Bayesian multi-objective optimization with noisy evaluations
Bruno Barracosa, Julien Bect, Héloïse Dutrieux Baraffe, Juliette Morin, Josselin Fournel, Emmanuel Vazquez

To cite this version:
Bruno Barracosa, Julien Bect, Héloïse Dutrieux Baraffe, Juliette Morin, Josselin Fournel, et al.. Bayesian multi-objective optimization with noisy evaluations. MASCOT PhD student 2020 Meeting, Sep 2020, Grenoble, France. hal-03022267

HAL Id: hal-03022267
https://centralesupelec.hal.science/hal-03022267
Submitted on 24 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
BAYESIAN MULTI-OBJECTIVE OPTIMIZATION WITH NOISY EVALUATIONS

1. CONTEXT
• Multi-objective optimization of the parameters of a planning strategy for the multi-year planning of the electricity distribution grid [DUT15]
• A stochastic black box provides noisy evaluation results of the objective functions $f_1, ..., f_k$ defined on a discrete search domain $X \subseteq \mathbb{R}^d$
• Previous n evaluations at $X = (X_1, ..., X_n)$ assumed:
 * $Z_i = f_i(X_i) + \epsilon_i$ for each $i \in [n]$
 * ϵ_i, j are zero-mean random variables

2. OBJECTIVE
Estimate the Pareto-optimal solutions (or Pareto set Γ) of the problem:
$$x^* = \arg\max_{x \in X} f_1(x), ..., f_k(x)$$
Defined as:
$$\Gamma = \{x \in X : \exists x' \in X \text{ such that } f(x') < f(x)\}$$
where Γ stands for the Pareto domination rule:
$$x \prec y \iff \left\{ \begin{array}{c} y_1, y_2, y_3 \text{ are non-dominated points} \\ y_1 \text{ is only dominated by } y_2 \\ y_2 \text{ is only dominated by } y_3 \\ y_3 \text{ is dominated by all other points} \end{array} \right. $$

3. BAYESIAN OPTIMIZATION
• Define a probabilistic model for each f conditional on previous observations
• Use a sampling criterion to select new evaluation points

PROPOSED APPROACH
• Replace the multi-objective problem by the minimization of a single augmented Tchebycheff function [KNO06]:
$$\begin{align*}
\tilde{f}(x) &= \max_{i \in [k]} \omega_i f_i(x) + \rho \sum_{i \in [k]} \omega_i f_i(x) , \\
\sum_{i \in [k]} \omega_i &= 1, \rho > 0
\end{align*}$$
• At each iteration, generate random weights ω_i and apply this function to the n previous observations:
$$Z_i = \max_{i \in [k]} \omega_i Z_i, \quad i = 1, ..., n$$
• Assume a homoscedastic Gaussian noise model and fit to $Z = (Z_1, ..., Z_n)$ a Gaussian Process model ξ_n with parameters estimated by maximum likelihood
• We use the Knowledge Gradient (KG) criterion [FRA09] to select new point X_{n+1} based on previous observations.

4. NUMERICAL EXPERIMENTS
• Compare use of batches of 1, 4 or 10 evaluations
• Compare use of batches of 1 (black), 4 (blue) or 10 (magenta) evaluations.

5. OPEN QUESTIONS
• ‘Ideal’ batch of evaluations?
• Performance comparison of the proposed approach to other methods in the literature?

REFERENCES

Contacts:
Bruno BARACOSA* (EDF R&D, L2S, CentraleSupélec), Julien BECT (L2S, CentraleSupélec), Hélène DUTRIEUX BARARFEE (EDF R&D), Juliette MORIN (EDF R&D), Joaselin FOURNEL (EDF R&D), Emmanuel VAZQUEZ (L2S, CentraleSupélec)
*bruno.baracosa@edf.fr

*This document is published under the Creative Commons Attribution 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. For any use beyond those covered by this license, you may need to obtain permission from the copyright holder.