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CONTEXT

• Multi-objective optimization of the parameters of a planning for the multi-year planning the electricity distribution grid [DUT15] • A stochastic black box provides evaluation results the objective functions 𝑓𝑓 1 , … , 𝑓𝑓 𝑞𝑞 defined on a discrete search domain

𝕏𝕏 ⊂ ℝ 𝑑𝑑 • Previous n evaluations at X (X 1 , … , X n ) assumed:  𝑍𝑍 𝑖𝑖,1 = 𝑓𝑓 1 𝑋𝑋 𝑖𝑖 + 𝜀𝜀 𝑖𝑖,1 , … , 𝑍𝑍 𝑖𝑖,𝑞𝑞 = 𝑓𝑓 𝑞𝑞 𝑋𝑋 𝑖𝑖 + 𝜀𝜀 𝑖𝑖,𝑞𝑞
where 𝜀𝜀 s are zero-mean random variables Average performance results over 100 simulations for four optimization approaches: random approach (red) and the proposed approach with batches of 1 (black), 4 (blue) or 10 (magenta) evaluations.

OBJECTIVE

𝑦𝑦 = 1 , … , 𝑦𝑦 𝑞𝑞 ≺ 𝑦𝑦′ = 𝑦𝑦′ 1 , … , 𝑦𝑦′ 𝑞𝑞 ⇔ � ∀𝑖𝑖 ≤ 𝑞𝑞, 𝑦𝑦 𝑖𝑖 ≤ 𝑦𝑦 𝑖𝑖 ′ ∃𝑗𝑗 ≤ 𝑞𝑞, 𝑦𝑦 𝑗𝑗 < 𝑦𝑦 𝑗𝑗

Illustration of the Pareto domination rule

-𝑦𝑦 1 , 𝑦𝑦 2 , 𝑦𝑦 3 are non-dominated points -𝑦𝑦 4 is only dominated by 𝑦𝑦 1 -𝑦𝑦 5 is only dominated by 𝑦𝑦 2 -𝑦𝑦 6 is dominated by all other points

•

  Compare the proposed approach (PA) with random selection of points in a bi-dimensional bi-objective problem • Compare use of batches of 1, 4 or 10 evaluations 3. BAYESIAN OPTIMIZATION • Define a probabilistic model for each 𝑓𝑓 conditional on previous observations • Use a sampling criterion to select new evaluation points 5. OPEN QUESTIONS • 'Ideal' batch of evaluations? • Performance comparison of the proposed approach to other methods in the literature? Provides estimate of 𝒇𝒇 and a measure of uncertainty of the estimation PARETO-OPTIMAL ESTIMATES Built from the estimates of 𝑓𝑓 PROPOSED APPROACH • Replace the multi-objective problem by the minimization of a single augmented Tchebycheff function [KNO06]: f𝑓 𝑥𝑥 = max 𝑗𝑗 𝜔𝜔 𝑗𝑗 𝑓𝑓 𝑗𝑗 𝑥𝑥 + 𝜌𝜌 � 𝑗𝑗 𝜔𝜔 𝑗𝑗 𝑓𝑓 𝑗𝑗 𝑥𝑥 , � 𝑗𝑗 𝜔𝜔 𝑗𝑗 = 1, 𝜌𝜌 > 0 • At each iteration, generate random weights 𝜔𝜔 𝑗𝑗 and apply this function to the n previous observations: � 𝑍𝑍 𝑖𝑖 = max 𝑗𝑗 𝜔𝜔 𝑗𝑗 𝑍𝑍 𝑖𝑖,𝑗𝑗 + 𝜌𝜌 � 𝑗𝑗 𝜔𝜔 𝑗𝑗 𝑍𝑍 𝑖𝑖,𝑗𝑗 , , 𝑖𝑖 = 1, … , 𝑛𝑛 • Assume a homoscedastic Gaussian noise model and fit to � 𝑍𝑍 = ( � 𝑍𝑍 1 , … , � 𝑍𝑍 𝑛𝑛 ) a Gaussian Process model ξ𝜉𝑛𝑛 with parameters estimated by maximum likelihood • We use the Knowledge Gradient (KG) criterion [FRA09] to select new point 𝑋𝑋 𝑛𝑛+1 based on previous observations. The idea is to identify a point that is expected to reduce the minimum of the posterior mean of ξ𝜉 : 𝑋𝑋 𝑛𝑛+1 = argmax 𝑥𝑥∈𝕏𝕏 𝐾𝐾𝐾𝐾 (𝑥𝑥) with: 𝐾𝐾𝐾𝐾 𝑥𝑥 = min 𝑥𝑥 ′ ∈𝕏𝕏 𝔼𝔼 ξ𝜉𝑛𝑛 (𝑥𝑥 ′ ) -𝔼𝔼 min 𝑥𝑥 ′ ∈𝕏𝕏 𝔼𝔼 ξ𝜉𝑛𝑛 (𝑥𝑥 ′ )| � 𝑍𝑍 𝑛𝑛,𝑥𝑥 where � 𝑍𝑍 𝑛𝑛,𝑥𝑥 denotes a new observation of ξ𝜉𝑛𝑛 at 𝑥𝑥 • Update the model with new observation and iterate until stopping criterion is met