

Gaussian process model selection for computer experiments

Sébastien Petit, Julien Bect, Paul Feliot, Emmanuel Vazquez

► To cite this version:

Sébastien Petit, Julien Bect, Paul Feliot, Emmanuel Vazquez. Gaussian process model selection for computer experiments. MASCOT PhD student 2020 Meeting, Sep 2020, Grenoble, France. . hal-03018559

HAL Id: hal-03018559 https://centralesupelec.hal.science/hal-03018559v1

Submitted on 22 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License

Gaussian process model selection for computer experiments

Sébastien J. Petit^{1,2} & Julien Bect¹ & Paul Feliot² & Emmanuel Vazquez¹

¹Université Paris-Saclay, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. ² Safran Aircraft Engines, Moissy-Cramayel, France

CentraleSupélec Université PARIS-SACLAY

email: sebastien.petit@centralesupelec.fr

	Toms 829 C^k $(k \in \{0, 1, 2\}, d \in \{2, 5\})$	Influence of the selection criteria
Context Further of block how numerical simulators $f: \mathbb{X} \subset \mathbb{D}^d \to \mathbb{D}$ with	$ \implies \text{Rotated Rosenbrock} \ (d \in \{2, 5\}) $	We compare the selection procedures with automatically selected p s.
Gaussian processes $f : \mathbb{A} \subset \mathbb{R}^n \to \mathbb{R}$ with	with space-filing designs \mathcal{X}_n , $n \in \{10d, 20d, 50d\}$. For each case:	Fig. 3: $\log(S_{\text{MSPE}})$ normalized by "Best" values; Fig. 4: interval score [4] defined by
	$(100, 200, 000) \cdot (100, 200, 000) \cdot (100, 000)$	

Given data $D_n = (\mathcal{X}_n, f|_{\mathcal{X}_n})$, a Gaussian process ξ can be used to make probabilistic predictions of f

 $\xi(x)|D_n \sim \mathcal{N}(\hat{\xi}_{\theta}(x), \hat{\sigma}_{\theta}^2(x))$

 $\blacksquare \xi$ is a prior over functions

SAFRAN

The choice of ξ is critical for good predictions and design-ofexperiments techniques

The prior ξ is often chosen within a parametric family.

 \blacksquare Very often: the Matérn covariance functions family is used [7]

Many procedures have been proposed in the literature for selecting the parameters of a covariance function

Little is known about their relative benefits

What are the most useful procedures to select the parameters of a Matérn covariance function (including or not regularity) ?

1 Maximum-likelihood [5]

- A very popular technique
- Choose the parameters that yield the highest value of the probability density for the observations, or equivalently, minimize

 $z^T K_{\theta} z + \ln(\det(K_{\theta})),$

where K_{θ} is the covariance matrix of ξ at points $\mathcal{X}_n = (x_1, ..., x_n)$ for parameters θ and $z = (z_1, ..., z_n)^T$ denotes the values of f at \mathcal{X}_n

- We compare model selection procedures using predictions evaluated on a dense test grid
- In particular, we study the influence of the regularity parameter p of a Matérn covariance function, by setting $p \in \{0, 1, 2, 3, 4, d, 2d, +\infty\}$ or automatically selecting its value using the selection criteria
- We present averaged results through repetitions (using random \mathcal{X}_n for instance)

An example

Observe that

(1)

(2)

■ Procedures ML, LOO-MSPE, LOO-NLPD and LOO-CRPS give similar accuracies

The influence of p on the accuracy is strong

$S^{\mathrm{IS}}_{\alpha}(l, u, x) = (u -$	$l) + \frac{2}{\alpha}(l-x)$	$1_{x \le l} + \frac{2}{\alpha} (x - t)$	$u)1_{x>u}.$	(3)
	α	α		

6 Conclusions

- \blacksquare The regularity parameter has a strong impact on the goodness of fit
- We recommend selecting the regularity from data instead of fixing it to a "standard" value
- The choice of a reasonable selection procedure has second-order impact but ML and LOO CRPS seem to give the best performances
- All procedures have the same numerical complexity, using appropriate computations of the selection criteria and their gradients [6]

MSPE	ML	LOO MSPE	LOO NLPD	LOO CRPS	KA	GCV	"Best"
0	$1.08 \cdot 10^{-2}$	$1.12 \cdot 10^{-2}$	$1.07 \cdot 10^{-2}$	$1.06 \cdot 10^{-2}$	$2.16 \cdot 10^{-1}$	$1.04 \cdot 10^{-2}$	$9.74 \cdot 10^{-3}$
1	$3.27 \cdot 10^{-5}$	$3.11 \cdot 10^{-5}$	$2.78 \cdot 10^{-5}$	$2.85 \cdot 10^{-5}$	$1.71 \cdot 10^{-1}$	$2.79 \cdot 10^{-5}$	$2.45 \cdot 10^{-5}$
2	$1.17 \cdot 10^{-5}$	$1.23 \cdot 10^{-5}$	$1.29 \cdot 10^{-5}$	$1.14\cdot 10^{-5}$	$1.59 \cdot 10^{-1}$	$1.66 \cdot 10^{-5}$	$8.68 \cdot 10^{-6}$
3	$1.54 \cdot 10^{-5}$	$1.80 \cdot 10^{-5}$	$1.81 \cdot 10^{-5}$	$1.62 \cdot 10^{-5}$	$1.36 \cdot 10^{-1}$	$2.32 \cdot 10^{-5}$	$1.26 \cdot 10^{-5}$
4	$1.90 \cdot 10^{-5}$	$2.32 \cdot 10^{-5}$	$2.30 \cdot 10^{-5}$	$2.11 \cdot 10^{-5}$	$1.23 \cdot 10^{-1}$	$3.13 \cdot 10^{-5}$	$1.60 \cdot 10^{-5}$
6	$2.36 \cdot 10^{-5}$	$3.07 \cdot 10^{-5}$	$2.90 \cdot 10^{-5}$	$2.68 \cdot 10^{-5}$	$1.12 \cdot 10^{-1}$	$4.00 \cdot 10^{-5}$	$1.99 \cdot 10^{-5}$
12	$2.60 \cdot 10^{-5}$	$3.30 \cdot 10^{-5}$	$3.04 \cdot 10^{-5}$	$2.97 \cdot 10^{-5}$	$1.03 \cdot 10^{-1}$	$4.11 \cdot 10^{-5}$	$2.16 \cdot 10^{-5}$
$+\infty$	$2.94 \cdot 10^{-5}$	$3.77 \cdot 10^{-5}$	$3.33 \cdot 10^{-5}$	$3.18 \cdot 10^{-5}$	$9.23 \cdot 10^{-2}$	$4.31 \cdot 10^{-5}$	$2.43 \cdot 10^{-5}$
\hat{p}	$1.17 \cdot 10^{-5}$	$1.27 \cdot 10^{-5}$	$1.29 \cdot 10^{-5}$	$1.15\cdot 10^{-5}$	$9.23 \cdot 10^{-2}$	$1.74 \cdot 10^{-5}$	$8.68 \cdot 10^{-6}$

Table: Average MSPE on the validation sets for the different selection procedures and regularity choices.

Influence of the regularity

2 Cross-validation

Leave-one-out (LOO) [3] is a second very popular technique

- Consists in averaging *losses* for predicting one observation using the others
- We suggest using *negatively-oriented scoring rules* [4] for the loss functions
- \blacksquare Given a scoring rule S the corresponding LOO criterion is

$$L_S^{\text{LOO}}(\theta) = \frac{1}{n} \sum_{i=1}^n S(\mathcal{N}(\hat{\xi}_{\theta,-i}, \hat{\sigma}_{\theta,-i}^2), z_i),$$

where $\mathcal{N}(\hat{\xi}_{\theta,-i}, \hat{\sigma}_{\theta,-i}^2)$ denotes LOO predictive distributions In this work we consider the following scoring rules [4]:

- $\Longrightarrow S_{\mathrm{MSPE}}(P,z) = (\mathbb{E}_{Z \sim P}(Z) z)^2$
- $\implies S_{\text{NLPD}}(P, z) = -\ln(p(z))$, with p the pdf of P
- $\implies S_{\text{CRPS}}(P, z) = ||F \mathbf{1}_{z \leq .}||^2_{L^2(\mathbb{R})}$, with F the cdf of P

We shall denote the resulting selection procedures by LOO-MSPE, LOO-NLPD and LOO-CRPS respectively.

3 Generalized cross-validation [1]

We focus on two subsets of problems with different smoothness. Fig. 1: 5-dimensional Toms 829 problems; Fig. 2: 5-dimensional Rosenbrock and Borehole.

We compare log S_{MSPE} normalized by "Best" values both with automatically selected or fixed- $p \in \{0, 1, 2, 3, 4, d, 2d, +\infty\}$.

Fig. 1: Influence of the regularity on the loss for non-smooth problems.

Fig. 3: Influence of the selection criteria on the MSPE.

- A version of LOO-MSPE that takes the heterogeneity of the design into account
- 4 Kernel alignment [2]
- Aligns the eigenvector related to the highest eigenvalue of K_{θ} with the data
- □ Can also be seen as a similarity between K_{θ} and the covariance matrix obtained from the kernel (x, y) → f(x)f(y)

5 Numerical study

We use a set of 36 problems:

- Goldstein-Price $(d \in \{1, 2\})$
- $\blacksquare Mystery (d = 2)$

Fig. 2: Influence of the regularity on the loss for smooth problems.

Fig. 4:Influence of the selection criteria on the interval score.

References

[1] P. Craven and G. Wahba. Smoothing noisy data with spline functions. Estimating the correct degree of smoothing by the method of generalized cross-validation. *Numerische Mathematik*, 1979.

[2] N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic, NIPS'01, Cambridge, MA, USA, 2001. MIT Press.

[3] C. Currin, T. Mitchell, M. Morris, and D. Ylvisaker. A Bayesian approach to the design and analysis of computer experiments. Technical report, Oak Ridge National Lab., TN (USA), 1988.

[4] T. Gneiting and A. Raftery. Strictly proper scoring rules, prediction, and estimation. *Journal of the American Statistical Association*, 102:359–378, 2007.

 [5] P. K. Kitanidis. Statistical estimation of polynomial generalized covariance functions and hydrologic applications. Water Resources Research, 19(4):909–921, 1983.

[6] S. J. Petit, J. Bect, S. Da Veiga, P. Feliot, and E. Vazquez. Towards new cross-validation-based estimators for Gaussian process regression: efficient adjoint computation of gradients, 2020.

[7] M. L. Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer Series in Statistics. Springer New York, 1999.

¹Université Paris-Saclay, CentraleSupélec, Laboratoire des Signaux et Systèmes, Gif-sur-Yvette, France. ² Safran Aircraft Engines, Moissy-Cramayel, France