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The Lorentz metric represented by the diagonal matrixG = diag(1,−1,−1,−1) acts on Minkowski space-
time quadrivectors. In the language of Quantum Information the operatorG can be viewed as an entangling gate
this because it acts in a similar way as the Controlled-Z gate on the computational basis of a 2-qubit separable
quantum vector. The entangling power corresponds to the fact that the resulting vector, considered as a 2-qubit
vector, cannot be put into a Kronecker product of two 1-qubit vectors. For example considering a uniform
positive normalized input vector, which is separable, one has the transformation :

G · 1
2
(1, 1, 1, 1)T = 1

2
(1,−1,−1,−1)T

It can be easily verified that in this case the resulting output vector is completely entangled, for example by
calculating the associated quantum concurrence which equals to 1.

One can represent the generators of the Lorentz group by 4× 4 matrices. An example is given by the Lorentz
rotation matrix Z(φ) [1] :

Z(φ) = exp(−iφJ3) =


1 0 0 0
0 1 0 0
0 0 cosφ −sinφ
0 0 sinφ cosφ

 , J3 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 =Π1 ⊗ σy

The matrix J3 is the associated Lorentz group generator. J3 can be expressed as the Kronecker product of the

qubit logical-1 projector Π1 = |1〉 〈1| =
(

0 0
0 1

)
with the Pauli matrix σy =

(
0 −i
i 0

)
and consequently

the operator Z(φ) in a qubit representation acts as a control gate on the unitary double angle rotation operator
Ry(2φ) = exp(-iφσy) around the Oy axis. This can be highlighted by developing the exponential and using
the idempotent property of the projector and the involution property of the Pauli matrix :

Z(φ) = exp(−iφ(Π1 ⊗ σy)) =Π0 ⊗ I2 +Π1 ⊗Ry(2φ)

where Π0 = I2 −Π1 = |0〉 〈0| is the qubit logical-0 projector. The form can be compared with the more-
known entangling gate Control-NOT which can be expressed also as a function of projectors :

CNOT =Π0 ⊗ I2 +Π1 ⊗ σx =Π0 ⊗ I2 +Π1 ⊗ iRx(π)

which is a control gate on the unitary Pauli operator σx =X (the NOT gate) and corresponds geometrically to
a reflection or equivalently a rotation around the Ox axis of angle π multiplied by the imaginary number i.

The following questions arise : is there a link between the Lorentz space-time structure and entanglement?
Do they have a common origin? These questions could be related with the lack of mechanical understanding
of the nature of a relativistic spinor. Spinors are often identified with qubits, for example the complex 1-qubit
column vector |ψ〉 = (ψ1, ψ2)

T transforms under left-multiplication with matrices in the SU(2) special-unitary
group like a 2-spinor [2] and Dirac 4-spinors can be associated with 2-qubit states. The physics related to
the information content of the Lorentz group is often overlooked, not being considered for actual applications
in Quantum Information. Spinor algebra arises by the Lorentz invariance constraint in the quantum Hilbert
space framework and conversely spinor algebra implies Lorentz invariance. Therefore the Lorentz group can
be considered as a bridging algebraic structure between Quantum Information and Relativity Theory. Also the
logic content of the associated linear algebra structures [3] could provide a new perspective to further explore
this matter.
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