
HAL Id: hal-02956436
https://centralesupelec.hal.science/hal-02956436v1

Submitted on 2 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Specification Quality Metrics Based on Mutation and
Inductive Incremental Model Checking

Vassil Todorov, Safouan Taha, Frédéric Boulanger

To cite this version:
Vassil Todorov, Safouan Taha, Frédéric Boulanger. Specification Quality Metrics Based on Mutation
and Inductive Incremental Model Checking. NASA Formal Methods Symposium, May 2020, Moffett
Field, United States. pp.187-203, �10.1007/978-3-030-55754-6_11�. �hal-02956436�

https://centralesupelec.hal.science/hal-02956436v1
https://hal.archives-ouvertes.fr

Specification quality metrics based on mutation
and inductive incremental model checking

Vassil Todorov1,2, Safouan Taha2 and Frédéric Boulanger2

1 Groupe PSA, 78140 Vélizy-Villacoublay, France
2 Université Paris-Saclay, CNRS, CentraleSupélec, LRI, 91405 Orsay, France.

Abstract. When using formal verification on Simulink or SCADE mod-
els, an important question about their certification is how well the speci-
fied properties cover the entire model. A method using unsatisfiable cores
and inductive model checking called IVC (Inductive Validity Cores) has
been recently proposed within modern SMT-based model checkers such
as JKind. The IVC algorithm determines a minimal set of model ele-
ments necessary to establish a proof and gives back the traceability to
the design elements (lines of code) necessary for the proof. These metrics
are interesting but are rather coarse grain for certification purposes.
In this paper, we propose to use mutation combined with incremental
inductive model checking to give more precision and quality to the trace-
ability process and look inside the lines of code. Our algorithm, based on
the result of IVC, mutates the source code to determine which parts in-
side a line of code have an impact on the properties (killed mutants) and
which parts have no impact on the properties (survived mutants). Fur-
thermore, using the incremental feature present in modern SMT-solvers,
we observe that mutation can scale up to industrial models. We demon-
strate the metrics first on a simple example, then on a complex industrial
program and on the JKind benchmark.

Keywords: Formal verification · Model-based mutation · Incremental
inductive model checking · Model coverage · Symbolic model checking

1 Introduction

Today, most of the embedded application software in the automotive industry
is developed using model-based design tools such as Simulink or SCADE. This
paradigm of using a model brings a higher level of abstraction compared to the
code and has the possibility to automatically generate the final code. A system
designer creates a model by dragging and dropping blocks from a library and
simulates its behavior to check if it corresponds to what is expected.

For the development of critical systems, it has been argued that formal proof
should be applied to gain higher confidence than with testing only [17], [20], [23].
Even if these tools can prove formal properties on the model, this feature is not
well understood and used by the designers. Actually, specifying properties (based
on the requirements specification) within the aforementioned tools is not more

complicated than designing the model itself because they are written with the
same library blocks as the model. However, there are two main problems: the
proof process does not always terminate, and when a property is proved to be
valid, no further information is provided about its coverage. For certification of
critical software, we should be able to measure quality and exhaustiveness of the
proved properties.

For the first problem, we worked on the improvement of the invariant gener-
ation used in most of the modern symbolic model checkers and implemented it
in JKind [11] to improve the provability of properties involving time. Actually,
proving properties involving time is rather challenging when they involve long
durations and timers. These properties are generally not inductive and even ad-
vanced techniques such as PDR/IC3 [5] are unable to handle them on production
models in reasonable time. We proposed an algorithm [26] and a new methodol-
ogy using physical types (speed, acceleration, etc.), which restricted the number
of candidates to only those that made sense and thus outperformed the JKind
and Kind2 model checkers.

The second problem is important in the sense that even if the model checker
has proved all the properties to be valid, we cannot answer the question about
whether our model contains features that are not covered by the properties. Un-
like testing, where we can follow the execution trace, the proof process uses the
whole model, but many parts of it may not be necessary to prove the proper-
ties. This problem has been studied using the following approaches: mutation
proof [7], [9], [16], [24] and inductive validity cores [2], [3], [4], [12].

The mutation approach shown in Figure 1 consists in mutating a model
for which safety properties were proved valid, and trying to prove the same
properties on the mutated models (mutants) again. If they are proved to be
valid (the mutant has survived), the mutant reveals a part of the model that
is not covered by the properties. It can also be dead code that will never be
accessed. The algorithms used to compute coverage in the aforementioned papers
can under-approximate which parts of the model are necessary to prove the
properties and tend to be computationally very expensive because there are
many mutated models to be verified.

Fig. 1. Mutation proof framework

Inductive validity cores (IVCs) represent minimal sets of model elements nec-
essary to construct inductive proofs for the specified properties. The algorithms
proposed in the articles cited above are based on the Unsatisfiable Core support
built into current SMT solvers. They can efficiently generate over-approximated
inductive validity cores or exhaustively compute minimal ones. The authors show
that calculating IVCs is more efficient than classical state of the art mutation.
Calculating IVCs gives the coverage of properties in terms of lines of code of
the model, which is more precise than a simple syntactic slicing, but does not
look inside the lines of code and therefore does not consider the coverage of
elementary operations inside an equation.

In this paper, we propose to go further in the precision of the coverage and
zoom into the lines of code. Actually, a property can be covered by a line of
code but inside the line there may still be some code that has no impact on the
property. We argue that it is inside the lines of code that some subtle bugs can
still subsist, and it is useful to uncover them. We use mutation to mutate some
operators of the model, and symbolic model checking combined with induction-
based techniques (k -induction [25], IC3/PDR [5], [10]), and take advantage of
the incremental query capabilities of modern SMT solvers. We observed that
mutation-based coverage for model checking is no longer out of reach, and this
technique scales with our industrial use cases. We implemented this algorithm in
the JKind open-source model checker [11], which is based on the Lustre [6] formal
language. Lustre is used as base language for SCADE, so we could transform a
SCADE model into Lustre. Simulink can also be transformed into Lustre using
the CoCoSim framework developed at NASA Ames3.

2 Preliminaries

In this section, we introduce the architecture of the industrial inductive model
checker JKind [11] which is representative of other model checkers such as Kind2
and PKind.

2.1 The JKind Model Checker

JKind is an open-source industrial infinite-state model checker for safety prop-
erties. Models and properties are written in Lustre, a synchronous data-flow
language, using theories of real and integer arithmetic. JKind uses SMT-solvers
(SMTInterpol, Z3, Yices, CVC4, MathSAT) to prove or falsify the properties.
It is structured as several parallel engines that cooperate to prove properties.
Some engines are directly responsible for proving properties, some contribute to
that effort by generating invariants, and others are for post-processing proofs or
counterexample results. Each engine can be enabled or disabled separately. The
architecture of JKind is shown in Figure 2. At the center of this architecture
the Director allows any engine to broadcast information (invariants, valid and
invalid properties) to the other engines.
3 CoCoSim: https://ti.arc.nasa.gov/tech/rse/research/cocosim

https://ti.arc.nasa.gov/tech/rse/research/cocosim

Fig. 2. The JKind model checker architecture

The Bounded Model Checking (BMC) engine performs a standard it-
erative unrolling of the transition relation to find counterexamples or to serve
as the base case of k -induction. The BMC engine guarantees that any coun-
terexample it finds is minimal in the number of steps from the initial state. The
k-Induction engine performs the inductive step of k -induction, possibly using
invariants generated by other engines. The Invariant Generation engine uses
a template-based invariant generation technique [19] using its own k -induction
loop. The Property Directed Reachability (PDR) engine performs prop-
erty directed reachability [10] using the implicit abstraction technique [8]. Unlike
BMC and k -induction, each property is handled separately by a different PDR
sub-engine. The Advice engine saves invariants from previous runs of JKind
and reuses them for new proofs to decrease the verification time.

A great effort was done in JKind on the post-processing of the results. We can
cite the Smoothing counterexamples feature based on MaxSat which minimizes
the number of changes to input variables. The other important post-processing
feature is IVC.

Inductive Validity Cores (IVC). For a proven property, an inductive va-
lidity core is a subset of Lustre equations from the input model for which the
property still holds [15], [13]. An IVC is minimal when no equation can be re-
moved without breaking the provability. Depending on the model and property,
there may exist several IVCs with different sizes. A minimum IVC has the small-
est number of equations, and is not necessarily unique. Computing a minimum
IVC is more difficult than computing any IVC, because it involves an exhaustive
search. The IVC engine uses a heuristic algorithm to efficiently produce minimal
IVCs but not minimum ones. As a side-effect, the IVC algorithm also minimizes
the set of invariants used to prove a property, and shares this reduced set with
other engines (notably the Advice engine).

2.2 IVC formalizations

In this section we re-use and adapt the formalization of IVC given by Ghassabani
et al. in [14] to compare IVC to our mutation proof using similar definitions of
coverage.

Models, Requirements and Provability. Given a state space U , a transition
system (I, T) consists of an initial state predicate I : U → bool and a transition
step predicate T : U × U → bool . A safety property P : U → bool is a state
predicate that holds on a transition system (I, T) when it satisfies the following
formulas:

∀u. I(u)⇒ P (u)

∀u, u′. P (u) ∧ T (u, u′)⇒ P (u′)

When this is the case, we write (I, T) ` P .
Coming from the Lustre model that is a set of equations {eq1 . . . eqn}, the

transition relation T has the structure of a top-level conjunction T = t1∧ · · · ∧tn
where each ti is an equality corresponding to eqi. By further abuse of notation, T
is identified with the set of its top-level equalities. When an equation is removed
from the Lustre model, an equality ti is removed from T and the transition
relation becomes T \ {ti}.

Definition 1. Inductive Validity Core (IVC). S ⊆ T for (I, T) ` P is an In-
ductive Validity Core, iff (I, S) ` P ∧ ∀ti ∈ S. (I, S \ {ti}) 0 P .

As defined here, we are only interested in minimal sets that satisfy a property
P . Note that given (I, T) ` P , P always has at least one IVC, which is not
necessarily unique. For example, consider 2 boolean variables a and b initialized
to true, i.e. I = a ∧ b, and assigned true at each step T = (t1 : a = true) ∧ (t2 :
b = true). If P = a∨b then both {t1} and {t2} are IVC s. We note AIV C(P) the
set of all IVC s of P . Computing the AIV C for each property, one gets a clear
picture of all the model elements constrained by the property. The set AIV C for
all properties demonstrates a complete mapping from the requirements to the
design elements, which is called complete traceability [21].

Property and Model coverage. The article by Ghassabani et al. [14] defines
the two following metrics of coverage.

Definition 2. (May-Cov): ti ∈ T is covered by P iff ti ∈ May-Cov(P), where
May-Cov(P) = {ti | ∃S ∈ AIV C(P) · ti ∈ S}.

Definition 3. (Must-Cov): ti ∈ T is covered by P iff ti ∈ Must-Cov(P), where
Must-Cov(P) = {ti | ∀S ∈ AIV C(P) · ti ∈ S}.

This categorization of coverage helps to identify the role and relevance of each
design element in satisfying a property. Must-Cov specifies the parts of the
model that are absolutely necessary for the property satisfaction. Any change
to these parts will affect the provability of the property. On the other hand,
May-Cov parts are relevant to the proof but may be modified without affecting
the satisfaction of P . The May-Cov heuristic leads to higher coverage scores,
because Must-Cov(P) ⊆ May-Cov(P).

In JKind, the IVC engine computes one IVC and avoids exploring all possible
ones. Therefore, it partially computes the May-Cov(P) and it does not handle
Must-Cov(P).

Mutation. A mutator is a function that mutates any transition predicate T
to a set of mutants {T 1

mut, . . . , T
m
mut}, where each mutant T i

mut is obtained by
applying a small change to T .

A very simple mutator is the one that simply removes an equality ti from
T , which amounts to removing the corresponding line of code from the Lustre
model. In our framework, we call this basic mutator eq_remove (see section 4).
The authors of [15] only consider this simple mutator and define the correspond-
ing coverage as follows:

Definition 4. Mutation coverage (Mut-Cov) ti ∈ T is covered by property P
iff ti ∈ Mut-Cov(P), where Mut-Cov(P) = {ti | (I, T) ` P ∧ (I, T \ {ti}) 0 P}.

An immediate corollary proved in [15] states that if an equation is covered
by such a mutation, it is also covered by all IVCs and conversely:

Corollary 1. Mut-Cov(P) = Must-Cov(P).

The Mut-Cov metrics can be generalized to more advanced mutators. In
section 4, we will show how the Mut-Cov metrics can be improved to give a
very precise coverage inside each ti detected within Must-Cov or May-Cov.

3 Model coverage techniques

An important question for the certification of safety-critical systems is whether
the requirements and tests are covering the implementation. For example, in ISO
26262 [18], which is the functional safety standard for road vehicles, tests are de-
rived from requirements. An argumentation of why the performed tests give suf-
ficient coverage shall be provided. As the critical level increases, a more rigorous
method for test coverage (statement, branch, MC/DC) is required. If complete
coverage is not achieved, an analysis is performed to decide whether additional
tests or/and requirements are needed to increase coverage. DO-178C [22] with
its supplement DO-333 (Formal Methods) go further in offering the possibility
to use formal methods in replacement of all structural coverage objectives (in-
cluding heavyweight MC/DC), but arguments showing that coverage is achieved
by the formal proof should then be provided, see Table 1.

In this section, we present different techniques for model coverage, going
progressively from coarse-grained coverage to fine-grained coverage. We consider
the application of these techniques to the domain of inductive symbolic model
checking. We propose to use mutation-based proof, taking advantage of the pos-
sibility to request SMT solvers in an incremental way, in order to look inside
the operators in a way MC/DC does for testing. We show that the performance
of this technique is equivalent to IVC and therefore quite faster than state of
the art mutation-based methods. To the best of our knowledge, this technique
has never been studied. The closest related work on mutation-based proof does
not use inductive model checking for software verification nor incremental SMT
solving. The work of Chockler et al. [7] presents an algorithm to re-use previ-
ously computed inductive invariants and counterexamples to identify the parts

DO-178C Table A-7 Objective DO-333 Table FM.A-7 Objective
1. Test procedures are correct. FM1. Formal analysis cases and procedures are

correct.
2. Test results are correct and discrepancies ex-
plained.

FM2. Formal analysis results are correct and
discrepancies explained.

3. Test coverage of High Level Requirements
(HLRs) is achieved.

FM3. Coverage of HLRs is achieved.

4. Test coverage of Low Level Requirements
(LLRs) is achieved.

FM4. Coverage of LLRs is achieved.

5. Test coverage of software structure (modified
condition/decision coverage) is achieved.

FM5 – FM8. Verification coverage of software
structure is achieved.

6. Test coverage of software structure (decision
coverage) is achieved.

(A single objective that replaces the four struc-
tural coverage objectives in DO-178C)

7. Test coverage of software structure (state-
ment coverage) is achieved.
8. Test coverage of software structure (data
coupling and control coupling) is achieved.
9. A verification of additional code, that cannot
be traced to source code, is achieved.

FM9. Verification of property preservation be-
tween source and object code.

N/A FM10. Formal method is correctly defined, jus-
tified, and appropriate.

Table 1. DO-333 accepts replacing MC/DC coverage by formal proof coverage

of a hardware system that are covered by a property. In [9], Claessen presents
a coverage analysis based on LTL that gives the possibility to have undercon-
strained properties. In [16], the authors present an approach to estimate coverage
in BMC (Bounded Model Checking). They generate coverage properties for each
important signal for hardware verification purposes. Finally, in [24], Sayantan et
al. present a method for determining the coverage of a formal LTL specification
against a high-level fault model for hardware verification.

3.1 Simple running example

We use a simple running example to illustrate the difference between slicing, IVC
and mutation proof. Consider the SCADE model shown both graphically and
textually in Figure 3. The property Prop1 we want to prove is the output of an
OR block which takes a constant input equal to true and its negation. Obviously
this property is always true. The Lustre code is obtained by using the SCADE
option “Convert to textual” and we just add the comment on line 11 to tell JKind
which output represents our safety property to be proved (invariant that shall
always be true).

3.2 Slicing

The backward static slicing (or slicing for short) is a coarse-grained technique
that allows to remove the parts of the code that do not affect the properties to
be proved. It works by simply calculating the dependency graph for the variables
used in the properties. Modern inductive model checkers use slicing to reduce
the size of the queries sent to the SAT/SMT solver. It is interesting to see how
much of the code is removed and to check if we really need this code or if our

1 node demo () r e t u r n s (Prop1 : boo l ; d : boo l) ;
2 va r
3 L1 , L2 , L3 , L4 : boo l ;
4 l e t
5 L1 = L2 or L3 ;
6 L2 = t r u e ;
7 L3 = not L2 ;
8 L4 = not L1 ;
9 Prop1 = L1 ;

10 d = L4 ;
11 −−%PROPERTY Prop1 ;
12 t e l

Fig. 3. A simple running example in Lustre

properties are simply not complete enough. After slicing, d and L4 are removed
and we obtain the lines:

1 L1 = L2 or L3 ;
2 L2 = t r u e ;
3 L3 = not L2 ;
4 Prop1 = L1 ;

3.3 Inductive Validity Cores (IVCs)

IVCs are much smaller and more precise than static slicing. For our short ex-
ample, the IVC engine will either remove the equation of L3 because L1 does
not depend on it since L2 is true, or it will keep the equation of L3 and remove
the equation of L2 since the equation of L1 is a tautology when we consider the
equation of L3. When running IVC on Prop1, it turns out that we obtain the
first inductive validity core: {L1, L2}

1 L1 = L2 or L3 ;
2 L2 = t r u e ;

3.4 A simple mutator for Must-Cov: equation remover

We want to go further than IVC, so we propose to use a simple mutator called
“equation remover” which removes equations one by one and replays the proof
process in an incremental way (using the SMT-LIB [1] pop and push commands).
Our equation remover does not affect the properties because we want to mutate
only the model and not the specification. If after removing an equation the

properties are still proved (surviving mutant), it means that the removed equa-
tion has no impact on the proof. If the properties do not hold anymore (killed
mutant), this means that the removed equation is essential for the proof. This
mutator computes the minimum core defined as Must-Cov in section 2, whereas
IVC is working in May-Cov mode. Using this technique, we obtain that only the
equation of L1 is essential for any proof of Prop1 :

1 L1 = L2 or L3 ;

3.5 Using other mutators for deep coverage

We propose to add other mutation operators to zoom inside a line of code/e-
quation and see what is covered by the properties. We explain these operators
in detail in Section 4. For the moment, we give an example to see the difference
between mutation and IVC. Our example is shown in Figure 4.

1 node demo2 (a1 , a2 : i n t)
2 r e t u r n s (Prop1 : boo l ; b : i n t) ;
3 va r
4 d : boo l ;
5 l e t
6 d = (a1 > 0) ;
7 b = i f d or (a2 < 0) then a1 e l s e a2 ;
8 Prop1 = (b = a1 or b = a2) ;
9 −−%PROPERTY Prop1 ;

10 t e l ;

Fig. 4. Example of inlined code and if-then-else operator mutations

This model takes two inputs a1 and a2, and depending on whether their
value is positive or negative, a1 or a2 is assigned to the output b. We have a
property Prop1 specifying that the output b should take the value of a1 or a2.
If slicing is applied to this model, it will remove nothing because Prop1 depends
statically on the entire model. However, applying IVC tells us that we should
only keep b to cover our property Prop1. It is more precise than slicing because
d is not necessary to prove that property (b is always equal to a1 or a2).

Now, let us apply some mutations such as: replacing the condition of the if
statement by true or false, replacing or by xor, replacing > by < etc. This leads
to 22 possible mutations.

For Prop1 we have 5 mutants killed out of 22. If we want to cover 100%
of the code, we need to kill all mutants. To achieve this coverage, we need to
strengthen our properties. We add a second property: Prop2 = ((a1 > 0) =>
b = a1). At this stage IVC covers 100% of the model as d is now necessary to
Prop2. However, only 14 mutants are killed out of 22, see Figure 5. For example,
if the condition of the if statement at line 7 (Figure 4) is replaced by true, Prop1
and Prop2 are proved valid. This means that the condition has no impact on
these properties. Let us add a third property: Prop3 = ((a2 < 0) => b = a1).
This time, we kill 16 mutants out of 22. Finally, we need a fourth property: Prop4
= (((a1 <= 0) and (a2 >= 0)) => b = a2) to kill all 22 mutants.

1 INDUCTIVE VALIDITY CORE: b , d
2 ++
3 MUTATION:
4 KILLED at 6 :3 e qu a l_ f a l s e by [Prop2]
5 KILLED at 6 :3 equat ion_remove by [Prop2]
6 KILLED at 6 :3 i n i t _ f a l s e by [Prop2]
7 KILLED at 6 :11 g2 l by [Prop2]
8 KILLED at 6 :13 (con s t i n t 0 −> 1) by [Prop2]
9 KILLED at 7 :3 in i t_−1 by [Prop1 , Prop2]

10 KILLED at 7 :3 equal_5 by [Prop1 , Prop2]
11 KILLED at 7 :3 equal_−2 by [Prop1 , Prop2]
12 KILLED at 7 :3 equat ion_remove by [Prop1 , Prop2]
13 KILLED at 7 :3 i n i t_5 by [Prop1 , Prop2]
14 KILLED at 7 :7 i f e l s e t h e n by [Prop2]
15 KILLED at 7 :7 i f e l s e by [Prop2]
16 KILLED at 7 :12 o r 2 r i g h t by [Prop2]
17 KILLED at 7 :12 o r 2xo r by [Prop2]
18 SURVIVED at 6 :3 i n i t_ t r u e
19 SURVIVED at 6 :3 equa l_t rue
20 SURVIVED at 6 :11 g2ge
21 SURVIVED at 7 :7 i f t h e n
22 SURVIVED at 7 :12 o r 2 l e f t
23 SURVIVED at 7 :19 l 2 g
24 SURVIVED at 7 :19 l 2 l e
25 SURVIVED at 7 :21 (con s t i n t 0 −> 1)

Fig. 5. IVCs and Mutation proof results on demo2 for properties Prop1 and Prop2

4 From Mutation testing to Mutation proof

Mutation testing is used to evaluate the quality of a test suite that is a set of
test cases. It consists in modifying the program under test in small ways. Each
mutated version of the program is called a mutant and test cases are replayed
on it to detect whether its behavior is different from the behavior of the orig-
inal version. This process is called ‘killing the mutant’. The more mutants are
killed, the better are the test cases. The quality of a test suite is measured as the

percentage of killed mutants. Mutants that are left can be killed by specifying
additional test cases or justified as equivalent to the original program. Mutators
are mutation operators used to generate mutants, and they tend to mimic stan-
dard programming errors. A mutation builds a mutant by applying a mutator
on some position in the code. Taking ideas from mutation testing, we developed
a mutation proof framework for standard inductive model checking using incre-
mental SMT solving. In this section, we present our mutators and describe our
mutation proof algorithm.

4.1 Mutators

Our mutators directly modify the Lustre code. We implemented classical muta-
tors, but more advanced ones may be easily added to our framework. We present
our mutators in Table 2.

Mutator Description
or2xor OR is mutated to XOR

xor2implies XOR is mutated to =⇒
implies2and =⇒ is mutated to AND

and2or AND is mutated to OR
or2left X OR Y is mutated to X

or2right X OR Y is mutated to Y
and2left X AND Y is mutated to X

and2right X AND Y is mutated to Y
rm_not NOT is removed
eq2neq = is mutated to 6=
neq2eq 6= is mutated to =

g2ge > is mutated to ≥
ge2g ≥ is mutated to >
l2le < is mutated to ≤
le2l ≤ is mutated to <
g2l > is mutated to <
l2g < is mutated to >

ge2le ≥ is mutated to ≤
le2ge ≤ is mutated to ≥

plus2minus + is mutated to −
minus2plus − is mutated to +
rm_minus − is removed

ifthen IF condition is replaced by TRUE
ifelse IF condition is replaced by FALSE

ifelsethen THEN and ELSE statements are reversed
ConstantMutator Constant is replaced by 1

eq_remove Removes an entire equation/line of code

Table 2. Mutators for deep coverage measurement

Our first category of mutators are the boolean mutators. For example, the
and2or mutator transforms a AND b into a OR b. Then we have relational mu-
tators such as ge2le, which transforms a ≥ operator into ≤. We also have some
arithmetic mutators such as plus2minus, which replaces + by −. Branching mu-
tators act on if-then-else statements replacing the condition by TRUE or FALSE
or reversing the THEN and ELSE statements. Finally, we have the constant mu-
tator that replaces all constants by 1, and the equation remover mutator that
removes an entire line of code as seen before.

4.2 Our contribution: Mutation proof algorithm

The main contribution of our paper is the mutation proof algorithm that can
be applied to modern inductive model checkers. It takes as input the proved
properties and the invariants found during the proof process. It uses BMC
and k-induction to retry the proof on mutants. Then, it returns a verdict:
KILLED (proof fails with a counterexample), SURVIVED (proof succeeds), or
UNKNOWN (proof fails with no counterexample). Our quality metrics is the
ratio of killed mutants over the total number of mutants. The more mutants are
killed, the better is the quality of the specification, because the better is the
coverage of the model by the properties in the specification.

Algorithm 1: Mutation proof algorithm
input : M,P
output: report

1 Prove P : {P0, P1 . . .} on M
2 Invs← invariants from the proof of P on M
3 kproof ← maximum k-depth for proving P on M
4
5 foreach mutation LCM do
6 Mmut ←MUTATE(M,LCM)
7 if BMC((Mmut, ∅, ∅), P, kproof) = SAT then
8 MSAT ← getModel()
9 report += KILLED(mut:LCM, KillingProps:{Pi ∈ P | MSAT � ¬Pi})

10 else
11 SI ← FilterInvs(Invs,Mmut)
12 UP ← ∅
13 SP ← P
14 while KIND((Mmut, SI, ∅), SP, kproof) = SAT do
15 MSAT ← getModel()
16 UP = UP ∪ {Pi ∈ SP | MSAT � ¬Pi}
17 SP = P \ UP

18 if SP = P then
19 report += SURVIVED(mut:LCM)

20 else
21 if BMC((Mmut, SI, SP), UP, kkill) = SAT then
22 MSAT ← getModel()
23 report += KILLED(mut:LCM, KillingProps:{Pi ∈ UP |MSAT � ¬Pi})
24 else
25 report += UNKNOWN(mut:LCM, SurvivingProps:SP)

Before describing our algorithm, let us define its variables and functions: P
are the specification Properties, M is the original Model, Mmut is the current
mutated Model (Mutant), LCM represents a mutation in the form Line:Column
of code and Mutator, function MUTATE(M,LCM) returns the mutant Mmut

corresponding to LCM applied to M , KP are the Killing Properties, SI are the
Surviving Invariants, SP are the Surviving Properties, UP are the Unknown
Properties, kkill is a parameter for maximum k-depth to kill a mutant, functions
BMC((Model, Invariants, V alidProperties), P rop, k) and KIND(. . .) run re-
spectively BMC and K-INDuction on a model together with its invariants and its
valid properties to check new properties Prop at depth k and answer UNSAT
(all Prop are valid) or SAT (some of Prop are not valid). When the answer
is SAT , the function getModel() gives the counterexample. Finally, function
FilterInvs(invariants,Mmut) filters the invariants of the original Model M
using BMC and k-induction to find the ones that survive the mutation and are
still invariants of the current mutant Mmut.

Starting from the proof of P on M which requires the generation of invariants
Invs and induction at depth kproof , our algorithm applies a mutation LCM at
each iteration to obtain a mutant Mmut and retries the proof of P on Mmut.
It runs first BMC at depth kproof to verify whether all properties in P hold on
Mmut for the first kproof steps. If it is not the case, the mutant Mmut is already
killed by some properties in P reported within the verdict KILLED. When all
properties in P hold, which means that the base step is valid, the algorithm
will try the k-induction step after filtering the invariants Invs of M to keep
only those that are still valid for Mmut. When the k-induction step succeeds
(UNSAT), all properties in SP are k-inductive and survive, otherwise we use
the counterexample model to find the properties that are not k-inductive, add
them to the unknown properties UP , and we try again the k-induction on the
remaining properties SP \ UP . We add the non k-inductive properties to UP
because they can be valid but may require a k-induction of a higher depth. The
verdict is SURV IV ED when the k-induction succeeds at the first iteration and
in this case all properties in P hold for Mmut (i.e. P = SP and UP is empty).
If UP is not empty, we run again BMC at maximum depth kkill to try to kill
the current mutant by any property from UP . If this last attempt to kill Mmut

fails, we return the verdict UNKNOWN .

5 Implementation and initial results

5.1 Implementation

We implemented our algorithm on a GitHub fork of JKind4. Our algorithm,
shown in Figure 6, runs as a separate engine (module) of JKind and starts
at the end of the proof process. It retrieves the invariants and kproof used for
proving the properties and returns mutations verdicts.

4 JKind with Mutation on GitHub: https://github.com/v-todorov/jkind

https://github.com/v-todorov/jkind

Fig. 6. Mutation engine implementation in JKind

5.2 Optimizations

Our implementation is very efficient because instead of submitting the entire
mutated model to the SMT-solver it works in an incremental way, using pop and
push only on the mutated lines. Furthermore, to take maximum advantage of
this incremental feature, we group the mutations of the same line of code and
run them all on the same SMT-solver instance.

We introduced two major optimizations as parameters in JKind: parallel-
Mutants and ivcMutation. Firstly, unlike IVC, which cannot be parallelized,
our mutation algorithm can run each mutation proof on a different thread. We
group mutations that affect a given line of code. Different groups can be exe-
cuted in parallel. The second optimization is intended for large models and runs
the mutation only over the resulting minimal core produced by IVC. Thus IVC
eliminates the unused part of the model, and mutation runs faster based on the
results of IVC. The designer should be informed of the unused part in order to
be able to write some additional properties about it.

5.3 Initial results

We used the benchmark of JKind (from GitHub), which provides Lustre files
and properties to be proved. We selected 22 example Lustre files with only valid
properties, because it is not useful to analyze the coverage of invalid properties.
We used a laptop equipped with an Intel Xeon E-2176M CPU and 32GB RAM
to run the benchmarks. We applied IVC alone, Mutation with equation removing
only, and Mutation with all mutators activated. We activated the parallelMutants
option to use the 6 cores of our CPU and we did not activate IVC when running
Mutation. The results are shown in Figure 7. On the left, we see the results that
compare Mutation with only the equation removing mutator (Mut-Eq) to IVC.
We notice that in 82% of the use cases we obtained equal times for calculating
IVC and Mut-Eq, in 9% of the cases mutation (Mut-Eq) was faster than IVC
and in another 9% it was slower. For Mutation using all mutators (Mut-All), we
had same execution times in 59% of the cases, mutation (Mut-All) was faster
than IVC in 5% of the cases, and it was slower in 36% of the cases.

The unsat cores given by most SMT solvers are not necessarily minimal,
IVC needs some backtracking to reduce them to minimal ones. The IVC imple-
mentation in JKind is sequential and requires calculation power. On the other
hand, our algorithm runs in parallel and uses incremental SMT solving. Thus, we

obtain a greater coverage precision thanks to the mutation, with an equivalent
performance most of the time.

Fig. 7. Comparison between equation remover mutation/full mutation and IVC

5.4 Industrial use case results

We also used a representative industrial use case that is a cruise control func-
tion developed in SCADE (1250 lines of Lustre code), with some valid safety
properties coming from high level requirements [26]. Using IVC, as well as using
mutation with equation removing only, shows that all lines of code were cov-
ered and therefore necessary to the specification proof, but when running our
mutation proof framework with all mutators activated, we only obtained 39%
of killed mutations. This means that we need to strengthen the properties e.g.
by adding additional ones to kill the 61% surviving mutations. In particular, we
found some interesting mutations of if-then-else statements revealing branches
that were not covered by the original properties.

6 Conclusions and Future work

In this paper we proposed a new coverage metrics for evaluating the quality of
properties (specification) that are proved valid using model checking on a given
model (program). The algorithm we used is particularly efficient unlike classical
mutation testing techniques. Its efficiency comes from the fact that instead of
submitting each mutant to the SMT solver, we only submit the original model
once and we iteratively remove (pop) an equation and push its mutated version
to check all mutants. The mutation process can also be run in parallel and thus
its performance is almost equivalent to IVC, another heuristic algorithm to find
the coverage of the properties on a model. The main advantage of our mutation
framework over IVC is that we can look inside the lines of code and see the effect
of mutating a constant, a variable or an operator.

As a future work, we will develop a link between invariant generation and
mutation proof. It consists in finding parts of the code that are not covered by
the automatically generated invariants and highlight them to give an immediate
feedback to the designer who will need to strengthen the specification on that
particular parts of the code. It will improve the provability of the specification
and its quality.

References

1. Barrett, C., Stump, A., Tinelli, C., Boehme, S., Cok, D., Deharbe, D., Dutertre,
B., Fontaine, P., Ganesh, V., Griggio, A., Grundy, J., Jackson, P., Oliveras, A.,
Krstić, S., Moskal, M., Moura, L.D., Sebastiani, R., Cok, T.D., Hoenicke, J.: The
SMT-LIB Standard: Version 2.0. Tech. rep. (2010)

2. Bendík, J., Ghassabani, E., Whalen, M., Černá, I.: Online Enumeration of All
Minimal Inductive Validity Cores. In: Johnsen, E.B., Schaefer, I. (eds.) Software
Engineering and Formal Methods. pp. 189–204. Springer International Publishing,
Cham (2018)

3. Bendík, J., Černá, I., Beneš, N.: Recursive Online Enumeration of All Minimal
Unsatisfiable Subsets. In: Lahiri, S.K., Wang, C. (eds.) Automated Technology for
Verification and Analysis. pp. 143–159. Springer International Publishing, Cham
(2018)

4. Berryhill, R.: Chasing Minimal Inductive Validity Cores in Hardware Model Check-
ing (Oct 2019)

5. Bradley, A.R., Manna, Z.: Property-directed incremental invariant generation. For-
mal Aspects of Computing 20, 379–405 (2008)

6. Caspi, P., Pilaud, D., Halbwachs, N., Plaice, J.A.: LUSTRE: A Declarative Lan-
guage for Real-time Programming. In: POPL ’87. pp. 178–188. ACM (1987)

7. Chockler, H., Kupferman, O., Kurshan, R.P., Vardi, M.Y.: A Practical Approach to
Coverage in Model Checking. In: Berry, G., Comon, H., Finkel, A. (eds.) Computer
Aided Verification. pp. 66–78. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

8. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 Modulo Theories via Implicit
Predicate Abstraction. CoRR abs/1310.6847 (2013)

9. Claessen, K.: A Coverage Analysis for Safety Property Lists. In: Formal Methods
in Computer Aided Design (FMCAD’07). pp. 139–145 (Nov 2007)

10. Een, N., Mishchenko, A., Brayton, R.: Efficient Implementation of Property Di-
rected Reachability. pp. 125–134. FMCAD ’11, Austin (2011)

11. Gacek, A., Backes, J., Whalen, M., Wagner, L., Ghassabani, E.: The JKind Model
Checker. In: Chockler, H., Weissenbacher, G. (eds.) Computer Aided Verification.
pp. 20–27. Springer, Cham (2018)

12. Ghassabani, E., Whalen, M., Gacek, A., Heimdahl, M.: Inductive Validity Cores.
IEEE Transactions on Software Engineering pp. 1–1 (Jan 2019)

13. Ghassabani, E., Gacek, A., Whalen, M.W.: Efficient Generation of Inductive Va-
lidity Cores for Safety Properties. In: Proc. of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering. pp. 314–325.
FSE 2016, ACM, New York (2016)

14. Ghassabani, E., Gacek, A., Whalen, M.W., Heimdahl, M.P.E., Wagner, L.: Proof-
based Coverage Metrics for Formal Verification. In: Proceedings of the 32Nd
IEEE/ACM International Conference on Automated Software Engineering. pp.
194–199. ASE 2017, IEEE Press, Piscataway, NJ, USA (Nov 2017), event-place:
Urbana-Champaign, IL, USA

15. Ghassabani, E., Whalen, M., Gacek, A.: Efficient Generation of All Minimal Induc-
tive Validity Cores. In: Proceedings of the 17th Conference on Formal Methods in
Computer-Aided Design. pp. 31–38. FMCAD ’17, FMCAD Inc, Austin, TX (Nov
2017), event-place: Vienna, Austria

16. Große, D., Kühne, U., Drechsler, R.: Estimating Functional Coverage in Bounded
Model Checking. In: Proceedings of the Conference on Design, Automation and
Test in Europe. pp. 1176–1181. DATE ’07, EDA Consortium, San Jose, CA, USA
(2007), event-place: Nice, France

17. Hardin, D., Hiratzka, T.D., Johnson, D.R., Wagner, L., Whalen, M.: Development
of Security Software: A High Assurance Methodology. In: Proceedings of the 11th
International Conference on Formal Engineering Methods: Formal Methods and
Software Engineering. pp. 266–285. ICFEM ’09, Springer-Verlag, Berlin, Heidelberg
(2009), event-place: Rio de Janeiro, Brazil

18. ISO: Road vehicles – Functional safety (2011)
19. Kahsai, T., Garoche, P.L., Tinelli, C., Whalen, M.: Incremental Verification with

Mode Variable Invariants in State Machines. In: Proceedings of the 4th Interna-
tional Conference on NASA Formal Methods. pp. 388–402. NFM’12, Springer-
Verlag, Berlin, Heidelberg (2012)

20. Miller, S.P., Whalen, M.W., Cofer, D.D.: Software Model Checking Takes off. Com-
mun. ACM 53(2), 58–64 (Feb 2010)

21. Murugesan, A., Whalen, M.W., Ghassabani, E., Heimdahl, M.P.E.: Complete
traceability for requirements in satisfaction arguments. In: 2016 IEEE 24th In-
ternational Requirements Engineering Conference (RE). pp. 359–364

22. RTCA DO-178C: Software Considerations in Airborne Systems and Equipment
Certification. Washington, DC (December 2011)

23. Rushby, J.: Software Verification and System Assurance. In: 2009 Seventh IEEE
International Conference on Software Engineering and Formal Methods. pp. 3–10
(Nov 2009)

24. Sayanlan Das, Ansuman Banerjee, Prasenjit Basu, Pallab Dasgupta, Chakrabarti,
P.P., Chunduri Rama Mohan, Fix, L.: Formal methods for analyzing the complete-
ness of an assertion suite against a high-level fault model. In: 18th International
Conference on VLSI Design held jointly with 4th International Conference on Em-
bedded Systems Design. pp. 201–206 (Jan 2005)

25. Sheeran, M., Singh, S., Stålmarck, G.: Checking Safety Properties Using Induction
and a SAT-Solver. In: FMCAD 2000, pp. 127–144

26. Todorov, V., Taha, S., Boulanger, F., Hernandez, A.: Improved invariant generation
for industrial software model checking of time properties. In: Proceedings of the
19th IEEE International Conference on Software Quality, Reliability, and Security.
pp. 334–341. IEEE, Sofia, Bulgaria (Oct 2019)

	Specification quality metrics based on mutation and inductive incremental model checking

