
HAL Id: hal-02960783
https://centralesupelec.hal.science/hal-02960783

Submitted on 14 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal robust fault detection of discrete-time LPV
systems with measurement error-affected scheduling

variables combining ZKF and pQP
Junbo Tan, Sorin Olaru, Feng Xu, Xueqian Wang, Bin Liang

To cite this version:
Junbo Tan, Sorin Olaru, Feng Xu, Xueqian Wang, Bin Liang. Optimal robust fault detection of
discrete-time LPV systems with measurement error-affected scheduling variables combining ZKF
and pQP. International Journal of Robust and Nonlinear Control, 2020, 30 (16), pp.6782-6802.
�10.1002/rnc.5138�. �hal-02960783�

https://centralesupelec.hal.science/hal-02960783
https://hal.archives-ouvertes.fr


Optimal Robust Fault Detection of Discrete-time LPV
Systems with Measurement Error-affected Scheduling

Variables Combining ZKF and pQP

Junbo Tan1,2,3, Sorin Olaru2, Feng Xu3∗, Xueqian Wang3∗ and Bin Liang1

1Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, 100084 Beijing,
P.R.China.
2Laboratory of Signals and Systems, Univ. Paris-Sud-CentraleSupelec-CNRS, Université Paris Saclay.
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SUMMARY

Optimal robust state estimation (SE) and fault detection (FD) methods of discrete-time linear parameter
varying (LPV) systems with measurement error-affected scheduling variables are proposed under the
boundedness assumption of system uncertainties. By using the weighted Frobenius norm of the generator
matrix of SE zonotope to characterize the set size, the optimal observer gain can be computed by a Zonotopic
Kalman Filter (ZKF) procedure for the purpose of observation. Meanwhile, by minimizing the influence of
system uncertainties while maximizing that of faults on SE to enhance the sensitivity of FD, the optimal FD
criterion is characterized based on an on-line fractional programming problem, which can be equivalently
transformed into a parametric quadratic programming (pQP) problem. The pQP problem can be efficiently
solved by searching the root of its nonlinear characteristic equation using secant method. In general, as long
as sensors with sufficiently high precision are equipped to measure the scheduling variables, the bounds of
measurement errors of scheduling variables can be less conservative than those direct bounds of scheduling
variables, which can reduce the conservatism of FD or SE in this way. At the end of this paper, a case study
based on a practical circuit model is used to illustrate the effectiveness of the proposed method. Copyright
c© 2016 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Optimal Robust Faut Detection, State Estimation, LPV systems, Inexact Scheduling
Variables.

1. INTRODUCTION

As industrial systems become more and more complex, there always exist faults occurrence during
the operation of system. State estimation (SE) and fault detection (FD) are often key steps for
the aim of advanced monitory and control requirements in many engineering applications [1][2].
Fault diagnosis techniques have attracted a great number of attentions since they play an important
role in real-time detecting, isolating and estimating (identifying) the occurred faults in sensors,
actuators or system plant itself [3] [4]. The model-based SE and FD rely on establishing an effective
mathematical model for real physical systems by using differential and difference equations.
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In recent years, there is a large volume of published studies dealing with LPV modeling methods 
since LPV systems can be considered as a representation of nonlinear systems but own a model 
structurally-similar with linear systems at each equilibrium point [5]. Some techniques for linear 
systems can be further used to handle sub-classes of nonlinear systems by means of LPV systems as 
a bridge collecting linear and nonlinear systems [6][7][8][9]. It is worthy to mention that most 
of works on SE and FD for LPV systems only consider perfectly known scheduling variables 
[10][11][12][13], while a more general situation is that the scheduling variables are often affected 
by the measurements noises and limited to the accuracy of equipped sensors [14].

In general, model-based SE and FD can be divided into two categories according to the 
different approaches dealing with system uncertainties. In particular, the stochastic approaches 
characterize system uncertainties using random variables to implement SE and FD [15][16], whose 
classical representation is Kalman Filtering technology. The deterministic approaches consider that 
system uncertainties are unknown and bounded to generate bounding sets for completion of SE 
and FD, such as interval observers, invariant-set methods, set-membership estimation and so on 
[2][17][18][19][20]. Since these set-theoretic methods consider the sets of system uncertainties 
and all possible situations of system states, the robustness of SE and FD can be guaranteed.
[21] proposed a robust FD method for LPV systems using interval observer and zonotopes. The 
recent study in [22] combined the standard Kalman Filtering with zonotopic geometry to realize 
the optimal SE for linear time varying (LTV) systems based on the so-called ZKF procedure 
with a proof of robust convergence, which results in an explicit bridge between the zonotopic 
set-membership and the stochastic paradigms for Kalman Filtering by introducing the notion of 
covariation. Based on [22], [20] further considered the ZKF optimizing FD rather than SE for LTV 
systems by using generalized eigenvalues/eigenvectors technique, in which the main optimization 
problem is approximately transformed into maximizing the general Rayleigh quotient able to be 
solved by using generalized eigenvalues/eigenvectors. [23] used zonotopic unknown input observer 
(UIO) to implement robust fault detection and isolation for discrete-time LTV descriptor systems.

For a real physical system, system disturbances and measurement noises have an important effect 
on the results of SE and FD. The main idea behind most of robust SE and FD methods is to attenuate 
the impact of uncertainties as much as possible without providing any information of the estimation 
accuracy and detection effectiveness. FD filters should be designed such that the generated residual 
signal is sensitive to the faults while insensitive to system uncertainties[24]. Based on the work in 
[22], we further consider the optimal FD by maximizing the effect of faults on the size of the SE 
zonotope while minimizing that of system uncertainties to dramatically improve the performance 
of FD at the price of slightly sacrificing the accuracy of SE. Note that, compared with [20] using 
the generalized eigenvalues/eigenvectors to maximize the generalized Rayleigh quotient to obtain 
the approximately optimal gain of FD observer, our proposed method can obtain a strict global 
optimal solution for the gain design of FD observer. Meanwhile, the proposed method mainly deals 
with the optimal robust FD for LPV systems with measurement-error affected scheduling variables 
representing a wider practical application process compared to the LTV systems used in [20] and 
the ordinary LPV systems in [21]. Certainly, the computational burden of our proposed method 
is relatively higher than the generalized eigenvalues/eigenvectors proposed in [20]. However, the 
optimization problem of the proposed method to be solved at each step is just a convex quadratic 
programming problem, which has been able to be solved by many efficient t oolboxes, s uch as 
YALMIP [25], CVX [26] and so on. In this sense, the computation burden of our proposed method 
is also acceptable and tolerable.

For the clarity of this paper, the main contributions of this paper are summarized as follows:

• An optimal observer gain for observation purpose is computed by using the ZKF procedure
for discrete-time LPV systems with measurement error-affected scheduling variables.
• Establish a fractional programming to maximize the effect of faults while minimize that of

system uncertainties on SE to enhance the sensitivity of FD.
• Transform the fractional programming to the pQP problem to obtain optimal observer gain for

FD purpose, which can be efficiently solved by searching a root for its characteristic equation
using secant method.
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The remainder of this paper is organized as follows. Section 2 mainly introduces a general model
of discrete-time LPV systems affected by additive actuator and sensor faults and the corresponding
design of FD observer considering measurement error-affected scheduling variables. The system
behaviors and stability are analyzed and the ZKF-based optimal SE is proposed in Section 3.
The optimal robust FD based on the pQP approach is further illustrated in Section 4. Simulation
results are provided to show the effectiveness of the proposed method in Section 5. Finally, some
conclusions are drawn in Section 6.

2. PLANT MODEL

This section introduces a general model of discrete-time LPV systems affected by additive actuator
and sensor faults and the corresponding FD observer for this kind of LPV systems.

2.1. System Plant

The LPV plant under the effect of actuator and sensor faults is modeled as

xk+1 = A(θk)xk +B(θk)uk +G(θk)fk + E(θk)wk, (1a)
yk = C(θk)xk +D(θk)uk +H(θk)sk + P (θk)vk, (1b)

where A(θk) ∈ Rnx×nx , B(θk) ∈ Rnx×nu , G(θk) ∈ Rnx×nf , E(θk) ∈ Rnx×nw , C(θk) ∈ Rny×nx ,
D(θk) ∈ Rny×nu , H(θk) ∈ Rny×ns and P (θk) ∈ Rny×nv are parametric matrices dependent on
a scheduling vector θk ∈ Rnθ . k denotes the k-th discrete time instant. xk ∈ Rnx and yk ∈ Rny
denote the system state and output vectors, respectively. uk ∈ Rnu , wk ∈ Rnw and vk ∈ Rnv denote
the known inputs, the unknown inputs and the measurement noises, respectively. fk ∈ Rnf and
sk ∈ Rns represent the additive actuator and sensor faults, respectively. It is assumed that the
unknown inputs wk (including process disturbances, modeling errors, etc.) and the measurement
noises vk are bounded by zonotopes W = wc ⊕MwBnw = 〈wc,Mw〉 and V = vc ⊕MvBnv =
〈vc,Mv〉, respectively. The additive actuator faults fk and sensor faults sk are contained in zonotopes
F = f c ⊕MfBnf = 〈fc,Mf 〉 and S = sc ⊕MsBns = 〈sc,Ms〉, respectively.

Assumption 2.1
The original system (1) is bounded-input, bounded-output (BIBO) stable. That is, given bounded
input vector uk, the system output yk is also bounded.

It is assumed that the nθ-dimensional scheduling vector θk is bounded by a polytopic hypercube
Θ, i.e., θk ∈ Θ, and θik is the i-th component of vector θk = [θ1

k, ..., θ
i
k, ..., θ

nθ
k ]T . Therefore, a linear

affine function Ξ(θk) of θk is also bounded by a polytopic set and can be written as the sum of vertex
matrices of this set:

Ξ(θk) =

N∑
i=1

λi(θk)Ξi, (2)

where Ξi is the i-th vertex matrix of the set Ξ(Θ), N = 2nθ is the number of vertex matrices and
the weighting coefficients satisfy

∑N
i=1 λi(θk) = 1, 0 ≤ λi(θk) ≤ 1. Here Ξ can represent matrices

A, B, G, E, C, D, H and P in (1). In some existing works on SE and FD of LPV systems, it is
often considered that the scheduling vector θk is perfectly measured. However, this is an unrealistic
assumption because there always exists a measurement error between the actual value θk and the
measured value θ̂k, which is denoted as

θ̃k = θk − θ̂k, (3)

where θ̃k denotes the measurement error vector of sensors equipped in the real system to measure 
the scheduling variables. In general, the measurement errors of sensors are derived from their 
measurement precision and it is considered that the measurement precision of sensors used to obtain 
the bounds of measurement errors can be read from their performance specifications, which are R2-1
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denoted as θ̃k ∈ Θ̃.
In general, the size of measurement error set Θ̃ of scheduling vector θk is much smaller than that

of the polytopic hypercube Θ, based on which we are able to obtain less conservative results of SE
or FD.

2.2. Design of FD Observer

We consider designing a Luenberger-structure FD observer for the discrete-time LPV system (1) as

x̂k+1 = A(θ̂k)x̂k +B(θ̂k)uk + L(θ̂k)(yk − ŷk) (4a)

ŷk = C(θ̂k)x̂k +D(θ̂k)uk, (4b)

where x̂k ∈ Rnx and ŷk ∈ Rny are the estimated state vector and output vector of (1), respectively.
θ̂k =

[
θ̂1
k, θ̂

2
k, ..., θ̂

nθ̂
k

]T
denotes an actual measurement of θk with

θ̂k ∈ Θ,

where θ̂k denotes the measurement values of scheduling vector θk and θ̂ik denotes the i-th component
of θ̂k. Note that, by projecting θ̂k into the bounding set Θ, we can obtain the measurement θ̂k
confined inside Θ ( see [27] for more detailed explanations on this point). Therefore, the following
polytopic decomposition

Ξ(θ̂k) =

N∑
i=1

λi(θ̂k)Ξi

can be obtained. Here, it is considered that Ξ(θk) (or Ξ(θ̂k)) is the affine function of θk (or θ̂k). That
is

Ξ(θk) = Ξ0 +

nθ∑
i=1

Ξiθik,Ξ(θ̂k) = Ξ0 +

nθ∑
i=1

Ξiθ̂ik (5)

where Ξ0, Ξ1, · · · , and Ξnθ are constant matrices.
By combining (5) and (3), we have the following results:

Ξ(θk) = Ξ(θ̂k) + Ξ(θ̃k). (6)

where Ξ(θ̃k) =
∑nθ

i=1 Ξiθ̃ik.

Remark 2.1
It must be emphasized that the notations Ξi in (2) and Ξi in (5) have different meanings. The former
denotes the i-th vertex matrix of the hypercube set Ξ(Θ), while the latter denotes the coefficient
matrix of the i-th component of θk (or θ̂k) of linear form of Ξ(θk) (or Ξ(θ̂k)).

For the convenience of illustration, we simplify the symbol Ξ(θk) (Ξ(θ̂k) or Ξ(θ̃k)) as Ξθk (Ξ
θ̂

kor R2-2
Ξθ̃k). For a clear explanation of the proposed methods, both the affine and polytopic forms of LPV
system are used in the mathematical derivations of this paper.

3. SYSTEM BEHAVIORS

This section mainly derives the state-estimation-error dynamics and optimal SE set in the healthy 
situation by using a ZKF procedure.
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3.1. Analysis of System Behaviors

With (1) and (4), the state-estimation error is defined as

ek = xk − x̂k, (7)

whose dynamics can be further derived as

ek+1 =(Aθk − Lθ̂kCθk)ek + (Aθ̃k − Lθ̂kC θ̃k)x̂k + (Bθ̃k − Lθ̂kDθ̃
k)uk

+Gθkfk + Eθkwk − Lθ̂kHθ
ksk − Lθ̂kP θk vk. (8)

Moreover, the output estimation error (i.e., the residual signal) is defined as

rk =yk − ŷk = Cθkek + C θ̃k x̂k +Dθ̃
kuk +Hθ

ksk + P θk vk. (9)

We consider the dynamics (8) and (9) in the healthy situation without the effect of the fault signals
fk and sk:

ēk+1 =(Aθk − Lθ̂kCθk)ēk + (Aθ̃k − Lθ̂kC θ̃k)x̂k + (Bθ̃k − Lθ̂kDθ̃
k)uk + Eθkwk − Lθ̂kP θk vk, (10a)

r̄k =Cθk ēk + C θ̃k x̂k +Dθ̃
kuk + P θk vk. (10b)

The set version of the dynamics (10) can be derived as

Ēk+1 =(Aθ̂k +AΘ̃ − Lθ̂kC θ̂k − Lθ̂kCΘ̃)Ēk ⊕ (AΘ̃ − Lθ̂kCΘ̃)x̂k ⊕ (BΘ̃ − Lθ̂kDΘ̃)uk

⊕ (E θ̂k + EΘ̃)W ⊕ (−Lθ̂kP θ̂k − Lθ̂kP Θ̃)V, (11a)

R̄k =(C θ̂k + CΘ̃)Ēk ⊕ CΘ̃x̂k ⊕DΘ̃uk ⊕ (P θ̂k + P Θ̃)V. (11b)

where AΘ̃, BΘ̃, CΘ̃, DΘ̃, EΘ̃ and P Θ̃ are the interval matrices containing Aθ̃k, Bθ̃k , C θ̃k , Dθ̃
k, E θ̃k and

P θ̃k respectively. More detailed introduction about interval analysis and operation can be referred
to[28]. Furthermore, the center-generator matrix form of (11) can be obtained as

M ē
k+1 =

[
(Aθ̂k − Lθ̂kC θ̂k)M̄ ē

k seg(�(AΘ̃M̄ ē
k)) rad(AΘ̃ēck) −Lθ̂kseg(�(CΘ̃M̄ ē

k))

−Lθ̂krad(CΘ̃ēck) −Lθ̂krad(CΘ̃x̂k) −Lθ̂krad(DΘ̃uk) rad(AΘ̃x̂k)

rad(BΘ̃uk) −Lθ̂kseg(�((P θ̂k + P Θ̃)Mv)) −Lθ̂krad((P θ̂k + P Θ̃)vc)

seg(�((E θ̂k + EΘ̃)Mw)) rad((E θ̂k + EΘ̃)wc)
]
, (12a)

ēck+1 = (Aθ̂k + mid(AΘ̃)− Lθ̂kC θ̂k − Lθ̂kmid(CΘ̃))ēck + (mid(AΘ̃)− Lθ̂kmid(CΘ̃))x̂k

+ (mid(BΘ̃)− Lθ̂kmid(DΘ̃))uk − Lθ̂k(P θ̂k + mid(P Θ̃))vc + (E θ̂k + mid(EΘ̃))wc,
(12b)

M r̄
k =

[
seg(�((C θ̂k + CΘ̃)M̄ ē

k)) rad((C θ̂k + CΘ̃)ēck) rad(CΘ̃x̂k) rad(DΘ̃uk)

seg(�((P θ̂k + P Θ̃)Mv)) rad((P θ̂k + P Θ̃)vc)
]
, (12c)

r̄ck = (C θ̂k + mid(CΘ̃))ēck + mid(CΘ̃)x̂k + mid(DΘ̃)uk + (P θ̂k + mid(P Θ̃))vc (12d)

where M ē
k , ēck, M r̄

k and r̄ck are the generator matrices and centers of Ēk and R̄k, respectively.
M̄ ē
k is the order-reduction matrix of M ē

k
ē
k =↓λ,W (M ē

k, i.e., M̄ ) ( Zonotope-order reduction is a R2-3
contribution from [22]. Please refer Appendix B for more details.)

The FD criterion lies in real-time checking whether

r̄k ∈ R̄k (13)

Administrateur
Note
introduce a space

Administrateur
Note
i sugget to place the content of this paranthesis in a foonote
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holds or not. (13) is equivalent to the following relationship:

0 ∈ {−r̄k} ⊕ R̄k = Rk = 〈cRk
,MRk

〉. (14)

If there is a violation of (14), i.e., 0 6∈ Rk, it is considered that faults have occurred in system (1).
Otherwise, we still consider that the system (1) operates in the healthy situation.

3.2. Stability analysis

According to (10a), it can be found that the dynamics (10a) of the SE error ēk involves in the state
estimation x̂k. Thus, in order to analyze the stability of the dynamics (10a), we integrate (4a) and
(10a) to construct the following augmented dynamics:

ζk+1 = Φ0ζk + Φ1µk + Φ2wk + Φ3vk, (15)

where

Φ0 =

[
Aθ̂k − Lθ̂kC θ̂k 0

Aθ̃k − Lθ̂kC θ̃k Aθk − Lθ̂kCθk

]
,Φ1 =

[
Lθ̂k Bθ̂k − Lθ̂kDθ̂

k

0 Bθ̃k − Lθ̂kDθ̃
k

]
,

Φ2 =

[
0
Eθk

]
,Φ3 =

[
0

−Lθ̂kP θk

]
, ζk =

[
x̂k
ēk

]
, µk =

[
yk
uk

]
.

As we can see, the input µk of the augmented dynamics (15) is composed of the known system input
uk and the known system output yk. Under Assumption 2.1, the augmented input µk is bounded.
Meanwhile, considering that the uncertain factors wk and vk are also bounded, i.e., wk ∈W and
vk ∈ V, they will not affect the BIBO stability of the augmented dynamics (15). Thus, we directly
consider the stability of the following nominal system:

ζ̄k+1 = Φ0ζ̄k, (16)

Here, stability results in Lemmas 3.1 and 3.2 taken from [29] and [30] are first recalled for the
stability analysis of the dynamics (16).

Lemma 3.1
Considering the discrete LPV system:

xk+1 =

[
Aθ̂11,k 0

Aθ̂21,k Aθ̂22,k

]
xk (17)

and assume that Aθ̂11,k and Aθ̂22,k are poly-quadratically stable†, respectively, then the LPV system
(17) is poly-quadratically stable.

Lemma 3.2
The dynamics xk+1 = Aθ̂kxk is poly-quadratically stable if and only if there exists symmetric
definite matrices Si, Sj and matrices Gi such that[

Gi+G
T
i −Si ∗

AiGi Sj

]
� 0, ∀ i, j = 1, 2, , N, (18)

where the symbol ∗ denotes the transpose of AiGi. In this case, the time-varying parameter
dependent Lyapunov function for the stability is given as V (xk, λ

θ̂
i,k) = xTk P

θ̂
kxk with P θ̂k =∑N

i=1 λ
θ̂
i,kS

−1
i ,

∑N
i=1 λ

θ̂
i,k = 1 and 0 ≤ λθ̂i,k ≤ 1.

†The expression on the stability of a matrix Aθ̂k means the stability of the system xk+1 = Aθ̂kxk.
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Theorem 3.1
The dynamics (16) is poly-quadratically stable if there exist symmetric definite matrices Si, Sj and
matrices Gi such that [

Gi +GTi − Si ∗
(Ai − LtCi)Gi Sj

]
� 0 (19)

∀ i, j, t = 1, 2, · · · , N with the indices defined as Aθk =
∑N

i=1 λ
θ
i,kAi, A

θ̂
k =

∑N
i=1 λ

θ̂
i,kAi, C

θ
k =∑N

i=1 λ
θ
i,kCi,C

θ̂
k =

∑N
i=1 λ

θ̂
i,kCi, and Lθ̂k =

∑N
t=1 λ

θ̂
t,kLt, where the symbol ∗ denotes the transpose

of (Ai − LtCi)Gi.

Proof
From Lemma 3.1, the stability condition of Φ0 can be formulated into the simultaneous stability
problems of Aθ̂k − Lθ̂kC θ̂k and Aθk − Lθ̂kCθk . For the stability conditions of Aθ̂k − Lθ̂kC θ̂k , by using the
results in Lemma 3.2, we can first derive the following stability conditions:[

Gi +GTi − Si ∗
ΛiGi Sj

]
� 0

with Λi = Ai − Lθ̂kCi by decomposing Aθ̂k =
∑N

i=1 λ
θ̂
i,kAi and C θ̂k =

∑N
i=1 λ

θ̂
i,kCi for i, j =

1, 2, ...,N , where Si and Sj are symmetric definite matrices with proper dimensions, and Gi

are matrices with proper dimensions. Furthermore, with the polytopic decomposition of Lθ̂k =∑N
t=1 λ

θ̂
t,kLt, we can have Λi =

∑N
t=1 λ

θ̂
t,k(Ai − LtCi). Thus, we are able to further have[

Gi +GTi − Si ∗
ΛiGi Sj

]
=

N∑
t=1

λθ̂t,k

[
Gi +GTi − Si ∗
(Ai − LtCi)Gi Sj

]

which implies that as long as (19) holds for ∀t = 1, 2, ...,N , the matrix
[
Gi +GTi − Si ∗

ΛiGi Sj

]
is

also positive definite. Similarly, we can also derive the same stability conditions for Aθk − Lθ̂kCθk .
Therefore, according to Lemmas 3.1 and 3.2, the dynamics (16) is quadratically stable.

3.3. Optimal observer gain for robust SE

Regarding the design of the gain for SE purposes, the main goal is to reduce the effect of system
uncertainties on SE. In the healthy situation, the estimated state set Xk at time instant k can be
computed by Xk = x̂k ⊕ Ēk. It can be found that the precision of SE is determined by the size of
the set Ēk. That means, if we can compute the gain matrix Lθ̂k to minimize the size of Ēk, we can
obtain the optimal SE. It is known that the shape and size of a zonotope are completely determined
by its generator matrix. Because the weighted Frobenius norm of a matrix sufficiently considers its
effects, we use the weighted Frobenius norm of the generator matrix of a zonotope to describe its
size here (the details on the weighted Frobenius norm based size of zonotope is referred to [31] and
[22]). As presented in (11a) and (12a), the size of zonotope Ēk+1 can be directly assessed by the
M ē
k+1. Moreover, for brevity, we use the square of the weighted Frobenius norm of the generator

matrix M ē
k+1 to describe the size of Ēk+1:

‖
〈
ēck+1,M

ē
k+1

〉
‖2F,W = ‖M ē

k+1‖2F,W = tr(WM ē
k+1M

ēT

k+1).

Theorem 3.2
(Optimal Gain for Robust SE) Considering ēk ∈ Ēk = 〈ēck, M̄ ē

k〉 at time instant k, the optimal
observer gain L∗k minimizing the weighted Frobenius-norm based size of bounding zonotope Ēk+1

at time instant k + 1 is computed as

L∗k = Aθ̂kK∗, (20)
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with

K∗ =LS−1,L = QMC θ̂
T

k ,S = C θ̂kQMC θ̂
T

k +QΘ̃ +Qv,QM = M̄ ē
kM̄

ēT

k ,

Qv =seg(�((P θ̂k + P Θ̃)Mv))seg(�((P θ̂k + P Θ̃)Mv))
T ,

QΘ̃ =seg(�(CΘ̃M̄ ē
k))seg(�(CΘ̃M̄ ē

k))T + rad(CΘ̃ēck)rad(CΘ̃ēck)T + rad(CΘ̃x̂k)rad(CΘ̃x̂k)T

+ rad(DΘ̃uk)rad(DΘ̃uk)T + rad((P θ̂k + P Θ̃)vc)rad((P θ̂k + P Θ̃)vc)T .

Proof
According to (12a), we have

‖M ē
k+1‖2F,W =tr(WM ē

k+1M
ēT

k+1)

=tr
(
W (Aθ̂k − Lθ̂kC θ̂k)QM (Aθ̂k − Lθ̂kC θ̂k)T +WLθ̂k(Qv +QΘ̃)Lθ̂

T

k

+W seg(�(AΘ̃M̄ ē
k))seg(�(AΘ̃M̄ ē

k))T +Wrad(AΘ̃ēck)rad(AΘ̃ēck)T

+Wrad(AΘ̃x̂k)rad(AΘ̃x̂k)T +Wrad(BΘ̃uk)rad(BΘ̃uk)T

+W seg(�((E θ̂k + EΘ̃)Mw))seg(�((E θ̂k + EΘ̃)Mw))T

+Wrad((E θ̂k + EΘ̃)wc)rad((E θ̂k + EΘ̃)wc)T
)
.

It can be found that ‖M ē
k+1‖2F,W is convex with respect to Lθ̂k. Moreover, Lθ̂k is a free parametric

matrix and there are no constraints on Lθ̂k. Therefore, we can directly compute the optimal value L∗k
to obtain the minimal value of ‖M ē

k+1‖2F,W by solving the partial differential equation

∂‖M ē
k+1‖2F,W
∂Lθ̂k

= 0. (21)

We solve (21) and obtain Aθ̂kQMC θ̂
T

k = Lθ̂k(C θ̂kQMC θ̂
T

k +QΘ̃ +Qv). By setting K∗, L and S as
in Theorem 3.2, since S = C θ̂kQMC θ̂

T

k +QΘ̃ +Qv is positive definite, an explicit solution can be
obtained in Theorem 3.2.

Remark 3.1
Solving the optimal parametric matrix L∗k in Theorem 3.2 is actually equivalent to a Kalman filter
procedure searching for the optimal Kalman gain matrix but with bounded disturbances and noises
instead of stochastic disturbances and noises. Since here the zonotopic framework and Kalman
filter are combined to solve the problem of optimal parametric matrix, we denote this optimization
procedure as zonotopic Kalman filter (ZKF). More information on this point can be referred to [22],
which shows that there is a strong analogy between the Kalman filter and ZKF where the usually
Gaussian probability density functions are replaced by zonotopic sets.

4. OPTIMAL OBSERVER GAIN FOR ROBUST FD

In this section, we aim to design the optimal observer gain for the purposes of robust FD. Such
a gain is computed to maximize the effect of faults while minimize the effect of disturbances to
enhance the sensitivity of FD.

4.1. Structure of dynamics

Let us first consider the state-estimation-error dynamics (8) in the faulty situation, which can split
into two independent dynamical systems:

ēk+1 =(Aθk − Lθ̂kCθk)ēk + (Aθ̃k − Lθ̂kC θ̃k)x̂k + (Bθ̃k − Lθ̂kDθ̃
k)uk + Eθkwk − Lθ̂kP θk vk, (22a)

efsk+1 =(Aθk − Lθ̂kCθk)efsk +Gθkfk − Lθ̂kHθ
ksk, (22b)
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with ek = ēk + efsk . It can be found that (22) allows the seperation of the effects of the disturbances
(i.e., wk and vk) and the faults (i.e., fk and sk). Furthermore, (22a) is considered for the computation
of the observer gain for SE purposes, which has been clearly illustrated in Section 3. Next, tuning
the observer gain for FD purposes is done by combining (22a) and (22b). As a result, the advantage
of the proposed FD scheme lies in the fact that not only the effect of the system disturbances is
considered, but also the relative influence of the disturbances and the faults are characterized to
formulate an optimization criterion to satisfy the optimal FD goal.

For the robustness of FD, we consider the set version of (22b)

Efs
k+1 =(Aθ̂k +AΘ̃ − Lθ̂kC θ̂k − Lθ̂kCΘ̃)Efs

k ⊕ (Gθ̂k +GΘ̃)F⊕ (−Lθ̂k)(H θ̂
k +HΘ̃)S. (23)

Furthermore, the center-generator matrix form of (23) can be obtained as

Mfs
k+1 =

[
(Aθ̂k − Lθ̂kC θ̂k)M̄fs

k seg(�(AΘ̃M̄fs
k )) rad(AΘ̃efs,ck ) −Lθ̂kseg(�(CΘ̃M̄fs

k ))

−Lθ̂krad(CΘ̃efs,ck ) seg(�((Gθ̂k +GΘ̃)Mf )) rad((Gθ̂k +GΘ̃)f c)

−Lθ̂kseg(�((H θ̂
k +HΘ̃)Ms)) −Lθ̂krad((H θ̂

k +HΘ̃)sc)
]
, (24a)

efs,ck+1 = (Aθ̂k + mid(AΘ̃)− Lθ̂kC θ̂k − Lθ̂kmid(C θ̃))efs,ck + (Gθ̂k + mid(GΘ̃))f c

− Lθ̂k(H θ̂
k + mid(HΘ̃))sc, (24b)

whereMfs,c
k and efs,ck are the generator matrix and center of Efs

k . M̄fs
k is the order-reduction matrix

of Mfs
k , i.e., M̄fs

k =↓λ,W (Mfs
k ).

4.2. Optimal observer gain for FD purposes

Now, we concentrate on the design of optimal observer gain to improve the sensitivity of robust
FD with respect to the system disturbances. We consider the following optimization criterion
minimizing the influences of disturbances while maximizing that of faults:

J =
‖Ēk+1‖2F,W
‖Efs

k+1‖2F,W
. (25)

For the convenience of handling the optimization criterion (25), Theorem 4.1 gives an equivalent
form of the FD optimization criterion (25).

Theorem 4.1
Considering ξ = vec(Lθ̂k), the FD optimization criterion (25) can be parameterized with ξ as

J(ξ) =
ξT (Z1 ⊗W )ξ + vec(Z2)T ξ + tr(Z3)

ξT (Z4 ⊗W )ξ + vec(Z5)T ξ + tr(Z6)
, (26)



10

with

Z1 =C θ̂kM̄
ē
kM̄

ēT

k C θ̂
T

k + seg(�(CΘ̃M̄ ē
k))seg(�(CΘ̃M̄ ē

k))T + rad(CΘ̃ēck)rad(CΘ̃ēck)T

+ rad(CΘ̃x̂k)rad(CΘ̃x̂k)T + rad((P θ̂k + P Θ̃)vc)rad((P θ̂k + P Θ̃)vc)T

+ rad(DΘ̃uk)rad(DΘ̃uk)T + seg(�((P θ̂k + P Θ̃)Mv))seg(�((P θ̂k + P Θ̃)Mv))
T ,

Z2 =− 2WAθ̂kM̄
ē
kM̄

ēT

k C θ̂
T

k ,

Z3 =WAθ̂kM̄
ē
kM̄

ēT

k Aθ̂
T

k +W seg(�(AΘ̃M̄ ē
k))seg(�(AΘ̃M̄ ē

k))T +Wrad(AΘ̃ēck)rad(AΘ̃ēck)T

+Wrad(AΘ̃x̂k)rad(AΘ̃x̂k)T +W seg(�((E θ̂k + EΘ̃)Mw))seg(�((E θ̂k + EΘ̃)Mw))T

+Wrad(BΘ̃uk)rad(BΘ̃uk)T +Wrad((E θ̂k + EΘ̃)wc)rad((E θ̂k + EΘ̃)wc)T ,

Z4 =C θ̂kM̄
fs
k M̄fsT

k C θ̂
T

k + seg(�(CΘ̃M̄fs
k ))seg(�(CΘ̃M̄fs

k ))T + rad(CΘ̃efs,ck )rad(CΘ̃efs,ck )T

+ seg(�((H θ̂
k +HΘ̃)Ms))seg(�((H θ̂

k +HΘ̃)Ms))
T

+ rad(�((H θ̂
k +HΘ̃)sc))rad(�((H θ̂

k +HΘ̃)sc))T ,

Z5 =− 2WAθ̂kM̄
fs
k M̄fsT

k C θ̂
T

k ,

Z6 =WAθ̂kM̄
fs
k M̄fsT

k Aθ̂
T

k +Wrad(AΘ̃efs,ck )rad(AΘ̃efs,ck )T

+W seg(�(AΘ̃M̄fs
k ))seg(�(AΘ̃M̄fs

k ))T +W seg(�(Gθ̂k +GΘ̃)Mf )seg(�(Gθ̂k +GΘ̃)Mf )T

+Wrad((Gθ̂k +GΘ̃)f c)rad((Gθ̂k +GΘ̃)f c)T .

Proof
Considering the FD optimization criterion (25), we have

J =
‖Ēk+1‖2F,W
‖Efs

k+1‖2F,W
=

tr(WM ē
k+1M

ēT

k+1)

tr(WMfs
k+1M

fsT

k+1)
. (27)

By setting Z1, Z2, Z3, Z4, Z5 and Z6 as in Theorem 4.1, based on (12a) and (24a), (27) is further
computed as

J =
tr(WLθ̂kZ1L

θ̂T

k ) + tr(ZT2 Lθ̂k) + tr(Z3)

tr(WLθ̂kZ4Lθ̂
T

k ) + tr(ZT5 Lθ̂k) + tr(Z6)
. (28)

Then, according to the relationship between the trace function tr(·) and the vectorization vec(·) of
matrices, we can obtain (26).

Next, we consider the minimization of J(ξ) in (26). For the convenience of analysis, we assume
that ξ is bounded, i.e. ‖ξ‖∞ ≤ ξ̄, where ξ̄ is a constant positive scalar. Note that, we introduce
the boundedness assumption ‖ξ‖∞ ≤ ξ̄ just for the convenience of analysis. Since we can let ξ̄
be enough large considering a real physical system, in this case, it is in fact equivalent to an
unconstrained optimization problem. Therefore, we formulate the following fractional programming
problem:

min
J1(ξ)

J2(ξ)
s.t. ‖ξ‖∞ ≤ ξ̄, (29)

where J1(ξ) = ξT (Z1 ⊗W )ξ + vec(Z2)T ξ + tr(Z3) and J2(ξ) = ξT (Z4 ⊗W )ξ + vec(Z5)T ξ +
tr(Z6). Since J(ξ) has the rational fraction form and is not convex function with respect to ξ,
the fractional optimization problem (29) could not be solved directly within a convex optimization
framework. Therefore, we need to change the form of the fractional programming problem (29). We
are interested in the relationship between the original fractional programming problem (29) and the
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following parametric programming:

min J1(ξ)− βJ2(ξ) s.t. ‖ξ‖∞ ≤ ξ̄, (30)

where β ∈ R is a scalar parameter. As we know, J1(ξ) = tr(WM ē
k+1M

ēT

k+1) > 0 and J2(ξ) =

tr(WMfs
k+1M

fsT

k+1) > 0 , ∀ξ ∈ X = {ξ ∈ R| ‖ξ‖∞ ≤ ξ̄}. Thus, both optimization problems (29) and
(30) have global optimal since J1(ξ) and J2(ξ) are continuous on the compact set X .

Proposition 4.1
The following two statements are equivalent:

(I) min
ξ∈X

J1(ξ)

J2(ξ)
= β, (II) min

ξ∈X
{J1(ξ)− βJ2(ξ)} = 0.

Proof
We first present (I)⇒ (II). Let ξ0 be a solution of the problem (29). Then we have

β =
J1(ξ0)

J2(ξ0)
≤ J1(ξ)

J2(ξ)
, ∀ξ ∈ X ,

which implies

J1(ξ)− βJ2(ξ) ≥ 0, ∀ξ ∈ X ,
J1(ξ0)− βJ2(ξ0) = 0.

Thus, we have min
ξ∈X
{J1(ξ)− βJ2(ξ)} = 0 and the minimum is attained at ξ0.

Next we show (II)⇒ (I). Let ξ0 be a solution of (30). Then we have

0 = J1(ξ0)− βJ2(ξ0) ≤ J1(ξ)− βJ2(ξ), ∀ξ ∈ X .

Dividing the above inequality by J2(ξ) > 0, we obtain

J1(ξ)

J2(ξ)
≥ β, ∀ξ ∈ X , and

J1(ξ0)

J2(ξ0)
= β.

Thus, we have min
ξ∈X

J1(ξ)
J2(ξ) = β and the minimum is attained at ξ0.

According to Proposition 4.1, it can be found that, if we can find a scalar parameter β such that the
optimal value of the problem (30) is 0, then the optimal solution of (30) is also the optimal solution
of (29). Therefore, we will consider solving the parametric programming problem (30) instead of
the original fractional programming problem (29). We first define a function S(β) : R→ R as

S(β) = min
ξ∈X
{J1(ξ)− βJ2(ξ)}. (31)

Our purpose is to search a value β∗ such that the characteristic equation S(β∗) = 0. In this case, β∗

is the minimal value of the problem (29) based on Proposition 4.1. In order to solve the characteristic
equation S(β) = 0, we should first capture the properties of the function S(β). The following
theorem illustrates some properties of the function S(β).

Theorem 4.2
The function S(β) is concave, continuous, strictly decreasing over R. The characteristic equation
S(β) = 0 has a unique solution.

Proof
Let us first consider the hypograph of S(β):

hypo(S) = {(β, t) ∈ R2|t ≤ S(β)}. (32)
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Combining the definition (31) of S(β) and (32), we obtain

hypo(S) =

{
(β, t)

∣∣∣min
ξ∈X
{J1(ξ)− βJ2(ξ)} ≥ t

}
=
{

(β, t)
∣∣∣J1(ξi)− βJ2(ξi) ≥ t,∀ξi ∈ X

}
,

which means that hypo(S) is the intersection of a family of halfspaces{
(β, t)

∣∣∣βJ2(ξi) + t ≤ J1(ξi)
}

, ξi ∈ X . Thus, hypo(S) is a convex set and S(β) is a concave
function over R. Since S(β) is a concave mapping from R to R, we can easily obtain the continuity
of S(β) over R.

Furthermore, we choose β1 < β2 and let ξβ1
∈ argminξ∈X {J1(ξ)− β1J2(ξ)}. Then, we have

S(β1) = min
ξ∈X
{J1(ξ)− β1J2(ξ)} = J1(ξβ1

)− β1J2(ξβ1
)

> J1(ξβ1
)− β2J2(ξβ1

) ≥min
ξ∈X
{J1(ξ)− β2J2(ξ)} = S(β2).

Therefore, the function S(β) is strictly decreasing over R.
Since J1(ξ) and J2(ξ) are positive, continuous and X is compact, J1(ξ) and J2(ξ) are bounded.

That means, there exist positive real scalars φ1, ψ1, φ2 and ψ2 such that 0 < φ1 ≤ J1(ξ) ≤ ψ1 and
0 < φ2 ≤ J2(ξ) ≤ ψ2. Thus, for any β ∈ R, we have

S(β) = min
ξ∈X
{J1(ξ)− βJ2(ξ)} = J1(ξβ)− βJ2(ξβ) ≤ ψ1 − βφ2 (33a)

S(β) = min
ξ∈X
{J1(ξ)− βJ2(ξ)} = J1(ξβ)− βJ2(ξβ) ≥ φ1 − βψ2 (33b)

where ξβ ∈ argminξ∈X {J1(ξ)− βJ2(ξ)}. Since 0 < φ2 ≤ ψ2, combing (33a) and (33b), we can
obtain limβ→+∞ S(β) = −∞ and limβ→−∞ S(β) = +∞. Since S(β) is strictly decreasing, based
on the Zero Point Theorem [32] ‡, we can conclude that the characteristic equation S(β) = 0 has a
unique solution.

In the following, we concentrate on solving the characteristic equation S(β) = 0. According
to the definition S(β) = minξ∈X {J̄(ξ)} with J̄(ξ) = J1(ξ)− βJ2(ξ) = ξT (Z1 ⊗W − βZ4 ⊗
W )ξ + (vec(Z2)T − βvec(Z5)T )ξ + tr(Z3)− βtr(Z6) is a quadratic function of ξ. Therefore, if
J̄(ξ) is a non-convex quadratic function regarding ξ, one always has minξ∈X {J̄(ξ)} < 0 for the
enough large set X . That means, it is a necessary condition for the characteristic equation S(β) = 0
that J̄(ξ) is a convex quadratic function regarding ξ. We can obtain the upper bound β̃ of β∗ by
solving the following LMI-based optimization:

β̃ = max β s.t. Z1 ⊗W − βZ4 ⊗W � 0. (34)

Meanwhile, considering S(0) = minξ∈X {J1(ξ)} > 0 and combining the properties of S(β) in
Theorem 4.2, we can roughly draw the profile of the function S(β) over R as shown in Figure 1.

According to Figure 1, we need to search a root β∗ ∈ [0, β̃] such that the characteristic equation
S(β∗) = 0. Since the definition of S(β) involves the minimum operator, it is generally non-
differentiable. We could not use the classical Newton method to search the root of the characteristic
equation S(β) = 0. In order to avoid the use of differential operation, we use the secant method
to solve the characteristic equation S(β) = 0. Although the order of convergence for the secant
method is generally lower than that of Newton’s method, the derivatives S′(β) need not be evaluated,
which is a definite computational advantage. For more details on the exact order of convergence for
the secant method, the reviewer can refer to [33]. Since the convergence of secant method can be
guaranteed, the terminal condition for searching the root of the equation S(β) = 0 always holds.
The whole algorithm summarized in Algorithm 1.

‡If f is a function which is continuous at every point of the interval [a, b] and f(a) < 0, f(b) > 0 then f(x) = 0 at some
point x ∈ (a, b).
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Figure 1: The profile of function S(β) over R.

Algorithm 1: Solve S(β) = 0 using secant method
1: Initialization:

(1) Give the approximation precision ε and set i = 0;
(2) Solve the optimization problem (34) to obtain the value of β̃;
(3) Choose βc1 = β̃ and βc2 = 0;
(4) Solve the optimization problem (31) to obtain optimal values S(βc1) and S(βc2);

2: Update βnext using Secant Method:
(3) Compute βnext using secant method:

βnext = βc1 − S(βc1)
βc1 − βc2

S(βc1)− S(βc2)
.

(4) Solve the optimization problem (31) to obtain global optimum ξβnext and its optimal values
S(βnext);
(5) if S(βnext) < 0 then βc1 ← βnext else βc2 ← βnext;

3: Check Termination Condition:
if |S(βnext)| ≤ ε then
β∗ = βnext and ξ∗ = ξβnext . Terminate algorithm.
else Return Step 2.

After getting the value of ξ∗ according to Algorithm 1, we can obtain L∗k = mat(ξ∗) by using the
matrixing operation. Obviously, by using this gain L∗k for the FD purpose, we can also implement
robust SE (not optimal in general). What is interesting is that even by considering the FD purpose
with the pQP method, there are no significant differences from the perspective of SE compared with
ZKF, while the performance of FD for the pQP method has an obvious improvement. Regarding
this point, it will be illustrated and verified in the following simulation.

5. ILLUSTRATIVE EXAMPLE

In this section, we consider an electric circuit taken from [34] as a case study to illustrate the
effectiveness of proposed optimal SE and FD method based on ZKF and pQP. The whole electric
circuit chart is shown in Figure 2, where Ri(i = 1, ..., 8) and L1 and L2 represent the resistors
and inductors, respectively. Moreover, R1 and R6 are time-varying resistors and we consider them
as the scheduling variables, i.e., θ(1) = R1 and θ(2) = R6. θ(1) ranges from 9Ω to 11Ω and θ(2)
ranges from 25Ω to 27Ω. e1(t) and e2(t) are the DC voltage sources used as inputs and e1(t) = 1v,
e2(t) = −1v.

The system states are the loop currents i1(t) and i2(t), and the measured outputs are the voltages
of resistors R1 and R6, i.e., y(t) =

[
UR1

(t) UR6
(t)
]T

.
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Figure 2: A circuit diagram.

According to the basic circuit theory and Kirchoff’s laws, we can derive the following differential
equations:

L1
di1(t)

dt
= (−θ(1)−R3 −R5 +

R2
3

R234
+

R2
5

R578
)i1(t)

+ (
R3R4

R234
+
R5R7

R578
)i2(t) +

R3

R234
e1(t) +

R5

R578
e2(t)

L2
i2(t)

dt
= (−R4 −R7 − θ(2) +

R2
4

R234
+

R2
7

R578
)i2(t)

+ (
R3R4

R234
+
R5R7

R578
)i1(t) +

R4

R234
e1(t) +

R7

R578
e2(t),

y(t) =

[
UR1

UR6

]
=

[
θ(1) 0

0 θ(2)

] [
i1(t)
i2(t)

]
,

where R234 = R2 +R3 +R4, R578 = R5 +R7 +R8, R2 = 17Ω, R3 = 3Ω, R4 = 5Ω, R5 = 2Ω,
R7 = 8Ω, R8 = 10Ω, L1 = 0.3H and L2 = 0.65H .

With a sampling time of Ts = 0.01s, we can transform the circuit model into the following
discrete-time LPV model by using the first order forward Euler difference method:

xk+1 = A(θk)xk +B(θk)uk,

yk = C(θk)xk +D(θk)uk

with

A(θk) =

[
−0.0333θk(1) + 0.8520 0.0467

0.0323 −0.0154θk(2) + 0.8646

]
,

B(θk) =

[
0.0040 0.0033
0.0031 00062

]
, C(θk) =

[
θk(1) 0

0 θk(2)

]
, D(θk) =

[
0 0
0 0

]
.

Here we consider the measurement errors of scheduling vector θ as

θ̃k ∈ Θ̃ =

[
(−0.02, 0.02)
(−0.02, 0.02)

]
.

Furthermore, in order to verify the effectiveness of the proposed method, it is assumed that the
unknown input ωk and measurement noise vk are bounded by

W =

[
0
0

]
⊕
[
0.03 0

0 0.03

]
B2,V =

[
0
0

]
⊕
[
0.03 0

0 0.03

]
B2,
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whose distribution matrices are given as

E(θk) =

[
0.4693 0.1496
0.1346 0.4748

]
, P (θk) =

[
0.8147 0.9134
0.9058 0.6324

]
,

respectively. Meanwhile, we assume that the additive actuator faults fk and sensor faults sk are
respectively bounded by

F =

[
0
0

]
⊕
[
0.5 0
0 0.5

]
B2,S =

[
0
0

]
⊕
[
0.5 0
0 0.5

]
B2

and their distribution matrices are given by

G(θk) =

[
0.4382 0.6513
0.6332 0.4894

]
, H(θk) =

[
0.8147 0.1270
0.9058 0.9134

]
.

Furthermore, we set the following fault scenarios:

fk =

{
[0, 0]T , k ≤ 20,

[0.35, 0.4]T , k ≥ 21.
sk =

{
[0, 0]T , k ≤ 20,

[0.45, 0.3]T , k ≥ 21.

That means, the healthy scenario is considered from the beginning of the simulation to the time
instant k = 20. Then, the actuator faults fk and sensor faults sk are simultaneously activated at
k = 21 and they last until the end of simulation. Figure 3 shows the SE results when the actuator
faults fk and sensor faults sk occur at time instant k = 21. Each subplot corresponds to one
component of the system state xk and the interval hull Xk. For the convenience of illustration,
we take the first subplot to present the SE results. The red dash line represents the real system
state xk(1). The region between the blue lines denotes the interval hull Xk(1) by considering
the ZKF method to compute the observer gain. The region between the green lines denotes the
SE interval hull Xk(1) using the pQP method to compute the observer gain. It can be found that
from time instant k = 0 to k = 21 when the system is only affected by the disturbances and noises,
there are no big differences from the aspect of SE for both ZKF and pQP methods. Certainly, it is
normal to obtain a little better SE result for the ZKF method since the ZKF optimization objective
only considers the observation performance while the pQP optimization criterion further considers
the FD purposes. After the time instant k = 21, the actuator faults fk and the sensor faults sk are
simultaneously activated, whose effect on SE can be seen from Figure 3. We can find that the pQP
has a larger inconsistency of the observation after the occurrence of faults than the ZKF, which
implies that an increased sensitivity of FD can be obtained considering the pQP method to compute
the observer gain.
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Figure 3: State estimation in case of actuator
faults fk and sensor faults sk.
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Figure 4: Fault detection in case of actuator faults
fk and sensor faults sk.

For further illustration on the results of FD specifically, Figure 4 show the FD results for both
ZKF and pQP methods. As it is shown in Figure 4, form time instant k = 0 to k = 20, the origin
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0 is contained in the residual set Rk generated from both ZKF and pQP methods. In this case,
we consider that the system still operates in the healthy situation. After the occurrence of faults at
time instant k = 21, the origin 0 is no longer contained in the residual set Rk for the ZKF and the
pQP, which means that both two methods has detected the occurrence of faults. Further, the higher
sensitivity of FD for the pQP approach in comparison with the ZKF method can be found since its
generated residual set Rk moves further from the non-faulty origin 0.

Furthermore, for the completion of quantitative analysis, we use the ratio between the weighted
Frobenius norm of the center cRk

and the generator matrix MRk
of the residual set Rk to

quantitatively characterize the sensitivity of FD for both the ZKF and pQP methods. Figure 5 shows

the computed results regarding ‖cRk‖
2
F,W

‖MRk
‖2F,W

, where we can see that the ratio ‖cRk‖
2
F,W

‖MRk
‖2F,W

of the pQP
method is much larger than that of the ZKF approach after the occurrence of faults. That means,
there is an obvious enhancement regarding the sensitivity of FD for the pQP approach in comparison
with the ZKF approach.
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and fault profiles in
case of actuator faults fk and sensor faults sk.
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Figure 6: FD results in case of actuator faults fk
and sensor faults sk with smaller magnitudes.

We consider another group of actuator and sensor faults with smaller magnitudes. The fault
scenarios are set as follows:

fk =

{
[0, 0]T , k ≤ 20,

[0.05, 0.04]T , k ≥ 21.
sk =

{
[0, 0]T , k ≤ 20,

[0.03, 0.06]T , k ≥ 21.

R2-5The FD results for both ZKF and pQP methods are shown in Figure 6. It can be found that from 
time instant k = 0 to k = 20, the residual sets Rk for both ZKF and pQP contain the origin 0, 
which implies that there is no fault occurrence and the system operates in healthy situation. From 
time instant k = 21, the residual set Rk generated by the pQP method no longer contains the origin 
0, which means that the pQP method has detected the occurrence of faults. However, since the 
residual set Rk generated by the ZKF method contains the origin 0 during the whole stage of 
system operation, the occurred faults could not be detected using the ZKF approach.

Furthermore, we make a comparison with the proposed generalized eigenvalues/eigenvectors 
(GVV) based FD method in [20] on the performance of FD results. The fault scenarios are given by

fk =

{
[0, 0]T , k ≤ 20,

[0.8, 1.3]T , k ≥ 21.
sk =

{
[0, 0]T , k ≤ 20,

[−0.8,−2.3]T , k ≥ 21.

k

The GVV method is used to compute the optimal ξ∗ for the objective function J(ξ) in (26) to 
construct the optimal gain matrix L∗ = mat(ξ∗) at each step. Compared with the proposed pQP R2-6

k

method, there is a relative advantage for the GVV method on the computation time. By using a 
laptop with 4G RAM, Core m3-6Y30 @ 0.90GHz CPU and 128GB SSD, the average time to 
compute the optimal gain matrix L∗ at each step for the GVV method during whole simulation
stage is 0.1582s. While for the proposed pQP method, the average time at each step is 1.5743s. 
Although the computation speed of the pQP method is a little slower than that of the GVV method,
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R2-5

the proposed pQP method has a better FD result. The FD results for both the GVV method and the 
pQP method are shown in Figure 7. It can be found that from the time instant k = 0 to k = 20, the 
residual sets Rk for both the GVV method and the pQP method contain the origin 0. This implies 
that the system is healthy. However, from the time instant k ≥ 21, the residual sets Rk for both 
methods no longer contain the origin 0. Thus, we consider that both methods have detected the 
faults fk and sk, and the system becomes faulty. Note that, although both methods successfully 
implement FD, the proposed pPQ-based method has a higher FD sensitivity than the GVV method.

We show the ratio ‖cRk‖
2
F,W

‖MRk
‖2F,W

for both methods in Figure 8. It can be found that after the fault

occurrence, the ratio ‖cRk‖
2
F,W

‖MRk
‖2F,W

of the pQP method is larger than that of the GVV method, which
implies the proposed method has a higher FD sensitivity.
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Figure 7: FD results for both the GVV method and
the pQP method.
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Figure 8: Ratio ‖cRk‖
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F,W
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for both the GVV
method and the pQP method.

6. CONCLUSIONS

This paper proposes an optimal SE and FD method for discrete-time LPV systems with
measurement error-affected scheduling variables by combining ZKF and pQP under the condition
that system uncertainties are bounded. Only considering the observation purpose, the optimal SE
results can be obtained based on the ZKF procedure by using the weighted Frobenius norm to
characterize the size of the estimated state set. Furthermore, by maximizing the effect of faults on the
error of SE with respect to the system uncertainties, the optimal FD criterion can be formulated into
an on-line fractional programming problem equivalent to the pQP problem which can be efficiently
solved by searching the root of the characteristic equation using the secant method. The pQP
approach has an obvious enhancement of sensitivity of FD in comparison with the ZKF approach.
In the future, we will further consider improving the performance of fault isolation and estimation
based on the idea in this paper.
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Appendices
A. MATRIX CALCULUS

For a matrix X ∈ Rn×n, tr(X) denotes the trace of X , respectively. The compatible matrix
full of 1 are denoted as I, and In denotes the n-dimensional identity matrix. diag(x) denotes
a diagonal matrix whose diagonal elements are composed of a vector x ∈ Rn. Let X =
[xij ]m×n ∈ Rm×n and vec(X) denotes the vectorization of matrix X , i.e., vec(X) = x =
[x11 · · ·xm1, · · · , x1i · · ·xmi, · · · , x1n · · ·xmn]T ∈ Rmn. Inversely, the matrixing operation of a
vector x ∈ Rmn is mat(x) = X = [xij ]m×n ∈ Rm×n. For matrices X ∈ Rn×n and Y ∈ Rm×m,
the Kronecker product of these two matrices is denoted by

X ⊗ Y =

x11Y · · · x1nY
...

. . .
...

xn1Y · · · xnnY


mn×mn

.

X � 0 denotes positive definiteness if the scalar xTXx is positive for arbitrary non-zero column
vector x of real numbers. LetX,A,B,C andD be matrices with appropriate dimensions. According
to [35], we can obtain

tr(A) = tr(AT ), tr(AB) = tr(BA), (A⊗B)T = AT ⊗BT ,
∂

∂X
tr(AXTB) = ATBT , tr(ATB) = (vec(A))Tvec(B),

∂

∂X
tr(AXBXTC) = BXTCA+BTXTATCT ,

tr(ABCD) = (vec(DT ))T (CT ⊗A)vec(B).

For X ∈ Rn×m, W ∈ Rn×n and W = WT � 0, the weighted Frobenius norm of X is defined by
‖X‖F,W =

√
tr(XTWX), and ‖X‖F =

√
tr(XTX), obtained by setting W = In, is the non-

weighted Frobenius norm. Moreover, ‖X‖2F,W =
∑m

i=1 ‖xi‖2W , where ‖xi‖W =
√
xTi Wxi is a

weighted vector norm in Rn and xi is the i-th column of the matrix X .

B. INTERVALS AND ZONOTOPES

Based on [28], the closed interval denoted by [a, b] is the set of real numbers given by x = [a, b] =
{s ∈ R|a ≤ s ≤ b}. Although various other types of intervals (open, half-open) appear throughout
mathematics, our work in this paper only centers primarily on closed intervals. The radius of an
interval x is defined and denoted by rad(x) = b−a

2 . The midpoint of an interval x is given by
mid(x) = a+b

2 .
An interval matrix is defined as a matrix whose elements are interval variables, i.e.,

X =

x1,1 · · · x1,n

...
. . .

...
xm,1 · · · xm,n

 ,
where xi,j (∀i = 1, ...,m, j = 1, ..., n) is an interval variable. If the number of row or column of the
interval matrix X is 1, X degenerates to an interval vector. The radius of an interval matrix X is
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defined as

rad(X) =

 rad(x1,1) · · · rad(x1,n)
...

. . .
...

rad(xm,1) · · · rad(xm,n)

 ,
and the midpoint of interval matrix X is given by

mid(X) =

mid(x1,1) · · · mid(x1,n)
...

. . .
...

mid(xm,1) · · · mid(xm,n)

 .
According to [31] and [36], the definition and properties of zonotopes are given as follows. Readers
can refer [31] and [36] for more details on zonotopes.

Definition B.1
A zonotope Z is defined as Z = g ⊕HBt, where g and H are its center and generator matrix,
respectively, Bt is an interval vector composed of t unitary intervals [−1, 1]. Here we simplify
Z = g ⊕HBt into Z = 〈g,H〉.
Property B.1
Given two zonotopes Z1 = 〈g1, H1〉 and Z2 = 〈g2, H2〉, Z1 ⊕ Z2 = 〈g1 + g2, [H1 H2]〉.
Property B.2
Given a zonotope Z = 〈g,H〉 and a compatible matrix K, KZ = 〈Kg,KH〉.

Given a zonotope Z = 〈g,H〉, the interval hull of Z is defined as 2(Z) = 〈g,diag(|H|1)〉.
For a zonotope Z = 〈g,H〉 with H ∈ Rn×b, according to [22], the weighted zonotope reduction R2-3
operator ↓λ,W (H) denotes an order reduction of Z = 〈g,H〉 from the order b to λ, which first sorts
the columns of H on decreasing weighted vector norm and then encloses the zonotope 〈0, H<〉
generated by the b− λ+ 1 smaller columns into a box, i.e.,

H =
[
h1 · · · hj · · · hb

]
, ‖hj‖2W ≥ ‖hj+1‖2W

and if b ≤ λ, then ↓λ,W (H) = H . Otherwise, we have ↓λ,W (H) =
[
H> diag(|H<|1)

]
with

H> =
[
h1 · · · hλ−1

]
, H< =

[
hλ · · · hb

]
, and the weighted zonotope reduction operator

↓λ,W (H) satisfies the inclusion property 〈g,H〉 ⊆ 〈g, ↓λ,W (H)〉, where λ ≥ n.

Property B.3
Given a family of zonotopes denoted by Z = 〈g,H〉, where H ∈ Rn×m is an interval matrix, a
zonotope inclusion �(Z) is defined by

�(Z) =
〈
g,
[
mid(H) H

]〉
,

where the matrix H is a diagonal matrix with

Hii =

m∑
j=1

rad(Hij), i = 1, 2, · · · , n,

where mid(·) and rad(·) compute the midpoint and radius of interval matrices.

Property B.4
Given Zk+1 = AZk ⊕Buk, where A and B are interval matrices and uk is the input at time instant
k, if Zk is a zonotope with the center gk and segment matrixHk, Zk+1 can be bounded by a zonotope

Zek+1 = 〈gk+1, Hk+1〉

with

gk+1 = mid(A)gk + mid(B)uk, Hk+1 =
[
J1 J2 J3

]
,

J1 = seg(�(AHk)), J2 = rad(Agk), J3 = rad(Buk),

where seg(·) computes the segment matrix of a zonotope.
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