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Context
➠ Exploration of black-box numerical simulators f : X ⊂ R

d → R with
Gaussian processes

➠ Given data Dn = (Xn, f |Xn
), a Gaussian process ξ can be used to

make probabilistic predictions of f

ξ(x)|Dn ∼ N (ξ̂θ(x), σ̂
2
θ(x)) (1)

➠ ξ is a prior over functions

➠ The choice of ξ is critical for good predictions and design-of-
experiments techniques

The prior ξ is often chosen within a parametric family.

➠ Very often: the Matérn covariance functions family is used [7]

➠ Many procedures have been proposed in the literature for selecting the
parameters of a covariance function

➠ Little is known about their relative benefits

What are the most useful procedures to select the parameters of a Matérn
covariance function (including or not regularity) ?

1 Maximum-likelihood [5]

➠ A very popular technique

➠ Choose the parameters that yield the highest value of the probability
density for the observations, or equivalently, minimize

zTKθz + ln(det(Kθ)),

where Kθ is the covariance matrix of ξ at points Xn = (x1, ..., xn) for
parameters θ and z = (z1, ..., zn)

T denotes the values of f at Xn

2 Cross-validation

Leave-one-out (LOO) [3] is a second very popular technique

➠ Consists in averaging losses for predicting one observation using the
others

➠ We suggest using negatively-oriented scoring rules [4] for the loss func-
tions

➠ A (negatively-oriented) scoring rule is a mapping S : (P ,R) → R

where P is a class of probability distributions, with S(P, z) represent-
ing a loss for observing z while predicting P

➠ Given a scoring rule S the corresponding LOO criterion is

LLOO
S (θ) =

1

n

n∑

i=1

S(N (ξ̂θ,−i, σ̂
2
θ,−i), zi), (2)

where N (ξ̂θ,−i, σ̂
2
θ,−i) denotes LOO predictive distributions

In this work we consider the following scoring rules [4]:

➠ SMSPE(P, z) = (EZ∼P (Z)− z)2

➠ SNLPD(P, z) = − ln(p(z)), with p the pdf of P

➠ SCRPS(P, z) = ||F − 1z≤.||
2
L2(R)

, with F the cdf of P

We shall denote the resulting selection procedures by LOO-MSPE, LOO-
NLPD and LOO-CRPS respectively.

3 Generalized cross-validation [1]

➠ A version of LOO-MSPE that takes the heterogeneity of the design
into account

4 Kernel alignment [2]

➠ Aligns the eigenvector related to the highest eigenvalue of Kθ with the
data

➠ Can also be seen as a similarity between Kθ and the covariance matrix
obtained from the kernel (x, y) → f (x)f (y)

5 Numerical study

We use a set of 36 problems:

➠ Goldstein-Price (d ∈ {1, 2})

➠ Mystery (d = 2)

➠ Toms 829 Ck (k ∈ {0, 1, 2}, d ∈ {2, 5})

➠ Rotated Rosenbrock (d ∈ {2, 5})

➠ Borehole (d = 8)

with space-filing designs Xn, n ∈ {10d, 20d, 50d}. For each case:

➠ We compare model selection procedures using predictions evaluated on
a dense test grid

➠ In particular, we study the influence of the regularity parameter p of
a Matérn covariance function, by setting p ∈ {0, 1, 2, 3, 4, d, 2d,+∞}
or automatically selecting its value using the selection criteria

➠ We present averaged results through repetitions (using random Xn for
instance)

An example
Observe that

➠ Procedures ML, LOO-MSPE, LOO-NLPD and LOO-CRPS give simi-
lar accuracies

➠ The influence of p on the accuracy is strong

MSPE ML LOO MSPE LOO NLPD LOO CRPS KA GCV “Best”

0 1.08 · 10−2 1.12 · 10−2 1.07 · 10−2 1.06 · 10−2 2.16 · 10−1 1.04 · 10−2 9.74 · 10−3

1 3.27 · 10−5 3.11 · 10−5 2.78 · 10−5 2.85 · 10−5 1.71 · 10−1 2.79 · 10−5 2.45 · 10−5

2 1.17 · 10−5 1.23 · 10−5 1.29 · 10−5
1.14 · 10−5 1.59 · 10−1 1.66 · 10−5 8.68 · 10−6

3 1.54 · 10−5 1.80 · 10−5 1.81 · 10−5 1.62 · 10−5 1.36 · 10−1 2.32 · 10−5 1.26 · 10−5

4 1.90 · 10−5 2.32 · 10−5 2.30 · 10−5 2.11 · 10−5 1.23 · 10−1 3.13 · 10−5 1.60 · 10−5

6 2.36 · 10−5 3.07 · 10−5 2.90 · 10−5 2.68 · 10−5 1.12 · 10−1 4.00 · 10−5 1.99 · 10−5

12 2.60 · 10−5 3.30 · 10−5 3.04 · 10−5 2.97 · 10−5 1.03 · 10−1 4.11 · 10−5 2.16 · 10−5

+∞ 2.94 · 10−5 3.77 · 10−5 3.33 · 10−5 3.18 · 10−5 9.23 · 10−2 4.31 · 10−5 2.43 · 10−5

p̂ 1.17 · 10−5 1.27 · 10−5 1.29 · 10−5
1.15 · 10−5 9.23 · 10−2 1.74 · 10−5 8.68 · 10−6

Table: Average MSPE on the validation sets for the different selection procedures and regularity choices.

Influence of the regularity
We focus on two subsets of problems with different smoothness. Fig. 1:
5-dimensional Toms 829 problems; Fig. 2: 5-dimensional Rosenbrock and
Borehole.
We compare log SMSPE normalized by “Best” values both with automati-
cally selected or fixed-p ∈ {0, 1, 2, 3, 4, d, 2d,+∞}.
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Fig. 1: Influence of the regularity on the loss for non-smooth problems.
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Fig. 2: Influence of the regularity on the loss for smooth problems.

Influence of the selection criteria

We compare the selection procedures with automatically selected ps.
Fig. 3: log(SMSPE) normalized by “Best” values; Fig. 4: interval score
[4] defined by

SIS
α (l, u, x) = (u− l) +

2

α
(l − x)1x≤l +

2

α
(x− u)1x>u. (3)

6 Conclusions

➠ The regularity parameter has a strong impact on the goodness of fit

➠ We recommend selecting the regularity from data instead of fixing it
to a “standard” value

➠ The choice of a reasonable selection procedure has second-order impact
but ML and LOO CRPS seem to give the best performances

➠ All procedures have the same numerical complexity, using appropriate
computations of the selection criteria and their gradients [6]
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Fig. 3: Influence of the selection criteria on the MSPE.
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Fig. 4:Influence of the selection criteria on the interval score.
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