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Abstract. This paper introduces CxSOM, a model to build modular ar-
chitectures based on self-organizing maps (SOM). An original consensus
driven approach enables to adress non-hierarchical architectures where
SOMs get organized jointly. The paper aims at showing how the mod-
ules are able to store the association between data, and evaluating, by
a mutual information criterion, the resulting organization. These results
stand as preliminary work to study bigger architectures.
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1 Introduction

Artificial neural networks are an illustration of how computer science can benefit
from biologically-inspired paradigms. Deep learning [5] is an example of advances
in computer science that has a biological flavor, since it is based on the formal
neuron, which is an abstraction of actual nervous cells. Nevertheless, bringing a
biological concept up to operative computational techniques usually overcomes
the biological side. In deep learning, sophisticated gradient-based techniques
and many other refinements do not really have identified counterparts in biol-
ogy. The present paper follows the same kind of path, from biology to com-
puter algorithms, but rather in the field of self-organizing substrates observed
in the cerebral cortex of mammals. The cortex is described as a tiling of similar
[14] elementary circuits over a neural surface that get topologically organized
by adaptive processes. The cerebral cortex as a whole is understood as an ar-
chitecture involving numerous interconnected self-organizing modules, handling
different modalities and their associations [2, 15]. Self-organizing feature maps
(SOMs) introduced by Kohonen [9] model one of such modules. It is nowadays
a vector quantization machine learning technique thanks to tricks like argmax
computation, decreasing winner-take-all kernel width, decreasing learning rates,
that needed to be introduced.

Although the topographical aspect of self-organisation observed on the cor-
tex surface has successfully been transposed to machine learning context, the
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modular aspect of the cortical organisation has lesser been explored in this per-
spective. This motivates the work presented in this paper, since materials and
methods are proposed in order to build up modular architectures from self or-
ganizing computational modules. On a rather biological side, some models of
hierarchical cortically-inspired modular architectures have been proposed [10,
16]. Robotics or computer vision are generally addressed as proofs of concept in
such approaches, since the focus is rather on biological plausibility than on the
SOM algorithm itself: in [10] the SOM is quite small, in [13] it is used before-
hand for initialization and in [16] it is replaced by another vector quantization
paradigm close to growing neural gas.

On the machine learning side, some approaches address modular self-orga-
nization. A variety of them, reviewed in [17], are based on the ART paradigm,
initially inspired from biology. Self-organization addressed in these works is not
topographic and are therefore out of the scope of this paper. Approaches in-
volving several self-organizing maps are not necessary a modular architecture
either. For example, in [18], the input space is split into several subset so that
several SOMs handle a specific subset. Hierarchical SOMs may also be confusing
since hierarchy is involved in the computation of a single SOM, as clearly ex-
plained in [3]. In the end, quite a few works address modular and topographical
self-organization. Let us mention [7] which is an algorithmical approach oriented
toward letter-phoneme integration as well as A-SOM [8] which introduces asso-
ciative SOMs. The present work is in line with these two, with a higher stress
on computational homogeneity between the modules and scalability for archi-
tectures with many modules. The architecture proposed in this paper relies on
a dynamical process leading to a global consensus among all the modules. This
consensus drives the self-organization in each module so that they perform a
joint self-organization. This is the extension of previous work involving a cellu-
lar paradigm closer to the biological side [12, 11] and leading to an abstraction
of the neural field toward SOM-like structures, as initiated in [1]. This paper
introduces self-organizing modules as well as a methodology for grouping them
into an architecture. Moreover, an original method based on mutual information
is introduced to mesure how self-organization arises. The paper is organized as
follows. First, a reformulation of the SOM algorithm is introduced, enabling the
connection of modules as non-hierarchical architectures and allowing the defini-
tion of an original measure of organization. Then experiments on 2D data are
presented.

2 Model: CxSOM

The main goal of the study is to set-up rules to build up a SOM architecture
which achieves vector quantization tasks, as conventional SOM does, while learn-
ing relationship between associated data. The model has to be applicable to any
structure and particularly non-hierarchical ones, and unlike A-SOM where some
maps are specifically designed to connect other standard SOMs, all the modules
are designed to be of the same type, eventually differing by some parameters.
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2.1 SOMs as Blocks of an Architecture

Each module i is a slightly modified version of Kohonen’s self organizing map [9].
First, let us introduce the standard model: a map is a graph with a fixed size and
fixed topology. The input space is noted D, the map being fed by inputs ξ ∈ D.
In this study, for plotting considerations, the graph is a one-dimensional line of
N units, where each one is indexed by a position p = i

N−1 , 0 ≤ i ≤ N . To each of
those units is associated a weight vector ωe(p) ∈ D, also referred to as prototype,
randomly initialized. The algorithm performs vector quantization by creating a
mapping of the input space over the N prototypes, with the specificity that the
protoypes of two close units in the map are also close in D, creating a continuity
in the mapping. At each learning iteration, a new input ξ ∈ D is presented to
the map. The BMU is found as the position having the maximal activity where

a(ξ, p) = exp[
‖ξ − ωe(p)‖2

2σ2
] (1)

Learning is realized by moving each unit towards ξ relatively to how close it is
from Π :

∀p, ωe(p, t+ 1) = ωe(p, t) + α×He(Π, p)× (ξ − ωe(p, t)) (2)

H(Π, p) is a linearly decreasing function around Π in map positions space, reach-
ing 0 at a distance he. In our approach, the learning rate α and the neighborhood
radius he are constant, as opposed to most SOM-based works.

2.2 CxSOM Architecture Model

Let us now consider the architecture of n modules connected as a directed graph
G. A module (i.e a map) i takes an external input from Di, and a set of BMU
from all the other maps connected to this one. SOM model is then extended to
handle these multiple inputs. As G may present cycles, modifiying Π in a map
then modifies the activity and thus the BMU of already computed maps; the
search for BMU must be a consensus between maps.

The notations of the model are summarized in Figure 1 for an example of two
maps connected one to another. Let us note ξ the external input of a map, and
γ1, ..., γK its set of contextual inputs which are the BMU Π of all the other maps
connected to this one in G. Taking the BMU as the only information transmit-
ted between maps, encoding a state, brings homogeneity in the model: regardless
of the dimension of the prototypes of a map, the transmitted information is a
position. This encoding has already been used successfully as the information
being transmitted between computational steps within a map, in models like
SOMSD [6]. It is used here as well as a compact representation of remote map’s
state. Each unit is associated to K + 1 weight vectors, each vector being asso-
ciated to an input: ωe is relative to the external input and ωc1, ωc2, ..., ωcK are
relative to the contextual inputs. Hence, the contextual weights are mappings
over remote map position space. Learning is performed online by presenting a
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set of inputs to the architecture. A learning iteration is described in Algorithm 1:
inputs are presented to each map in the architecture, and each set of weights
ωck computes its activity distribution ack from a gaussian matching, relatively
to its input. These activities are merge into a global matching ag.

ag(p) =
√
ae(ξ, p)× (βae(ξ, p) + (1− β)ac(p)), with ac(p) =

1

K

K∑
k=1

ack(γk, p)

(3)
β is a merge factor, set to 0.5 in all the experiments. Notice that a map may
have only contextual inputs; its global matching is then ac, and map activity
is driven by the behavior of other maps in the architecture. A spatial gaussian
convolution is then applied on ag, for stability issues not detailed here. Then,
a relaxation is realized to find a ensemble (Π0, · · · , ΠN ) so that each BMU is
situated at the maximum of its map’s activity . This search is performed by
small displacements of Π in each map until a stable state is reached.Once the
BMU is found, each set of weights ωck is separately updated according to Eq.2,
relatively to the corresponding input. External neighborhood radius he is taken
superior to the contextual ones hc, see figure 1. Equation 3 ensures the global
matching is mainly driven by the external inputs, and the difference between
neighborhood radius keeps learning process on a smaller and more local scale for
contexts compared to external weights. Both properties contribute to learning
stability and convergence.

Sensor output 

Fig. 1. Notations for a map in a CxSOM architecture, taking one contextual input.

3 Experiments and Results

3.1 Experiments Formalization

In order to exhibit what is learnt during self-organization and to quantify the
progression of that learning, the formalization of experiments rely on random
variables. Let us consider that the data given to the learning process are sam-
pled independantly and identically (i.i.d.) from a random variable. Here, that
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Input: ξ1, ..., ξK ← (o1, · · · , oK) ∈ D1 × · × DK

t← 0

∀i,Πi ← arg maxp ae(ξi, p)

while Π(t) 6= Π(t− 1) do
forall Map i do

γi
1, ...γ

i
k ← BMUs from connected maps

Computation of aig (equation 3)

p?i ← arg maxp a
i
g(p)

Πi ← Πi +min(∆, |p ?i −Πi|)× sgn(p ?i −Πi)

end
t← t+ 1

end

∀i, ωi
e(p)← ωi

e(p) +He(Πi, p)(ωi
e(p)− ξi)

∀i,∀k, ωi
ck(p)← ωi

ck(p) +Hc(Π
i, p)(ωi

ck(p)− γi)

Algorithm 1: Learning iteration with relaxation process

random variable, denoted by U , does not directly feed the learning process.
U is rather “seen” through a set of observation functions s1, · · · , sn so that
the input samples are realizations of the joint random variable (O1, · · · , On) =
(s1(U), · · · , sn(U)) ∈ D1 × · · · Dn. In our architectural approach, each obser-
vation feeds the external input of a dedicated map. As SOMs work online,
(O1, · · · , On) samples are provided one by one, learning being performed at each
time step t from the realization (o1t , · · · , ont ) of the variable (O1, · · · , On). More-
over, at time t, each map i computes a BMUΠi, so that (Π1

t , · · · , Πn
t ) is the state

of the whole architecture at t. The tuples {(ut, o1t , · · · , oKt , Π1
t , · · · , Πn

t )}t can
then be viewed as samples of a global joint random variable. Let us complement
such tuples with the values ω1

e(Π1
t ) · · · , ωne (Πn

t ), that are the input prototypes
selected by each map at t. The analysis of the dynamic is performed after last
learning step or periodically during learning as follows: learning is freezed tem-
porarily, in order to get a collection of N tuples, from N samples {un}1≤n≤N
of U , subsequent observations and subsequent BMU position within the maps.
These samples enable numerical statistical analyses of the random variable of
which they are realizations.

Another use of the collected tuples is to evaluate how well a map i has
“discovered” the existence of U . If the map has captured the existence of U , its
BMU values should be informative about the corresponding U values. The pairs
{(un, Πi

n)}1≤n≤N should draw an actual function u = f(Π). This is what further
plots in figure 4 actually show. In statistical terms, the samples should show
that U depends on the random variable Πi. This dependency can be evaluated
from samples by computing mutual information between Πi and U : I(Πi, U),
representing in information theory how much information a realization of Πi

carries about U probability. It’s defined from entropy H as:

I(Πi, U) = H(U)−H(U |Πi) (4)
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In our results, I is then normalized by H(U), which is the maximum value
I(Πi, U) can reaches when u is an actual function of Π. Although this property
can be visually evaluated on one dimensional maps and one dimensional data,
it gets harder in larger dimensions, in which cases such an indicator is useful.
Estimation is realized by discretizing the variables through binning and prob-
abilities estimated by counting the samples. As the datasets are artificial and
as big as needed, the estimation is not a problem. In the following, this is per-
formed periodically, while learning takes place, in order to exhibit an increase of
the mutual information between Πi and U as the map gets jointly self-organized.
This is illustrated further in figure 5. To sum up, modelling the input as well as
the status of the architecture as joint random variables facilitates an illustration
and evaluation of what is actually learnt within the maps. This is used further
to analyse the experimental setup presented in this paper.

3.2 Evaluation of the Model on Two Maps

This experiment aims at understanding which mecanisms are involved in the
organisation by analysing 2 maps connected one to another and therefore devel-
oping a methodology to that end. The external inputs (O1, O2) are the (X,Y )
coordinates of a point on a circle centered in (0.5, 0.5), radius 0.5, both depending

on the hidden variable U as (X,Y ) = ( 1+cos(2πU)
2 , 1+sin(2πU)

2 ). The architecture
is trained on 2000 iterations, U being uniformly drawn in [0, 1[ on each one. α
is set to 0.1, he = 0.2, hc = 0.07, ∆ = 0.01. After training, learning is freezed
and U, thus (X,Y ), and (ΠX , ΠY ) after relaxation, are sampled 1000 times in
order to build plots in Figs 2, 3, 4. Two samples S1 and S2, whose elements
are referred to as (x1, y1, u1, Π1, ...) and (x2, y2, u2, Π2, ...) in the following, are
highlighted in the plots. They correspond to x1 = x2 = 0.6, y1 = 0 and y2 = 1,
u1 = 0.8 and u2 = 0.2.

The relation ship between ωXe (ΠX) and ξ is plotted in figure 3 to evaluate
if vector quantization is achieved: it should be close to identity. Even if some
accuracy is lost compared to a standard map, vector quantization is correctly
achieved within each map. Figure 2 presents the weights repartition in each map
after training. It can be seen that the weights are globally disposed according to
the external inputs: if two nodes have close external prototypes, then they are
close in the map. Within this overall repartition, weights are disposed according
to U in a reduced number of “zones”, in gray in the figure. For example, S1 and
S2 share their X value, but have different U . BMUs are thus in two consecutive
“zones” on the map according on figure 2, making the distinction between the U
value, but keeping the BMU prototype close to the input value. These zones also
correspond to the steps in figure 3: as ωe is smooth, two areas winning for a same
interval of X have slightly different ωe, both still close to X, but corresponding to
different U . The right graphic in figure 2 shows on a same plot the center region
of map X and the pairs (ΠX , X). It is noticeable that entire zones of map units
never win: BMUs are actually located at the extrema of contextual weights,
two consecutive zones corresponding to a same range of external inputs, but
different U. The context is thus introducing a discontinuity in the map, which
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is unexpected in topology preserving self-organization. In figure 4, U value is
plotted according to the corresponding BMU position. It shows that U can be
deduced from Π in each map.

Sample 1
Sample 2

Fig. 2. Weights disposition of a 2-map structure after learning. Inputs corresponding
to winning positions on a segment of map X are plotted in the right graphic. The
disposition of contextual weights resulting of joint self-organization allows the map to
find the BMU for a sample according to U and not only the external input value.

The ability to make a distinction in each map’s state depending on U is mea-
sured by a mutual information criterion. For sake of comparison between maps
which are learning independantly on X and Y and joint maps, figure 5 shows
normalized mutual information between U and Π in both maps during learning,
as described in section 3.1. Every 20 learning iterations, 5000 samples are com-
puted and mutual information evalutated on them. The curves are a mean of
30 runs of the experiment. Estimation is realized though binning. U bin size is
set to 0.02, whereas Π are already discrete variables taking 500 values. To allow
comparison, the bin size is the same for the estimation of normalized mutual
information on both independant and joint maps. First, the figure shows that
mutual information increases from initial random weights to final state; more in-
terestingly, it shows a significant enhancement between independant maps and
joint maps. So, while oberving Π in independant maps gives a good precision
on X value but lets U uncertain, observing Π in joint maps may lose a bit of
accuracy on X but ensures a BMU also carries information about the whole
state of observations, and has “discovered” U .
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Fig. 3. BMU weight distribution accord-
ing to inputs. It should be close to iden-
tity.

Fig. 4. U distribution according to BMU
position. U can be deduced from Π in
each map.

2000 2000

Fig. 5. Mutual information evolution between BMU positions and U.

4 Conclusion

This paper introduces an extension of self-organizing maps usable as module in
non-hierarchical architectures. Each of those modules performs vector quantiza-
tion, as standard SOM does, but the learning process is also driven by a con-
sensus between modules, allowing them to share and store information about
remote map’s state. This information sharing has been measured by a mutual
information based evalutation. As BMUs, i.e positions, are transmitted between
maps as representation of a map’s state, the model is scalable to any architec-
ture, unrelated to each module’s input space dimension. The experiments on
two maps depict the organization created by this information transmission: each
module organizes itself in regard of its external inputs, but also differentiates the
BMUs depending on the global state of observations. This behavior is partic-
ularly interesting considering the simplicity of the information shared between
maps. This work can be related to the one carried in [4] on recurrent SOM for
temporal sequence processing. The basic architecture behavior brought to light
in this paper enables forthcoming work on larger architectures, two-dimensional
SOMs and integration of recurrent processes.
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