{1,2,4}, V t{1,2,3,5} =

F2,{1,2,3}, and V t{1,2,4,5} = F4,{1,2,5}). Similarly, for S{1},
we let worker 1 transmit V t{1,3,4,5}. For S{2}, we let worker
2 transmit V t{2,3,4,5}. In conclusion the total load for At =

{5, 1, 3, 4, 2} is 2
6 + 1

6 + 1
6 = 2

3 . �

Now we are ready to introduce Scheme B for m = K − 2
as a generalization of Example 2. Recall that, from our earlier
discussion, we can consider without loss of generality q = 1,
and that U represents the set of workers who need not to
recover anything from others. We divide all desired sub-blocks
by all workers into non-overlapping sets

SK :={Fdk,W :k ∈ [K] \ U ,|W|=m+ 1,W ∩ U = K,k /∈ W},
(66)

where K ⊆ U . We then encode the sub-blocks in each set in
SK in (66) as follows:
• For each K ⊆ U where K 6= ∅, the transmission for SK

is equivalent to a centralized data shuffling problem with
Keq = K − |U|, qeq = 1 and Meq = m − |K|, where
Ueq = ∅. It can be seen that Keq −Meq ≤ 2. Hence, we
can use the optimal centralized data shuffling schemes
in [11], [12].
Alternatively, we propose the following simplified
scheme. For each set J ⊆ [K] of size |J | = m + 1 =
K − 1, where J ∩ U = K, we generate V tJ as in (65).
Each sub-block in SK appears in one V tJ , where J ⊆ [K],
|J | = K − 1 and J ∩ U = K. It can be seen that for

14

TABLE II: Multicast messages for Example 2. Empty
sub-blocks are colored in magenta.

For At = (1, 2, 3, 4, 5) = (F1, F2, F3, F4, F5)

Worker 1 wants (F1,{2,3,4}, F1,{2,3,5}, F1,{2,4,5}, F1,{3,4,5} = ∅)
Worker 2 wants (F2,{1,3,4}, F2,{1,3,5}, F2,{3,4,5}, F2,{1,4,5} = ∅)
Worker 3 wants (F3,{1,2,4}, F3,{1,4,5}, F3,{2,4,5}, F3,{1,2,5} = ∅)
Worker 4 wants (F4,{1,2,5}, F4,{1,3,5}, F4,{2,3,5}, F4,{1,2,3} = ∅)
Worker 5 wants (F5,{1,2,3}, F5,{1,2,4}, F5,{1,3,4}, F5,{2,3,4} = ∅)

V t
{1,2,3,4} = F1,{2,3,4} + F2,{1,3,4} + F3,{1,2,4} + F4,{1,2,3}

V t
{1,2,3,5} = F1,{2,3,5} + F2,{1,3,5} + F3,{1,2,5} + F5,{1,2,3}

V t
{1,2,4,5} = F1,{2,4,5} + F2,{1,4,5} + F4,{1,2,5} + F5,{1,2,4}

V t
{1,3,4,5} = F1,{3,4,5} + F3,{1,4,5} + F4,{1,3,5} + F5,{1,3,4}

V t
{2,3,4,5} = F2,{3,4,5} + F3,{2,4,5} + F4,{2,3,5} + F5,{2,3,4}

For At = (5, 2, 3, 4, 1) = (F5, F2, F3, F4, F1)

Worker 1 wants (F5,{2,3,4}, F5,{2,3,5}, F5,{2,4,5}, F5,{3,4,5}) = ∅
Worker 2 wants (F2,{1,3,4}, F2,{1,3,5}, F2,{3,4,5}, F2,{1,4,5} = ∅)
Worker 3 wants (F3,{1,2,4}, F3,{1,4,5}, F3,{2,4,5}, F3,{1,2,5} = ∅)
Worker 4 wants (F4,{1,2,5}, F4,{1,3,5}, F4,{2,3,5}, F4,{1,2,3} = ∅)
Worker 5 wants (F1,{1,2,3}, F1,{1,2,4}, F1,{2,3,4}, F1,{1,3,4} = ∅)

V t
{1,2,3,4} = F5,{2,3,4} + F2,{1,3,4} + F3,{1,2,4} + F4,{1,2,3}

V t
{1,2,3,5} = F5,{2,3,5} + F2,{1,3,5} + F3,{1,2,5} + F1,{1,2,3}

V t
{1,2,4,5} = F5,{2,4,5} + F2,{1,4,5} + F4,{1,2,5} + F1,{1,2,4}

V t
{1,3,4,5} = F5,{3,4,5} + F3,{1,4,5} + F4,{1,3,5} + F1,{1,3,4}

V t
{2,3,4,5} = F2,{3,4,5} + F3,{2,4,5} + F4,{2,3,5} + F1,{2,3,4}

For At = (5, 1, 3, 4, 2) = (F5, F1, F3, F4, F2)

Worker 1 wants (F5,{2,3,4}, F5,{2,3,5}, F5,{2,4,5}, F5,{3,4,5}) = ∅
Worker 2 wants (F1,{1,3,4}, F1,{1,3,5}, F1,{3,4,5}, F1,{1,4,5}) = ∅
Worker 3 wants (F3,{1,2,4}, F3,{1,4,5}, F3,{2,4,5}, F3,{1,2,5} = ∅)
Worker 4 wants (F4,{1,2,5}, F4,{1,3,5}, F4,{2,3,5}, F4,{1,2,3} = ∅)
Worker 5 wants (F2,{1,2,3}, F2,{1,3,4}, F2,{2,3,4}, F2,{1,2,4} = ∅)

V t
{1,2,3,4} = F5,{2,3,4} + F1,{1,3,4} + F3,{1,2,4} + F4,{1,2,3}

V t
{1,2,3,5} = F5,{2,3,5} + F1,{1,3,5} + F3,{1,2,5} + F2,{1,2,3}

V t
{1,2,4,5} = F5,{2,4,5} + F1,{1,4,5} + F4,{1,2,5} + F2,{1,2,4}

V t
{1,3,4,5} = F5,{3,4,5} + F3,{1,4,5} + F4,{1,3,5} + F2,{1,3,4}

V t
{2,3,4,5} = F1,{3,4,5} + F3,{2,4,5} + F4,{2,3,5} + F2,{2,3,4}

each worker j ∈ [K] \ U , among all V tJ where J ⊆ [K],
|J | = K−1 and J ∩U = K, worker j knows one of them
(which is V t

[K]\{ut−1

dt
j

}). We denote all sets J ⊆ [K] where

|J | = K − 1 and J ∩ U = K, by J1(K), J2(K), . . . ,
J(K−|U|

K−1−|K|)
(K). For SK, we choose one worker in K to

transmit V tJ1(K) ⊕ V
t
J2(K), . . . , V tJ1(K) ⊕ V

t
J
(K−|U|
K−1−|K|)

(K),

such that each worker in K\U can recover all V tJ where
J ⊆ [K], |J | = K− 1 and J ∩ U = K.

• For K = ∅, the transmission for SK is equivalent to
decentralized data shuffling with Keq = K− |U|, qeq = 1
and Meq = m = K − 2, where Ueq = ∅. Hence, in this
case U ≤ 2.
If |U| = 2, we have Meq = Keq and thus we do not
transmit anything for S∅.
If |U| = 1, we have Meq = Keq − 1 and thus we can use
Scheme B for m = K− 1 to transmit S∅.
Finally, we consider |U| = ∅. For each set J ⊆ [K] where
|J | = m+ 1 = K−1, among all the workers in J , there
is exactly one worker in J where ut−1

dtk
/∈ J (this worker

is assumed to be k and we have ut−1
dtk

= [K] \ J with a
slight abuse of notation). We then let worker k transmit
V tJ .

In conclusion, by comparing the loads for different cases, the
worst-cases are when At−1k ∩ Atk = ∅ for each k ∈ [K] and

the worst-case load achieved by Scheme B is

qK/

(
K− 1

K− 2

)
= q

K−m
m

K

K− 1

∣∣∣∣
m=K−1

=: RAch.B|M=(K−2)q ,

(67)

which coincides with the converse bound.
Storage Update Phase of time slot t ∈ [T] for m = K−2:

The storage update phase for m = K − 2 is the same as the
one of scheme B for m = K− 1.

Remark 3 (Scheme B realizes distributed interference align-
ment). In Example 2, from At−1 = (5, 1, 2, 3, 4) to At =
(1, 2, 3, 4, 5), by the first column of Table II, we see that each
worker desires K − 2 = 3 of the sub-blocks that need to
be shuffled. Since each worker cannot benefit from its own
transmission, we see that the best possible scheme would
have each worker recover its K − 2 = 3 desired sub-blocks
from the K − 1 = 4 “useful transmissions,” that is, the
unwanted sub-blocks should “align” in a single transmission,
e.g., for worker 1, all of its unwanted sub-blocks are aligned
in V t{2,3,4,5}. From the above we see that this is exactly what
happens for each worker when K − 2 = m. How to realize
distributed interference alignment seems to be a key question
in decentralized data shuffling. �

Remark 4 (Extension of Scheme B to other storage sizes).
We can extend Scheme B to any storage size by the following
three steps:
• We partition the N data units into q groups, where each

group contains K data units, and such that during the
data shuffling phase each worker requests exactly one
data unit and knows exactly one data unit among all the
K data units in each group.

• For each group Hi, we partition all desired sub-blocks
by all workers into sets depending on which workers
in U(Hi) know them. Each set is denoted by SK(Hi),
which is known by workers in K ⊆ U(Hi), and is defined
similarly to (66).

• For each set SK(Hi),
– if K 6= ∅, the transmission is equivalent to cen-

tralized data shuffling with Keq = K − |U(Hi)|,
qeq = 1 and Meq = M−|K|. We can use the optimal
centralized data shuffling scheme in [12];

– if K = ∅, for each set J ⊆ ([K] \ U(Hi)), where
|J | = m + 1, we generate the multicast messages
V tJ as defined in (65).
If there exists some empty sub-block in V tJ , we let
the worker who demands this sub-block transmit V tJ .
Otherwise, V tJ is transmitted as Scheme B for m =
K− 1.

Unfortunately, a general closed-form expression for the load
in this general case is not available as it heavily depends on
the shuffle.

Note: in Example 3 next we show the transmission for K =
∅, can be further improved by random linear combinations. �

Example 3. Consider the (K, q,M) = (5, 1, 2) decentralized
data shuffling problem, where m = M/q = 2. From the
outer bound we have R?u ≥ 15/8; if each sub-block is of

15

size 1/
(
K−1
m−1

)
= 1/4, the outer bound suggests that we need

to transmit at least 15/2 = 7.5 sub-blocks in total.
Let At−1 = (5, 1, 2, 3, 4). During the storage update phase

in time slot t − 1, we partition each data unit into 4 equal-
length sub-blocks, each of which has B/4 bits, as

F1 = (F1,{1,2}, F1,{2,3}, F1,{2,4}, F1,{2,5}}, (68a)
F2 = (F2,{1,3}, F2,{2,3}, F2,{3,4}, F2,{3,5}}, (68b)
F3 = (F3,{1,4}, F3,{2,4}, F3,{3,4}, F3,{4,5}}, (68c)
F4 = (F4,{1,5}, F4,{2,5}, F4,{3,5}, F4,{4,5}}, (68d)
F5 = (F5,{1,2}, F5,{1,3}, F5,{1,4}, F5,{1,5}}, (68e)

and each worker k stores Fi,W if k ∈ W .
Let At = (1, 2, 3, 4, 5). During the data shuffling phase in

time slot t, each worker must recover 3 sub-blocks of the
desired data unit which it does not store, e.g., worker 1 must
recover (F1,{2,3}, F1,{2,4}, F1,{2,5}), worker 2 must recover
(F2,{1,3}, F2,{3,4}, F2,{3,5}), etc.

For each set J ⊆ [K] where |J | = m+ 1 = 3, we generate
V tJ = ⊕

k∈J
Fk,J\{k} as in (65). More precisely, we have

V t{1,2,3} = F1,{2,3} ⊕ F2,{1,3}, (can be sent by worker 3),
(69a)

V t{1,2,4} = F1,{2,4}, (69b)

V t{1,2,5} = F1,{2,5} ⊕ F5,{1,2}, (can be sent by worker 2),
(69c)

V t{1,3,4} = F3,{1,4}, (69d)

V t{1,3,5} = F5,{1,3}, (69e)

V t{1,4,5} = F4,{1,5} ⊕ F5,{1,4}, (can be sent by worker 1),
(69f)

V t{2,3,4} = F2,{3,4} ⊕ F3,{2,4}, (can be sent by worker 4),
(69g)

V t{2,3,5} = F2,{3,5}, (69h)

V t{2,4,5} = F4,{2,5}, (69i)

V t{3,4,5} = F3,{4,5} ⊕ F4,{3,5}, (can be sent by worker 5).
(69j)

We deliver these multicast messages with a two-phase
scheme, as follows.
• Phase 1. It can be seen that the multicast messages like
V t{1,2,3} in (69) (which is known by worker 3 only) can be
sent by one specific worker. Similarly, we can let workers
2, 1, 4 and 5 broadcast V t{1,2,5}, V

t
{1,4,5}, V

t
{2,3,4} and

V t{3,4,5}, respectively.
• Phase 2. After the above Phase 1, the remaining messages

are known by two workers. For example, V t{1,2,4} =
F1,{2,4} is known by workers 2 and 4; we can let worker
2 transmit V t{1,2,4}. If we do so as Scheme B, since each
multicast message in (69) has B/4 bits and there are 10
multicast messages in (69), the total load is 10/4.
In this example Phase 2 of Scheme B can be improved as
follows. The problem with the above strategy (i.e., assign
each multicast message to a worker) is that we have not
leveraged the fact that, after Phase 1, there are still five
sub-blocks to be delivered (one demanded per worker,

namely F1,{2,4}, F2,{3,5}, F3,{1,4}, F4,{2,5}, F5,{1,3}),
each of which is known by two workers. Therefore,
we can form random linear combinations so that each
worker can recover all three of the unstored sub-blocks.
In other words, if a worker receivers from each of the
remaining K−1 = 4 workers 3/4×“size of a sub-block”
linear equations then it solved for the three missing sub-
blocks, that is, each worker broadcasts 3B

16 random linear
combinations of all bits of the two sub-blocks he stores
among F1,{2,4}, F2,{3,5}, F3,{1,4}, F4,{2,5}, F5,{1,3}. It
can be checked that for worker 1, the received 3B/4
random linear combinations from other workers are
linearly independent known F1,{2,4} and F5,{1,3} as
B→∞, such that it can recover all these five sub-blocks.
By the symmetry, each other worker can also recover
these five sub-blocks.

In conclusion, the total load with this two-phase is 5(1 +
3/4) × 1/4 = 35

16 < 10/4, which is achieved by Scheme B.
By comparison, the load of Scheme A is 27

8 and the converse
bound under the constraint of uncoded storage in Theorem 1
is 15

8 .
As a final remark, note that the five sub-blocks in Phase 2

is symmetric, i.e., the number of sub-blocks stored by each
worker is the same and the one known by each worker is also
the same. In general case, this symmetry may not hold (thus
the conditional linearly independent of the received random
linear combinations by each worker may not hold), and the
generalization of this scheme is part of ongoing work. �

Remark 5 (Limitation of Scheme B for small storage size).
The data shuffling phase with uncoded storage can be repre-
sented by a directed graph, where each sub-block demanded
by some worker is represented by a node in the graph. A
directed edge exists from node a to node b in the graph if the
worker demanding the data represented by node b has the data
represented by node a in its storage. By generating a directed
graph for the data shuffling phase as described in Section II,
we can see that each multicast message in (65) is the sum
of the sub-blocks contained in a clique, where a clique is a
set of nodes where each two of them are connected in two
directions. The sub-blocks in each multicast message in (65)
also form a distributed clique, where a distributed clique is a
clique whose nodes are all known by some worker.

Consider the case where K = N is much larger than M =
m = 2 (i.e., small storage size regime). Consider a “cyclic
shuffle” of the form At−11 = {K} and At−1k = {k − 1} for
k ∈ [2 : K], to Atk = {k} for k ∈ [K]. Each data unit is
split into

(
K−1
m−1

)
= K − 1 sub-blocks and each worker needs

to recover
(
K−2
m−1

)
= K− 2 sub-blocks.

If during the data shuffling phase in time slot t we generate
the multicast messages as above, only 2 of the K−2 demanded
sub-blocks are in a distributed clique of size m = 2. More
precisely, let us focus on worker 1 who needs to recover F1.
Notice that each sub-block of F1 is stored by worker 2, and
each of its demanded sub-blocks F1,{2,j} where j ∈ [K] \
{1, 2}, is in the multicast message

V t{1,2,j} = F1,{2,j} ⊕ F2,{1,j} ⊕ Fj,{1,2}. (70)

16

When j = 3, it can be seen that F3,{1,2} is empty because all
sub-blocks of F3 are stored by worker 4, and thus V t{1,2,3} =
F1,{2,3}⊕F2,{1,3} could be transmitted by worker 3. However,
when j = 4, both sub-blocks F2,{1,4} and F4,{1,2} are empty,
and thus V t{1,2,4} = F1,{2,4}. Similarly, among all the K − 2
demanded sub-blocks by worker 1, only F1,{2,3} and F1,{2,K}
are in cliques including two sub-blocks, while the remaining
K− 4 ones are in cliques including only one sub-block.

If the delivery strategy is to assign each multicast message,
or distributed clique, to a worker, we see that most of the
distributed cliques have a multicast coding gain of 1 (where
the multicast coding gain is the gain on the transmitted load
compared to uncoded/direct transmission, e.g., if we transmit
one sub-block in a distributed clique of length 2, the multicast
coding gain to transmit this sub-block is 2). Hence, Scheme B
is generally inefficient for m ∈ [2 : K − 3]. In this paper we
mainly use Scheme B for m ∈ {K− 2,K− 1,K} for which it
is optimal under the constraint of uncoded storage. �

C. Scheme C in Theorem 4

To overcome the limitation of Scheme B described in
Remark 5, in the following we propose Scheme C for M/q =
m = 2 based on an unconventional distributed clique-covering
strategy for the two-sender distributed index coding problems
proposed in [29].

The storage update phase of Scheme C is the same as
Scheme B, which is structural invariant, and thus we only
describe the transition from time slot t − 1 to time slot
t. The main idea is not to use the conventional distributed
clique-covering method which transmits distributed cliques
(e.g, the multicast messages in Scheme B), because most of the
distributed cliques only contain one sub-block, and most sub-
blocks are not in any distributed clique including more than
one sub-blocks, as explained in Remark 5. Instead, we propose
a novel decentralized data shuffling scheme to increase the
efficiency (coded multicasting gain) of the transmissions. The
main idea is that we search for cliques with length m = 2; if
this clique is not a distributed clique, we add one node to the
clique and transmit the three nodes by two binary sums, such
that each node can be recovered by the corresponding user; if
this clique is a distributed clique we proceed as in Scheme B.

Before introducing the details of Scheme C, we first recall
the unconventional clique-covering method for the two-sender
distributed index coding problems proposed in [29, Theorem
8, Case 33].

Proposition 1 (Unconventional Distributed Clique-covering
in [29]). In a distributed index coding problem with two
senders (assumed to be k1 and k2), as illustrated Fig. 3,
there are three messages a (demanded by receiver u(a)), b
(demanded by receiver u(b)), and c (demanded by receiver
u(c)), where u(a) stores b, u(b) stores a, and u(c) stores a.
Sender k1 stores a and c, and sender k2 stores b and c. We
can let worker k1 transmit a⊕c and worker k2 transmit b⊕c,
such that workers u(a), u(b) and u(c) can recover node a, b
and c, respectively.

a

1

demanded by u(a);
stored by u(b), u(c),
and k .

b

c

1

demanded by u(c);
stored by k , k .2

demanded by u(b);
stored by u(a), k .2

Fig. 3: Directed graph of the two-sender (k1 and k2) distributed
index problem in Proposition 1. A direct edge from node a to node
b, means that receiver u(b) demanding message b stores message a

demanded by receiver u(a).

Indeed, receiver u(a) knows b such that it can recover c,
and then recover a. Similarly receiver u(b) can recover b. User
u(c) knows a, such that it can recover c from a⊕ c.

In the decentralized data shuffling problem, each data unit
is divided into sub-blocks depending on which subset of
workers stored them before the data shuffling phase; each
sub-block desired by a worker is an independent message in
the corresponding distributed index coding problem; thus the
data shuffling phase is a K-sender distributed index coding
problem that contains a number of messages that in general is
doubly exponential in the number of workers in the original
decentralized data shuffling problem. Hence, it is non-trivial to
use Proposition 1 in the decentralized data shuffling problem.

We then illustrate the main idea of Scheme C by means of
an example.

Example 4. We consider the same example as Remark 4,
where K = 5, q = 1 and M = 2. Let At−11 = {5} and
At−1k = {k − 1} for k ∈ [2 : 5], and Atk = {k} for k ∈ [5].
The data units are split as in (68).

In the data shuffling phase of time slot t, the distributed
clique-covering method in Scheme B has many sub-blocks
which are not in any distributed clique including more than
one sub-block (e.g., F1,{2,4}), as explained in Remark 5.
Moreover, the sub-blocks F1,{2,3} and F3,{1,4} are in a
clique in the graph, but none of the workers can transmit
F1,{2,3} ⊕ F3,{1,4}, and thus it is not a distributed clique.
However, if we add F1,{2,4} to the group, and transmit the two
sums F1,{2,3}⊕F1,{2,4} (by worker 2) and F3,{1,4}⊕F1,{2,4}
(by worker 4), we see that worker 1 (who knows F3,{1,4})
can recover F1,{2,4} from the second sum, and then recover
F1,{2,3} from the first sum. Similarly, worker 3 (who knows
F1,{2,3}) can recover F1,{2,4} from the first sum, and then
recover F3,{1,4} from the second sum. It can be seen that
F1,{2,3},1 is message a, F3,{1,4},1 is message b, and F1,{2,4},1
is message c in Proposition 1, while u(a) and u(c) are both
worker 1, u(b) is worker 3. In addition, workers 2 and 4 serve
as senders k1 and k2.

Similarly, the sub-blocks F1,{2,4} and F4,{1,5} are in a
clique in the graph, but none of the workers can trans-
mit F1,{2,4} ⊕ F4,{1,5}. However, if we add F1,{2,5} to the
group, and transmit F1,{2,4} ⊕ F1,{2,5} (by worker 2) and
F1,{2,5} ⊕ F4,{1,5} (by worker 5), then worker 1 (who knows

17

F4,{1,5}) can recover F1,{2,5} from the second sum, and then
recover F1,{2,4} from the first sum; also, worker 4 (who knows
F1,{2,4}) can recover F1,{2,5} from the first sum, and then
recover F4,{1,5} from the second sum.

In general, we have the following data shuffling scheme
in time slot t. Recall that ut−1i denotes the worker who
should recover Fi at the end of time slot t − 1. We partition
each sub-block into 3 equal-length sub-pieces as Fi,W =
(Fi,W,1, Fi,W,2, Fi,W,3) (recall |W| = m = 2 and ut−1i ∈ W).
In general, we consider a pair (a, b), where a ∈ [5] and
b ∈ [5] \ {a, ut−1a }, i.e., a is a worker with the request Fa
in time slot t, while b is another worker which is not the one
who requests Fa in time slot t− 1. We have two cases:

1) If a 6= ut−1b , we find the group of sub-blocks
Fa,{ut−1

a ,b}, Fa,{ut−1
a ,ut−1

b }, and Fb,{a,ut−1
b }. We pick

one of untransmitted sub-pieces for each of these
three sub-blocks. Assume the picked sub-pieces are n1,
n2, and n3, respectively. We let worker ut−1a trans-
mit Fa,{ut−1

a ,b},n1
⊕ Fa,{ut−1

a ,ut−1
b },n2

, and let worker
ut−1b transmit Fa,{ut−1

a ,ut−1
b },n2

⊕ Fb,{a,ut−1
b },n3

. It can
be seen that worker a can recover Fa,{ut−1

a ,b},n1

and Fa,{ut−1
a ,ut−1

b },n2
while worker b can recover

Fb,{a,ut−1
b },n3

.
2) If a = ut−1b , we assume c = ut−1a and d = ut−1c (e.g,

if a = 1 and b = 5, we have c = ut−11 = 2 and d =
ut−1c = 3), i.e., worker a requests Fa in time slot t,
worker c requests Fa in time slot t− 1 and requests Fc
in time slot t, worker d requests Fc in time slot t − 1
and requests Fd in time slot t. We find the group of
sub-blocks Fa,{c,b}, Fa,{c,d}, and Fc,{a,d}. Notice that
Fa,{c,d} and Fc,{a,d} form a distributed clique. We pick
one of untransmitted sub-pieces for each of these three
sub-blocks (assumed to be n1, n2, and n3, respectively).
We let worker c transmit Fa,{c,b},n1

, and let worker d
transmit Fa,{c,d},n2

⊕ Fc,{a,d},n3
. It can be seen that

worker a can recover Fa,{c,b},n1
and Fa,{c,d},n2

while
worker c can recover Fc,{a,d},n3

.

By this construction, see also Table III, each sub-block appears
in three groups such that each of its sub-pieces is transmitted.
We use two binary sums to encode each group containing 3
sub-pieces, such that the coding gain of this scheme is 2/3.
The achieved worst-case load is 5/2, while the achieved loads
by Schemes A and B are 27

8 and 10
4 , respectively.

The introduced scheme in this example has the same load
as Scheme B. However, in general when M = 2q, the coding
gain of the new scheme is 2/3, and this is independent of K.
For the other schemes, the coding gain of Scheme B is close
to 1 if K is large, and the same holds for Scheme A (as it will
be shown in Section VI-D). Therefore, Scheme C is preferable
to the other schemes when M = 2q and K is large. �

We are now ready to generalize the scheme in Example 4
to the case M/q = m = 2.

Structural Invariant Data Partitioning and Storage: This
is the same as in Scheme B (described in Section VI-B), i.e.,
each sub-block of Fi, i ∈ [N], is stored by worker uti and by
another worker in [K] \ {uti}. The length of each sub-block is

B

(K−1
m−1)

= B
K−1 .

Data Shuffling Phase of time slot t ∈ [T]: As in
Scheme B, we partition the N data units into q equal-length
groups such that, during the data shuffling phase of time slot t,
among all the K data units in each group, each worker requests
exactly one data unit and knows exactly one data unit. To
simplify the description, as in Scheme B, we focus on one
group and remove the Hi in the notation. In addition, we can
restrict attention to U = ∅, because if U 6= ∅ we can divide
all desired sub-blocks by all workers into sets as we did in
Scheme B. For each set which is known by some worker in U ,
the transmission for this set is equivalent to centralized data
shuffling. Thus we only need to consider the set which is not
known by any worker in U , and the transmission for this set is
equivalent to decentralized data shuffling with Keq = K− |U|,
qeq = 1 and Meq = m. Hence, for the simplicity, we only
consider U = ∅ for Scheme C.

We define a set of pair of workers as

Y :=
{

(a, b) : a ∈ [K], b ∈
(
[K] \ {ut−1dta

, a}
)}
. (71)

For each vector (a, b) ∈ Y , we divide Fdta,{b,u
t−1

dta
} into 3

non-overlapping and equal-length sub-pieces, Fdta,{b,ut−1

dta
},1,

Fdta,{b,u
t−1

dta
},2 and Fdta,{b,u

t−1

dta
},3. For each vector (a, b) ∈ Y ,

we consider two cases:
• Case ut−1

dtb
6= a: For each one of Fdta,{u

t−1

dta
,b},

Fdtb,{u
t−1

dt
b

,a}, and Fdta,{u
t−1

dta
,ut−1

dt
b

}, we select one of

its non-transmitted sub-pieces and assume they are
Fdta,{u

t−1

dta
,b},n1

, Fdtb,{u
t−1

dt
b

,a},n2
, and Fdta,{u

t−1

dta
,ut−1

dt
b

},n3
.

By Proposition 1,

worker ut−1dta
transmits Fdta,{ut−1

dta
,b},n1

⊕ Fdta,{ut−1

dta
,ut−1

dt
b

},n3
;

worker ut−1
dtb

transmits Fdtb,{ut−1

dt
b

,a},n2
⊕ Fdta,{ut−1

dta
,ut−1

dt
b

},n3
,

such that each of the above linear combinations can be de-
coded by its requesting worker. For example in Table III,
for pair (1, 3), we let worker 2 transmit F1,{2,3},1 ⊕
F1,{2,4},1, and worker 4 transmit F1,{2,4},1 ⊕ F3,{1,4},1.

• Case ut−1
dtb

= a: Let ut−1dta
= c and ut−1dtc

= d. For each
one of Fdta,{c,b}, Fdta,{c,d}, and Fdtc,{a,d}, we select one
of its non-transmitted sub-pieces and assume they are
Fdta,{c,b},n1

, Fdta,{c,d},n2
, and Fdtc,{a,d},n3

. By Proposi-
tion 1,

worker c transmits Fdta,{c,b},n1
;

worker d transmit Fdta,{c,d},n2
⊕ Fdtc,{a,d},n3

,

such that each of the above sub-pieces can be decoded
by its requesting worker. For example in Table III, for
vector (1, 5), we let worker 2 transmit F1,{2,5},2 and
worker 3 transmit F1,{2,3},2 ⊕ F2,{1,3},1. Notice that in
the case if d = b, we have Fdta,{c,b} = Fdta,{c,d}, and thus
we transmit two different sub-pieces of Fdta,{c,b} for the
vector (a, b).

Next we prove that after considering all the pairs in Y , each
sub-piece of sub-block Fdta1

,{ut−1

dta1

,b1} has been transmitted for

18

TABLE III: Transmission of Scheme C for Example 4

Considered vectors Groups of sub-pieces First sum Second sum
(1, 3) F1,{2,3},1, F1,{2,4},1, F3,{1,4},1 F1,{2,3},1 ⊕ F1,{2,4},1 F1,{2,4},1 ⊕ F3,{1,4},1
(1, 4) F1,{2,4},2, F1,{2,5},1, F4,{1,5},1 F1,{2,4},2 ⊕ F1,{2,5},1 F1,{2,5},1 ⊕ F4,{1,5},1
(1, 5) F1,{2,5},2, F1,{2,3},2, F2,{1,3},1 F1,{2,5},2 F1,{2,3},2 ⊕ F2,{1,3},1
(2, 4) F2,{3,4},1, F2,{3,5},1, F4,{2,5},1 F2,{3,4},1 ⊕ F2,{3,5},1 F2,{3,5},1 ⊕ F4,{2,5},1
(2, 5) F2,{3,5},2, F2,{1,3},2, F5,{1,2},1 F2,{3,5},2 ⊕ F2,{1,3},2 F2,{1,3},2 ⊕ F5,{1,2},1
(2, 1) F2,{1,3},3, F2,{3,4},2, F3,{2,4},1 F2,{1,3},3 F2,{3,4},2 ⊕ F3,{2,4},1
(3, 5) F3,{4,5},1, F3,{1,4},2, F5,{1,3},1 F3,{4,5},1 ⊕ F3,{1,4},2 F3,{1,4},2 ⊕ F5,{1,3},1
(3, 1) F3,{1,4},3, F3,{2,4},2, F1,{2,3},3 F3,{1,4},3 ⊕ F3,{2,4},2 F3,{2,4},2 ⊕ F1,{2,3},3
(3, 2) F3,{2,4},3, F3,{4,5},2, F4,{3,5},1 F3,{2,4},3 F3,{4,5},2 ⊕ F4,{3,5},1
(4, 1) F4,{1,5},2, F4,{2,5},2, F1,{2,4},3 F4,{1,5},2 ⊕ F4,{2,5},2 F4,{2,5},2 ⊕ F1,{2,4},3
(4, 2) F4,{2,5},3, F4,{3,5},2, F2,{3,4},3 F4,{2,5},3 ⊕ F4,{3,5},2 F4,{3,5},2 ⊕ F2,{3,4},3
(4, 3) F4,{3,5},3, F4,{1,5},3, F5,{1,4},1 F4,{3,5},3 F4,{1,5},3 ⊕ F5,{1,4},1
(5, 2) F5,{1,2},2, F5,{1,3},2, F2,{3,5},3 F5,{1,2},2 ⊕ F5,{1,3},2 F5,{1,3},2 ⊕ F2,{3,5},3
(5, 3) F5,{1,3},3, F5,{1,4},2, F3,{4,5},3 F5,{1,3},3 ⊕ F5,{1,4},2 F5,{1,4},2 ⊕ F3,{4,5},3
(5, 4) F5,{1,4},3, F5,{1,2},3, F1,{2,5},3 F5,{1,4},3 F5,{1,2},3 ⊕ F1,{2,5},3

(a1, b1) ∈ Y . For each (a1, b1) ∈ Y , if there exists one worker
c 6∈ {a1, b1} such that c = ut−1dta1

, b1 = ut−1dtc
, and a1 = ut−1

dtb1
(in Example 4, this pair (a1, b1) does not exist), we transmit
two sub-pieces of Fdta1

,{ut−1

dta1

,b1} in the transmission for the

pair (a1, b1) and one sub-piece in the transmission for the
pair (b1, c). Otherwise, we transmit the three sub-pieces of
Fdta1

,{ut−1

dta1

,b1} in the following three transmissions for three

different pairs:
1) The transmission for the pair (a1, b1).
2) The transmission for the pair (a1, b2) where ut−1

dtb2
= b1

if the requested data unit by worker ut−1dta1

in time slot
t was not stored by worker b1 at the end of time slot
t − 1, (e.g., in Table III, let (a1, b1) = (1, 4), one sub-
piece of F1,{2,4} appears in the transmission for vector
(a1, b2) = (1, 3)).
Otherwise, the transmission for the pair (a1, b3) where
ut−1
dtb3

= a1 (e.g., in Table III, let (a1, b1) = (1, 3),
one sub-piece of F1,{2,3} appears in the transmission
for vector (a1, b3) = (1, 5)).

3) The transmission for the pair (b1, a1) if ut−1
dtb1
6= a1

(e.g., in Table III, let (a1, b1) = (1, 3), one sub-
piece of F1,{2,3} appears in the transmission for vector
(b1, a1) = (3, 1)).
Otherwise, the transmission for the pair (b1, b4) where
ut−1
dtb4

= b1 (e.g., in Table III, let (a1, b1) = (1, 5), one
sub-piece of F1,{2,5} appears in the transmission for
vector (b1, b4) = (5, 4)).

This shows that Fdta1
,{ut−1

dta1

,b1} is transmitted. In Scheme C,

we transmit each three sub-pieces in two sums, and thus the
multicast coding gain is 2/3.

Finally, by comparing the loads for different cases, the
worst-cases are when At−1k ∩ Atk = ∅ for each k ∈ [K] and
the worst-case load achieved by Scheme C is

q
2K(K− 2)

3(K− 1)
=: RAch.C|M=2q , (72)

which is optimal within a factor 4/3 compared to the converse
bound K(K−2)

2(K−1) under the constraint of uncoded storage for
M/q = 2.

Storage Update Phase of time slot t ∈ [T]: The storage
update phase of Scheme C is the same as the one of Scheme B.

D. Optimality Results of the Combined Achievable Scheme

Since the proposed converse bound is a piecewise linear
curve with corner points

(
mq, qK−m

m
K

K−1
)

for m ∈ [K] and
these corner points are successively convex, it follows imme-
diately that the combined scheme in Corollary 1 is optimal
under the constraint of uncoded storage when M/q = 1
or M/q ∈ [K − 2,K], thus proving Theorem 5 (and also
Corollary 2).

In order to prove Theorem 6 (i.e., an order optimality result
for the cases not covered by Theorem 5 or Corollary 2)
we proceed as follows. Recall that the proposed converse
bound is a piecewise linear curve with successively convex
corner points, and that the straight line in the storage-load
tradeoff between two achievable points is also achievable by
memory-sharing. Hence, in the following, we focus on each
corner point of the converse bound

(
mq, qK−m

m
K

K−1
)

where
m ∈ [K], and characterize the multiplicative gap between the
combined scheme and the converse when M = mq. Thus the
multiplicative gap between the achievability and the converse
curves is upper bounded by the maximum of the obtained K
gaps.

We do not consider the corner points where m ∈ {1,K −
2,K − 1,K} because the optimality of the combined scheme
has been proved. We have:
• M = 2q: It was proved in Section VI-C that the mul-

tiplicative gap between the Scheme C and the converse
bound is 4/3.

• Interpolate the achievable bound for Scheme A in (21)
between M1 =

(
1+g K−1

K

)
q and M2 =

(
1+(g+1)K−1

K

)
q

to match the converse bound in (20) at M3 = (g + 1)q
where g ∈ [2 : K− 4]: For each g ∈ [2 : K− 4], we have

M1 =

(
1 + g

K− 1

K

)
q, RAch.A(M1) = q

K− g
g

, (73)

M2=

(
1+(g + 1)

K− 1

K

)
q, RAch.A(M2)=q

K− g − 1

g + 1
.

(74)

19

By memory-sharing between (M1,RAch.A(M1)) and
(M2,RAch.A(M2)) with coefficient α = (K−1− g)/(K−
1), we get

M3 = αM1 + (1− α)M2|α=1−g/(K−1)

= (1 + g)q, (75)

as in the converse bound for m = g + 1 ∈ [3 : K − 3],
and

RAch.A(M3) = αRAch.A(M1) + (1− α)RAch.A(M2)

=
qK− g
g

K− 1− g
K− 1

+
qg

K− 1

K− g − 1

g + 1

=
q(K− g − 1)(Kg + K− g)

(K− 1)g(g + 1)
. (76)

From (the proof of) Theorem 1, we know that

ROut(M3) ≥ N
1− g/(K− 1)

g + 1
= q

K

K− 1

K− g − 1

g + 1
.

(77)

Hence, from (76) and (77), we have

RAch.A(M3)

ROut(M3)
≤ Kg + K− g

gK
= 1− 1

K
+

1

g

≤ 1− 0 +
1

2
=

3

2
(since g ≥ 2). (78)

We then focus on mq ≤ M ≤ (m+1)q, where m ∈ [K−1].
The converse bound in Theorem 1 for mq ≤ M ≤ (m +

1)q is a straight line between (M′,R′) = (mq, (K−m)K
m(K−1)) and

(M′′,R′′) =
(

(m+ 1)q, (K−m−1)K
(m+1)(K−1)

)
.

• m = 1. The combined scheme can achieve (M′,R′) and
(M′′, 4R′′/3). Hence, by memory-sharing, the multiplica-
tive gap between the combined scheme and the converse
bound is less than 4/3.

• m = 2. The combined scheme can achieve (M′, 4R′/3)
and

(
M′′,

(
1− 1

K + 1
2

)
R′′
)
. Hence, by memory-sharing,

the multiplicative gap between the combined scheme and
the converse bound is less than 1− 1

K + 1
2 .

• m ∈ [3 : K − 4]. The combined scheme can achieve(
M′,

(
1− 1

K + 1
m−1

)
R′
)

and
(
M′′,

(
1− 1

K + 1
m

)
R′′
)
.

Hence, by memory-sharing, the multiplicative gap be-
tween the combined scheme and the converse bound is
less than 1− 1

K + 1
m−1 .

• m = K − 3. The combined scheme can achieve(
M′,

(
1− 1

K + 1
m−1

)
R′
)

and (M′′,R′′). Hence, by
memory-sharing, the multiplicative gap between the com-
bined scheme and the converse bound is less than 1− 1

K +
1

m−1 .
• m ∈ {K− 2,K− 1}. The combined scheme can achieve

(M′,R′) and (M′′,R′′). Hence, the combined scheme
coincides with the converse bound.

This concludes the proof of Theorem 6.
On communication cost of peer-to-peer operations: By

comparing the decentralized data shuffling converse bound
and the optimal centralized data shuffling load (denoted by
ROpt.Cen(M)), we have ROut(M)/ROpt.Cen(M) = K/(K− 1) for
any q ≤ M ≤ Kq. In addition, the maximum multiplicative

gap between the achieved load by the combined scheme and
ROut(M), is max

{
1− 1

K + 1
m−1 ,

4
3

}
, where m ≥ 3. Hence,

the maximum multiplicative gap between the achieved load by
the combined scheme and ROpt.Cen(M) is

K

K− 1
max

{
1− 1

K
+

1

m− 1
,

4

3

}
= max

{
1 +

K

(m− 1)(K− 1)
,

4K

3(K− 1)

}
, (79)

which is no more than 5/3 if K ≥ 5. In addition, when
K ≤ 4, by Corollary 2, the combined scheme is optimal
such that the communication cost of peer-to-peer operations is
K/(K − 1) ≤ 2. In general, the communication cost of peer-
to-peer operations is no more than a factor of 2 as stated in
Corollary 3.

In addition, with a similar proof as above to analyse each
storage size regime mq ≤ M ≤ (m+ 1)q where m ∈ [K− 1],
we prove Corollary 3.

VII. CONCLUSIONS

In this paper, we introduced the decentralized data shuffling
problem and studied its fundamental limits. We proposed a
converse bound under the constraint of uncoded storage and
three achievable schemes. In general, under the constraint of
uncoded storage, our schemes are order optimal to within a
factor of 3/2, and exactly optimal for small and large storage
sizes, or the systems with no more than four workers.

APPENDIX

We define

VS := {k ∈ S : dk ∈ S}, ∀S ⊆ [K], (80)

where VS represents the subset of workers in S whose
demanded data units in time slot t, indexed by Atk = At−1dk
in (29), were stored by some workers in S at the end of time
slot t− 15.

In addition, we also define Y tS as the sub-blocks that any
worker in S either needs to store at the end of time slot t or
has stored at the end of time slot t− 1, that is,

Y tS :=
{
Fi : i ∈ ∪k∈SAtk

}
∪
{
Zt−1k : k ∈ S

}
=
{
Fi : i ∈ ∪k∈S(Atk ∪ At−1k)

}
∪
{
Fi,W : i /∈ ∪k∈S(Atk ∪ At−1k),W ∩ S 6= ∅

}
. (81)

With the above definitions and recalling Xt
S defined in (30)

represents the messages sent by the workers in S during time
slot t, we have the following lemma:

Lemma 1 (Induction Lemma). For each non-empty set S ⊆
[K], we have

H
(
Xt
S |Y t[K]\S

)
5For example, if K = 4 and (d1, . . . , d4) = (2, 3, 4, 1), we have V{2,3} =
{2} because d2 = 3 and thus the requested data unit by worker 2 in time
slot t was stored by worker 3 at the end of time slot t−1; similarly, we have
V{2,4} = ∅ and V{1,2,4} = {1, 4}.

20

≥
|S|∑
m=1

∑
k∈VS

∑
i∈At

k

∑
W⊆S\{k}:

ut−1
i ∈W,|W|=m

|Fi,W |
m

. (82)

Lemma 1 is the key novel contribution of our proof.
The bound in (82) can be intuitively explained as follows:
H(Xt

S |Y t[K]\S) is lower bounded by the size of the requested
sub-blocks by the workers in VS (instead of in S as in the
distributed computing problem [14]) because each requested
data unit by the workers in S\VS was requested in the previous
time slot by some workers in [K] \ S because of the storage
constraint in (8) and the definition of VS in (80).

This lemma is proved by induction, inspired by [14].
Proof: Case |S| = 1: If S = {k} where k ∈ [K], we have

that V{k} = ∅ and thus the RHS of (82) is 0; thus (82) holds
for |S| = 1 because entropy is non-negative.

Case |S| ≤ s: Assume that (82) holds for all non-empty
S ⊆ [K] where |S| ≤ s for some integer s ∈ [K− 1].

Case |S| = s + 1: Having assumed that the lemma holds
for all S ⊆ [K] where |S| ≤ s, we aim to show that for any
set J ⊆ [K] where |J | = s+ 1, we have

H(Xt
J |Y t[K]\J) ≥

|J |∑
m=1

∑
k∈VJ

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |
m

. (83)

From the independence bound on entropy we have

H(Xt
J |Y t[K]\J)

=
1

|J |
∑
k∈J

(
H(Xt

J\{k}|X
t
k, Y

t
[K]\J) +H(Xt

k|Y t[K]\J)
)
(84a)

≥ 1

|J |

(∑
k∈J

H(Xt
J\{k}|X

t
k, Y

t
[K]\J) +H(Xt

J |Y t[K]\J)
)
,

(84b)

and thus

(|J | − 1)H(Xt
J |Y t[K]\J) ≥

∑
k∈J

H(Xt
J\{k}|X

t
k, Y

t
[K]\J)

(84c)

≥
∑
k∈J

H(Xt
J\{k}|X

t
k, Y

t
[K]\J , Z

t−1
k) (84d)

=
∑
k∈J

H(Xt
J\{k}, {Fi : i ∈ Atk}|Xt

k, Y
t
[K]\J , Z

t−1
k) (84e)

=
∑
k∈J

H({Fi : i ∈ Atk}|Zt−1k , Y t[K]\J)

+
∑
k∈J

H(Xt
J\{k}|{Fi : i ∈ Atk}, Zt−1k , Y t[K]\J) (84f)

=
∑
k∈J

H({Fi : i ∈ Atk}|Zt−1k , Y t[K]\J)

+
∑
k∈J

H
(
Xt
J\{k}|Y

t
([K]\J)∪{k})

)
, (84g)

where (84d) follows because we added Zt−1k in the condition-
ing, and conditioning cannot increase entropy, where (84e)

follows because {Fi : i ∈ Atk} is a function of (Zt−1k , Xt)
by the decoding constraint in (5) (note that the knowledge of
(Y t[K]\J , Z

t−1
k) implies the knowledge of Zt−1{k}∪[K]\J and thus

of Xt
{k}∪[K]\J by the encoding constraint in (4)), where (84f)

follow because Xt
k is a function of Zt−1k (see the encoding

constraint in (4)), and (84g) from the definition in (81).
Next we bound the first term of (84g) by using the inde-

pendence of the sub-blocks, and the second term of (84g) by
the induction assumption. More precisely,
• First term of (84g). For each k ∈ J , if k /∈ VJ , we

have {Fi : i ∈ Atk} ⊆ Y t[K]\J . So for each k ∈ J , by
independence of sub-blocks, we have (85) and thus we
rewrite the first term of (84g) as∑

k∈J

H({Fi : i ∈ Atk}|Zt−1k , Y t[K]\J)

=
∑
k∈VJ

∑
m∈[|J |]

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |. (86)

• Second term of (84g). By the induction assumption,∑
k∈J

H
(
Xt
J\{k}|Y

t
([K]\J)∪{k}

)
=
∑
k∈J

H
(
Xt
J\{k}|Y

t
[K]\(J\{k})

)
≥
∑
k∈J

∑
u∈VJ\{k}

|J |−1∑
m=1

∑
i∈At

u

∑
W⊆(J\{k,u}):
|W|=m,ut−1

i ∈W

|Fi,W |
m

.

(87)

In order to combine (86) with (87), both terms need to have
the summations in the same form. Let us focus on one worker
u′ ∈ VJ and one sub-block Fi′,W′ , where i′ ∈ Atu′ , W ′ ⊆
J \ {u′}, |W ′| = m, and uti′ ∈ W ′. On the RHS of (87), for
each k ∈ J \ (W ′ ∪ {u′}), it can be seen that Fi′,W′ appears
once in the sum∑

m∈[|J |−1]

∑
u∈VJ\{k}

∑
i∈At

u

∑
W⊆(J\{k,u}):
|W|=m,ut−1

i ∈W

|Fi,W |
m

, (88)

hence, the coefficient of Fi′,W′ on the RHS of (87) is (|J | −
m− 1)/m. Thus, from (87), we have∑
k∈J

H
(
Xt
J\{k}|Y

t
[K]\J)∪{k}

)
(89a)

≥
∑
u′∈VJ

∑
m∈[|J |−1]

∑
i′∈At

u′

∑
W′⊆(J\{u′}):
|W′|=m,ut−1

i′ ∈W
′

|Fi′,W′ |(|J | −m− 1)

m

(89b)

=
∑
u′∈VJ

∑
m∈[|J |]

∑
i′∈At

u′

∑
W′⊆(J\{u′}):
|W′|=m,ut−1

i′ ∈W
′

|Fi′,W′ |(|J | −m− 1)

m
.

(89c)

We next take (86) and (89c) into (84g) to obtain,

H(Xt
J |Y t[K]\J)

21

H({Fi : i ∈ Atk}|Zt−1k , Y t[K]\J)

=

{∑|J |
m=1

∑
i∈At

k

∑
W⊆(J\{k}):|W|=m,ut−1

i ∈W |Fi,W |, k ∈ VJ
0 otherwise

(85)

≥ 1

|J | − 1

∑
k∈VJ

|J |∑
m=1

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |

+
1

|J | − 1

∑
k∈VJ

|J |∑
m=1

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |(|J | −m− 1)

m

(90a)

=
∑
k∈VJ

∑
m∈[|J |]

∑
i∈At

k

∑
W⊆(J\{k}):
|W|=m,ut−1

i ∈W

|Fi,W |
m

, (90b)

which proves Lemma 1.

REFERENCES

[1] J. Chung, K. Lee, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Ubershuffle: Communication-efficient data shuffling for sgd via coding
theory,” in NIPS 2017, ML Systems Workshop.

[2] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo, “Why random reshuf-
fling beats stochastic gradient descent,” available at arXiv:1510.08560,
Oct. 2015.

[3] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, Mar. 2018.

[4] F. A. Tobagi and V. B. Hunt, “Performance analysis of carrier sense
multiple access with collision detection,” Computer Networks, vol. 4,
pp. 245–259, 1980.

[5] ANSI/IEEE Standard 802.5, “Token ring access method and physical
layer specifications,” IEEE Press, 1985.

[6] M. A. Attia and R. Tandon, “Information theoretic limits of data
shuffling for distributed learning,” in IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2016.

[7] ——, “On the worst-case communication overhead for distributed data
shuffling,” in 54th Annual Allerton Conf. on Commun., Control, and
Computing (Allerton), Sep. 2016.

[8] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Infor. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[9] K. Wan, D. Tuninetti, and P. Piantanida, “On the optimality of uncoded
cache placement,” in IEEE Infor. Theory Workshop, Sep. 2016.

[10] Q. Yu, M. A. Maddah-Ali, and S. Avestimehr, “The exact rate-memory
tradeoff for caching with uncoded prefetching,” IEEE Trans. Infor.
Theory, vol. 64, pp. 1281 – 1296, Feb. 2018.

[11] M. A. Attia and R. Tandon, “Near optimal coded data shuffling for
distributed learning,” vol. 65, no. 11, pp. 7325–7349, Nov. 2019.

[12] A. Elmahdy and S. Mohajer, “On the fundamental limits of coded
data shuffling for distributed learning systems,” arXiv:1807.04255, a
preliminary version is in IEEE Int. Symp. Inf. Theory 2018, Jul. 2018.

[13] M. Ji, G. Caire, and A. Molisch, “Fundamental limits of caching in
wireless d2d networks,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp.
849–869, 2016.

[14] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan.
2018.

[15] Y. H. Ezzeldin, M. Karmoose, and C. Fragouli, “Communication vs
distributed computation: An alternative trade-off curve,” in IEEE Inf.
Theory Workshop (ITW), Nov. 2017.

[16] N. Woolsey, R. Chen, and M. Ji, “A new combinatorial design of coded
distributed computing,” in IEEE Int. Symp. Inf. Theory, Jun. 2018.

[17] K. Konstantinos and A. Ramamoorthy, “Leveraging coding techniques
for speeding up distributed computing,” available at arXiv:1802.03049,
Feb. 2018.

[18] S. R. Srinivasavaradhan, L. Song, and C. Fragouli, “Distributed comput-
ing trade-offs with random connectivity,” in IEEE Int. Symp. Inf. Theory,
June. 2018.

[19] S. Prakash, A. Reisizadeh, R. Pedarsani, and S. Avestimehr, “Coded
computing for distributed graph analytics,” in IEEE Int. Symp. Inf.
Theory, June. 2018.

[20] B. Guler, A. S. Avestimehr, and A. Ortega, “A topology-aware coding
framework for distributed graph processing,” IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), May 2019.

[21] L. Songze, Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “A scalable
framework for wireless distributed computing,” IEEE/ACM Transactions
on Networking, vol. 25, no. 5, pp. 2643–2654, Oct. 2017.

[22] Q. Yan, S. Yang, and M. Wigger, “Storage, computation, and
communication: A fundamental tradeoff in distributed computing,”
arXiv:1806.07565, Jun. 2018.

[23] N. Woolsey, R. Chen, and M. Ji, “Cascaded coded distributed computing
on heterogeneous networks,” arXiv:1901.07670, Jan. 2019.

[24] ——, “Coded distributed computing with heterogeneous function as-
signments,” arXiv:1902.10738, Feb. 2019.

[25] P. Sadeghi, F. Arbabjolfaei, and Y. Kim, “Distributed index coding,” in
IEEE Inf. Theory Workshop 2016, Sep. 2016.

[26] Y. Liu, P. Sadeghi, F. Arbabjolfaei, and Y. Kim, “Capacity theorems for
distributed index coding,” arXiv:1801.09063, Jan. 2018.

[27] Y. Birk and T. Kol, “Informed source coding on demand (iscod) over
broadcast channels,” in Proc. IEEE Conf. Comput. Commun., pp. 1257–
1264, 1998.

[28] A. Porter and M. Wootters, “Embedded index coding,” available at
arXiv:1904.02179, Apr. 2019.

[29] C. Thapa, L. Ong, S. J. Johnson, and M. Li, “Structural characteristics
of two-sender index coding,” arXiv:1711.08150v2, Jun. 2019.

[30] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge,
UK: Cambridge University Press, 2011.

Kai Wan (S ’15 – M ’18) received the M.Sc. and Ph.D. degrees in
Communications from Université Paris Sud-CentraleSupélec, France, in 2014
and 2018. He is currently a post-doctoral researcher with the Communications
and Information Theory Chair (CommIT) at Technische Universität Berlin,
Berlin, Germany. His research interests include coded caching, index coding,
distributed storage, wireless communications, and distributed computing.

Daniela Tuninetti (M ’98 – SM ’13) is currently a Professor within the
Department of Electrical and Computer Engineering at the University of
Illinois at Chicago (UIC), which she joined in 2005. Dr. Tuninetti got her
Ph.D. in Electrical Engineering in 2002 from ENST/Télécom ParisTech (Paris,
France, with work done at the Eurecom Institute in Sophia Antipolis, France),
and she was a postdoctoral research associate at the School of Communication
and Computer Science at the Swiss Federal Institute of Technology in
Lausanne (EPFL, Lausanne, Switzerland) from 2002 to 2004. Dr. Tuninetti
is a recipient of a best paper award at the European Wireless Conference
in 2002, of an NSF CAREER award in 2007, and named University of
Illinois Scholar in 2015. Dr. Tuninetti was the editor-in-chief of the IEEE
Information Theory Society Newsletter from 2006 to 2008, an editor for IEEE
COMMUNICATION LETTERS from 2006 to 2009, for IEEE TRANSAC-
TIONS ON WIRELESS COMMUNICATIONS from 2011 to 2014; and for
IEEE TRANSACTIONS ON INFORMATION THEORY from 2014 to 2017.
She is currently a distinguished lecturer for the Information Theory society.
Dr. Tuninetti’s research interests are in the ultimate performance limits of
wireless interference networks (with special emphasis on cognition and user
cooperation), coexistence between radar and communication systems, multi-
relay networks, content-type coding, cache-aided systems and distributed
private coded computing.

22

Mingyue Ji (S ’09 – M ’15) received the B.E. in Communication Engineering
from Beijing University of Posts and Telecommunications (China), in 2006,
the M.Sc. degrees in Electrical Engineering from Royal Institute of Tech-
nology (Sweden) and from University of California, Santa Cruz, in 2008 and
2010, respectively, and the PhD from the Ming Hsieh Department of Electrical
Engineering at University of Southern California in 2015. He subsequently
was a Staff II System Design Scientist with Broadcom Corporation (Broadcom
Limited) in 2015-2016. He is now an Assistant Professor of Electrical and
Computer Engineering Department and an Adjunct Assistant Professor of
School of Computing at the University of Utah. He received the IEEE
Communications Society Leonard G. Abraham Prize for the best IEEE JSAC
paper in 2019, the best paper award in IEEE ICC 2015 conference, the best
student paper award in IEEE European Wireless 2010 Conference and USC
Annenberg Fellowship from 2010 to 2014. He is interested the broad area of
information theory, coding theory, concentration of measure and statistics with
the applications of caching networks, wireless communications, distributed
computing and storage, security and privacy and (statistical) signal processing.

Giuseppe Caire (S ’92 – M ’94 – SM ’03 – F ’05) was born in Torino in 1965.
He received the B.Sc. in Electrical Engineering from Politecnico di Torino in
1990, the M.Sc. in Electrical Engineering from Princeton University in 1992,
and the Ph.D. from Politecnico di Torino in 1994. He has been a post-doctoral
research fellow with the European Space Agency (ESTEC, Noordwijk, The
Netherlands) in 1994-1995, Assistant Professor in Telecommunications at the
Politecnico di Torino, Associate Professor at the University of Parma, Italy,
Professor with the Department of Mobile Communications at the Eurecom
Institute, Sophia-Antipolis, France, a Professor of Electrical Engineering with
the Viterbi School of Engineering, University of Southern California, Los
Angeles, and he is currently an Alexander von Humboldt Professor with
the Faculty of Electrical Engineering and Computer Science at the Technical
University of Berlin, Germany.

He received the Jack Neubauer Best System Paper Award from the IEEE
Vehicular Technology Society in 2003, the IEEE Communications Society
& Information Theory Society Joint Paper Award in 2004 and in 2011, the
Leonard G. Abraham Prize for best IEEE JSAC paper in 2019, the Okawa
Research Award in 2006, the Alexander von Humboldt Professorship in 2014,
the Vodafone Innovation Prize in 2015, and an ERC Advanced Grant in 2018.
Giuseppe Caire is a Fellow of IEEE since 2005. He has served in the Board of
Governors of the IEEE Information Theory Society from 2004 to 2007, and as
officer from 2008 to 2013. He was President of the IEEE Information Theory
Society in 2011. His main research interests are in the field of communications
theory, information theory, channel and source coding with particular focus
on wireless communications.

Pablo Piantanida (SM ’16) received both B.Sc. in Electrical Engineering
and the M.Sc (with honors) from the University of Buenos Aires (Argentina)
in 2003, and the Ph.D. from Université Paris-Sud (Orsay, France) in 2007.
Since October 2007 he has joined the Laboratoire des Signaux et Systèmes
(L2S), at CentraleSupélec together with CNRS (UMR 8506) and Université
Paris-Sud, as an Associate Professor of Network Information Theory. He is
currently associated with Montreal Institute for Learning Algorithms (Mila) at
Université de Montréal, Quebec, Canada. He is an IEEE Senior Member and
serves as Associate Editor for IEEE Transactions on Information Forensics
and Security. He served as General Co-Chair of the 2019 IEEE Interna-
tional Symposium on Information Theory (ISIT). His research interests lie
broadly in information theory and its interactions with other fields, including
multi-terminal information theory, Shannon theory, machine learning and
representation learning, statistical inference, cooperative communications,
communication mechanisms for security and privacy.

	Introduction
	Centralized Data Shuffling
	Decentralized Data Shuffling
	Relation to Device-to-device (D2D) Caching and Distributed Computing
	Relation to Centralized, Distributed, and Embedded Index Codings
	Contributions
	Paper Organization
	Notation Convention

	System Model
	Relevant Results for Centralized Data Shuffling
	Main Results
	Proof of Theorem 1: Converse Bound under the Constraint of Uncoded Storage
	Sub-block Division of the Data Shuffling Phase under Uncoded Storage
	Proof of Theorem 1
	Discussion

	Achievable Schemes for Decentralized Data Shuffling
	Scheme A in Theorem 2
	Scheme B in Theorem 3
	Scheme C in Theorem 4
	Optimality Results of the Combined Achievable Scheme

	Conclusions
	Appendix
	References
	Biographies
	Kai Wan
	Daniela Tuninetti
	Mingyue Ji
	Giuseppe Caire
	Pablo Piantanida

