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Contribution to continuum estimation in gamma spectrum by observation
of local minima

This Kélian1*, Le Brusquet Laurent2*, Frigerio Adrien1, Colas Sébastien1, Bondon Pascal2

Abstract— This paper presents a method to estimate the con-
tinuum of a gamma rays spectrum through the observation of
local minima. The method is simple, automatable and has a large
field of use. Indeed, it is not limited by the peaks width, and
consequently is usable as well with GeHP as with scintillators
spectra. As the method exploits signal properties, its operation
is easily explainable. It involves a limited set of meaningful
parameters for which an adjustment is proposed. The potential of
this method is demonstrated through simulations as well as real
gamma spectrometry measurement.

Keywords: gamma spectrometry, continuum estimation,
baseline correction method, peak characterization, local minima

I. INTRODUCTION

Gamma spectrometry is a common nuclear measurement
technic which can be used for the detection of radioactivity,
identification of radionuclides, and quantification of radioactive
material. Eventhough other methods exist, in practice, the
gamma spectrometry often constitutes the only possible and
effective technic. As a consequence, gamma spectrometry has
become essential in the nuclear field.

One will find in [1] a complete description of gamma rays
Physics as well as a number of details on the measurement
device. The result of a measurement is a histogram, called
spectrum, which spreads detected photons by channels each
corresponding to an interval of energy. All spectra have the
same structure, that is to say a superposition of a background
with peaks specific to some radionuclides, covered by an
observation noise. Peaks are mathematically described by a
mixture model, usually Gaussian, which contains a great deal
of useful information. On the opposite, the background, also
called continuum which is rather regular and smooth (at least,
in view of the peaks), contains few information.

The purpose of the spectrum analysis is to estimate the
mixture parameters from the data. Consequently, continuum
is of little interest and the big step of the spectrum analysis
will be to isolate the mixture from the background. This
operation is known as baseline correction, and the objective of
this study is to propose a Baseline Correction Method (BCM)
adapted to gamma spectrometry. An ideal method enables the
automation of the analysis. Therefore, it shall deal with various
peaks shapes and widths, with various radiation detectors
technologies, i.e. GeHP (Germanium Hyper Pur, or High Purity
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GermaniumRadiation) detectors as well as scintillators. The
method shall admit a reduced set of parameters independent
from the observation.

Spectrum analysis is a recurrent topic in gamma spectrom-
etry, and was a highly topical issue in the 70s where many
propositions were made [2]. This period brought to light two
distinct strategies. On one hand, local analysis relying on the
prerequisite estimate of the peaks positions [3] [4] [5] [6] [7]
[8] which enables to estimate pieces of continuum beneath
the peaks. One the other hand, global analysis which aims to
estimate the whole continuum [9] [10] [11] [12] [13] [14] [15]
[16] [17]. Nowadays, those propositions were naturally ranked
by the operating experience, and the local approach based
upon the second derivative method [3] is commonly used [18]
and officially recommended [19]. This method chiefly draws
its success from its simplicity and explainability. However,
it remains difficult to automate, because it may fail in the
presence of Compton edges or multiplets, i.e. mixtures of
close overlapping peaks. On the other hand, a large pan of
proposed global methods involve a model for the continuum
(splines, Gaussian processes etc), which introduce an improper
regularity prior: continuum often contains discontinuities which
are difficult to model. Thus, spectrum analysis is still an active
research topic.

The central idea of the present study relies on the following
empirical observation: local minima rarely appear on peaks.
Thus, it would be possible to estimate the continuum from local
minima. Several authors [9] [10] [11] have beat around this
idea, but the work of Tervo et al. [12] is the most accomplished:
it enables to simply estimate the continuum without any prior
nor parameters. However, as illustrates the application on two
representative spectrum shown in Fig. 1, this estimator only
works for thin peaks which quickly limits its use for real
applications.

The present paper proposes a new method which covers a
much wider range of spectra configurations as shown Fig. 1.
The resulting process is in itself simple to describe, but maybe
not easy to understand at first glance. The focus is put upon
the statistical phenomenon which enables the method to work.

Section II, on one hand, gives a definition of the spectrum.
On the other hand, it deducts a number of inherent signal
properties on which is built the continuum estimation procedure
in section III. Section IV comments the Fig. 1 real spectra
application, and section V concludes this work.
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Fig. 1. Confrontation of continuum estimation methods on real spectra. Blue
line represents observations. On top is a GeHP spectrum, on the bottom a
scintillator spectrum. Both are plotted with a log scale. Red lines represent the
reference estimates of Tervo’s method. Black lines represent the new method
results, applied with parameters tbreak = 1.5, wopt = 15 and w = 10 for
GeHP, w = 80 for scintillator.

II. SPECTRUM SIGNAL PROPERTIES
This section aims at formalizing the problem and derives

some general properties about a gamma spectrum and its
components.

A. Basic assumptions
Let yyy denote the observed gamma spectrum of n channels

such that yyy = (y1, ..., yn). Let mmm = (m1, ...,mn) denote the
peaks mixture and ccc = (c1, ..., cn) the continuum. Denoting P
the Poisson’s distribution, Physics states [1] yyy is a sample from
a random vector YYY such that:

Yk ∼ P(mk + ck) = P(µk)

We introduced here µµµ = mmm+ccc, the noiseless signal. Poisson
distribution is not practical to handle in literal calculations. De-
noting N the normal distribution, the following approximation
is possible [20]:

Hypothesis 1: {
Yk ∼ N (µk, σ

2
k)

σ̂k
2 = yk

The issue can now be specified: knowing yyy, how to estimate
ccc? Because mmm is also unknown, the problem is unsolvable at
this state: a constraint is missing. In the paragraphs below, one
is looking through the definitions of peaks and continuum for
a discrimination criterion that may play the role of the missing
constraint.

B. Signal characterization
Let introduce the differential operator ∆xk = xk − xk−1.

The continuum is characterized by its low variations. Thus,
continuum variations are majorated:

∃β, ∀k, |∆ck| ≤ β

A peak has characteristic areas. A top, at the center, has high
values and low variations. Two flanks, uprising and downrising
on both sides of the top have high variations, especially in
view of continuum variations. Two flats at the borders have low
values and low variations. Let denote F the set of all flanks in
the spectrum. Then, F contains all tops and flats. The borders of
the areas are thereby defined by means of an arbitrary threshold
α such that:

β ≤ α, ∀k ∈ F, α ≤ |∆mk|

The unfixed threshold α is a necessary scaling variable, and
its choice is a matter of convention. Indeed, what could be
considered as a peak in a certain context could be considered
as a continuum contribution in another. Fig. 2 shows a mono
peak signal with a constant continuum. Consequently 0 is the
smallest possible value for β. Choosing α = 50, resulting F
areas are represented with grey bands.

As a consequence of the previous definitions, one can derive
a lower bound for the variations of the signal:

Property 1:

∀k ∈ F, α− β ≤ |∆µk|
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Fig. 2. Identification of peak’s areas on a Gaussian example. Dark full line
represents mmm + ccc signal, blue points represent observations yyy, grey bands
indicates F, orange crosses represent AlimAlimAlim, red crosses represent AAA.

C. Counter variations

Let denote respectively F+ and F− the set of increasing
flanks and the set of decreasing flanks:{

F+ = {k ∈ F|α ≤ ∆mk}
F− = {k ∈ F|∆mk ≤ −α}

∀k ∈ F let Fk be the probability to have a counter-variation
in yyy at k. More explicitly, Fk is the probability for yyy to decrease
where mmm is increasing, or to increase where mmm is decreasing:

Fk = P (∆Yk ≤ 0|k ∈ F+)

= P (0 ≤ ∆Yk|k ∈ F−)



Notice that Fk is almost the repartition function of ∆Yk ∼
N (∆µk, yk + yk−1) evaluated at 0. Let denote Φ(.) the
cumulative distribution function (CDF) of the standard nor-
mal distribution. Thanks to property 1 and noticing Φ is an
increasing function, one has an upper bound for Fk:

Property 2:

∀k ∈ F, Fk ≤ Ak = Φ

(
−(α− β)√
yk + yk−1

)
On Fig. 2 is plottedAAA = (A1, ..., An) for α = 50 and β = 0.

Because this signal is a simulation, one exactly knows the value
of ∆mk, which enables to eval the limit admissible values for
AAA as follows:

Alimk = Φ

(
−∆mk√
yk + yk−1

)
One notes through AlimAlimAlim = (Alim1 , ..., Alimn ) that counter-
variations probabilities are close to zero on high variations
areas. This observation is confirmed Fig. 3 where the value
of Ak quickly decreases.
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Fig. 3. Ak values on a log scale.

D. Focus on local minima

Let introduce ξ, the set of indexes of yyy local minima:

ξ = {k|yk < yk−1, yk < yk+1} (1)

1) Local minima bias: As shown in Fig. 4, the local minima
set is biased because local minima’s expectation is not equal to
the signal expectation. Let ϕ(.) denote the probability density
function (PDF) of the standard normal distribution.

Property 3: µ̂ξi is an unbiaised estimator of µξi such that:
µ̂ξi = yξi −

C1

C0

√
yξi

var(µ̂ξi) =
1

C0
(C0y

2
ξi

+ (2C1 − C0 + C2)yξi − C1
√
yξi)
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Fig. 4. Local minima’s expectation bias for µ = 100. Black is associated with
the full signal, red is associated with its local minima. Vertical lines indicate
expectations of the distributions.

where

Ci =

+∞∫
−∞

uiϕ(u)(1− Φ(u))2du

Proof of property 3 is given in the appendix. Note that C0 is
the density of ξ for a stationary signal. Numerical integration
results in the following values: C0 = 1/3

C1 ≈ −0.28209479
C2 ≈ 0.42522148

2) Occurrence of local minima: One reported on the Fig. 5
the evaluation by simulation of the probability Pmin that a
point of a linear signal, with a slope γ and a noise variance σ,
is a local minima. Notes that Pmin(γ/σ = 0) = C0, and Pmin
quickly decreases.

Additionally, one can derive from property 2 an upper bound
on the probability that a local minima belongs to F:

Property 4:

P (k ∈ F|k ∈ ξ) ≤ Ak
P (k ∈ ξ)

Proof of property 4 is given in the appendix. One notices
P (k ∈ ξ) can not be too small, because in practice there
are always a non negligible portion of local minima in a
measurement. Moreover, Fig. 5 testifies that ∀k ∈ F, Ak is
dramatically low. Therefore, P (k ∈ F|k ∈ ξ) is majorated
by a constant close to zero, which explains a remarkable
phenomenon easily noticeable through data: local minima are
absent from the flanks. It is thus possible to identify points in
F by observing ξ:

Hypothesis 2:

ξ ⊂ F
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Fig. 5. Blue points represent Pmin(γ/σ) on a grid of 20 values of γ linearly
spaced on [0, 100] and 20 values of σ spaced evenly on a log scale on [1, 1000].
Black line represents C0.

Because it is easy to observe local minima in a given
spectrum, hypothesis 2 is a convenient criterion upon which
one may build an estimator for the continuum.

III. CONTINUUM ESTIMATION

A. Intruders filtering

In the previous section, we identified points from F. How-
ever, this is not exactly what we were looking for, i.e. ccc points
(wheremmm is negligible). Some undesirable intruders are present
in ξ, as shown in Fig. 6. Indeed, it contains top points which
must be removed. Moreover, local minima may accidentally
appear on the flank of a significant peak. Anyway, all intruders
values are substantially higher than those of the points attached
to the continuum. This gives us an opportunity to filter them.

Let define the null hypothesis H0 :� there is no disconti-
nuity between ξi−1 and ξi �. Let tbreak be the 1−α/2 order
quantile of N (0, 1) and:

zi =
|∆yξi |√
yξi + yξi−1

zi is a z-score for H0, i.e. if tbreak ≤ zi, one can reject H0
with a confidence α. By selecting a threshold tbreak for this
hypothesis testing, one detects discontinuities in ξ, and forms
groups of continuous ξ sets.

Observing the sign of ∆yξi at the borders between the groups
reveals groups which level is higher than those of their direct
neighbours. These are intruders groups to be filtered as on
Fig. 6.

B. Large peaks issue

Previous outlier filtering is able to deal with GeHP thin peaks
spectra. But when faced to peaks acquired by a scintillator,
peaks are very large with respect to F variations, and the
estimator fails as shown on top plot on Fig. 7.
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Fig. 6. Intruders filtering with tbreak = 1.5. Blue points represent
observations yyy, red crosses represent remaining ξ after intruders filtering,
orange points represent intruders.

A simple solution is to subsample the signal before the
intruders filtering as shown on the middle plot on Fig. 7. It
means that from the considered spectrum, one keep one point
out of p, starting at point s. Parameter p is the subsampling
step, s the subsampling offset such as 0 ≤ s < p. In this
manner, the variation rate between two points is multiplied by
p, whereas the noise level has not changed, which enables to
fix large peaks issue.

To limit the information loss due to subsampling, one filters
subsamples of ξ successively with all possible values of s for
a given p, then merge the results as illustrated on the bottom
plot of Fig. 7.

Actually, subsampling is a trick which allows to fall back
on thin peaks analysis issue when faced to large peaks. An
optimum choice for p depends on w, the actual full width at
half maximum (FWHM) of the peaks, and wopt, a fix ideal
FWHM that one strives to retrieve. This offers an alternative
meaningful parametrization for the estimator:

p = max

(
1, b w

wopt
c
)

C. Full continuum estimation procedure

For a given spectrum, the proposed continuum estimation
procedure is the following: 1) Subsample the signal as in part
III-B. 2) Observe local minima defined equation 1. 3) Filter
intruders as in part III-A. 4) Correct the local minima bias by
property 3. 5) Merge remaining points from each subsamples.
6) Apply a linear interpolation to extend the signal to all canals.

Parameters tbreak and wopt enable to define the balance
between peaks and continuum. A small values for tbreak or
wopt will tend to attribute parts of the continuum as peaks,
and big values will tend to attribute peaks to the continuum.
The mean width of the peaks w is constant for a given
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Fig. 7. Subsampling effect on outlier filtering with tbreak = 1.5. Top figure
uses no subsamplings, middle figure uses subsampling (p = 5, s = 0), bottom
figure uses merged subsamplings (p = 5). Blue line represents observations
yyy, red crosses represent remaining ξ after intruders filtering.

measurement device, but still have to be specified (roughly)
in order to adapt the method to the spectrometer. An extensive
empirical campaign suggests to set tbreak = 1.5 and wopt = 15.
The resulting full estimation is plotted on Fig. 8. One may
note that the peak is essentially extracted, even if a little bit
underestimated. A part of the basis of the peak is indeed
attributed to the continuum which bias the estimation of the
area. This is inevitably caused by the bordering areas where it
is hard to attribute a point to F or F.

Ideally, one would have filtered the noise before the interpo-
lation, and used a smooth interpolator. This would require to
introduce a regularity prior. However, continuum often contains
discontinuities which are difficult to take into consideration.
Consequently, to find such a prior is an awkward task. For a
first approach, one can simply set aside the noise and limit
oneself to the padding of the signal with a linear interpolation.

IV. EXPERIMENTAL DEMONSTRATION

Figure 1 presents real spectra continuum estimations in order
to permit a comparison. Undoubtedly, the new estimator has
enhanced performances and qualitatively meet our expectations
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Fig. 8. Continuum estimation with tbreak = 1.5, wopt = 15 and w = 10.
Blue points represent observations yyy, red crosses represent remaining ξ after
intruders filtering, orange points represent intruders, green points are the results
of the bias correction, black line represents ccc, purple line represents ĉ̂ĉc.

in both cases as almost all significant peaks that one may
visually identify are extracted. The method seems to conve-
niently handle GeHP’s Compton edges and multiplets where
Tervo’s method failed. Furthermore, the large peaks width
difference between both spectra shows the adaptability of the
method. To the knowledge of the authors, there exist no relevant
quantitative performance metrics for such estimators, certainly
because continuum are by essence unknown quantities. One
would rather extend the method to derive peaks positions and
areas which are much more convenient to compare.

V. CONCLUSION

As a conclusion, this paper derives the properties of local
minima under an original aspect, i.e. counter variations, and
proposes a totally new estimation procedure, for which key
parts are intruders filtering and subsampling.

This method enables a quick, adaptive and automated estima-
tion of the continuum of a gamma spectrum. A full optimization
procedure of the parameters, as well as a study of the robustness
of the method would be appreciated. Nevertheless, the proposed
empirical adjustment should be good enough for a general pur-
pose, and the opinion of the authors is that little performances
improvement is to be expected in this direction. Naturally, this
method is showing its limitations when continuum variations
are close to peaks variations.

As a conclusion, even with ideal settings, one can not ensure
the goodness of the estimation, and consequently one should
not use this method for quantification purpose. However, the
present work stands as an improvement of the method of Tervo
et al. [12]. Moreover, it would be possible to derive from this
work a peaks detection method.



APPENDIX

Proof of property 3: Let consider a stationary signal of
three channels simulated with X1, X2, X3 ∼ N (µ, σ2). Let

fXi
(.) denote their PDF and g(x) =

x− µ
σ

. Consequently:

{
fX(x) = g′(x)ϕ(g(x))

P (Xi ≤ x) = Φ(g(x))

One is looking for f , the conditional PDF of X2 when it
turned out to be a local minima:

f(x) =fX2|X2<X1,X2<X3
(x)

∝fX2
(x)P (x < X1)P (x < X3)

∝fX2
(x)(1− P (X1 < x))2

∝g′(x)ϕ(g(x))(1− Φ(g(x)))2

Let assess the normalization constant:

+∞∫
−∞

g′(t)ϕ(g(t))(1− Φ(g(t)))2dt =

+∞∫
−∞

ϕ(u)(1− Φ(u))2du = C0

Thus f(x) =
1

C0
g′(x)ϕ(g(x))(1 − Φ(g(x)))2. Let Z a

random variable with f as PDF. Thus, involving variable
mutation:

E(Z) =

+∞∫
−∞

tf(t)dt =

+∞∫
−∞

(σg(t) + µ)f(t)dt = σ
C1

C0
+ µ

E(Z2) =

+∞∫
−∞

t2f(t)dt =

+∞∫
−∞

(σg(t) + µ)2f(t)dt

=

+∞∫
−∞

(σ2g(t)2 + 2µg(t) + µ2)f(t)dt

=σ2C2

C0
+ 2µ

C1

C0
+ µ2

V(Z) = E(Z2)− E(Z)2

=
1

C0
(σ2C2 − σC1 + µ(2C1 − C0) + µ2C0)

Proof of property 4: One has

P (k ∈ F) = P (k ∈ F+) + P (k ∈ F−)

Furthermore:

P (k ∈ ξ|k ∈ F+) = P (∆Yk < 0,∆Yk+1 > 0|α ≤ ∆mk)

≤ P (∆Yk < 0|α ≤ ∆mk) = Fk ≤ Ak

In the same way, one finds P (k ∈ ξ|k ∈ F−) ≤ Ak.

Therefore:

P (k ∈ ξ|k ∈ F) = P (k ∈ ξ|k ∈ F+)
P (k ∈ F+)

P (k ∈ F)

+ P (k ∈ ξ|k ∈ F−)
P (k ∈ F−)

P (k ∈ F)

≤ Ak
P (k ∈ F)

(P (k ∈ F+) + P (k ∈ F−))

= Ak

Finally:

P (k ∈ F|k ∈ ξ) = P (k ∈ ξ|k ∈ F)
P (k ∈ F)

P (k ∈ ξ)

≤ Ak
P (k ∈ ξ)
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