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The Lorentz metric represented by the diagonal matrixG = diag(1,−1,−1,−1) acts on Minkowski space-
time quadrivectors. In the language of Quantum Information the operatorG can be viewed as an entangling gate
this because it acts in a similar way as the Controlled-Z gate on the computational basis of a 2-qubit separable
quantum vector. The entangling power corresponds to the fact that the resulting vector, considered as a 2-qubit
vector, cannot be put into a Kronecker product of two 1-qubit vectors. For example considering a uniform
positive normalized input vector, which is separable, one has the transformation :

G · 1
2
(1, 1, 1, 1)T = 1

2
(1,−1,−1,−1)T

It can be easily verified that in this case the resulting output vector is completely entangled, for example by
calculating the associated quantum concurrence which equals to 1.

One can represent the generators of the Lorentz group by 4× 4 matrices. An example is given by the Lorentz
rotation matrix Z(φ) [1] :

Z(φ) = exp(−iφJ3) =


1 0 0 0
0 1 0 0
0 0 cosφ −sinφ
0 0 sinφ cosφ

 , J3 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 =Π1 ⊗ σy

The matrix J3 is the associated Lorentz group generator. J3 can be expressed as the Kronecker product of the

qubit logical-1 projector Π1 = |1〉 〈1| =
(

0 0
0 1

)
with the Pauli matrix σy =

(
0 −i
i 0

)
and consequently

the operator Z(φ) in a qubit representation acts as a control gate on the unitary double angle rotation operator
Ry(2φ) = exp(-iφσy) around the Oy axis. This can be highlighted by developing the exponential and using
the idempotent property of the projector and the involution property of the Pauli matrix :

Z(φ) = exp(−iφ(Π1 ⊗ σy)) =Π0 ⊗ I2 +Π1 ⊗Ry(2φ)

where Π0 = I2 −Π1 = |0〉 〈0| is the qubit logical-0 projector. The form can be compared with the more-
known entangling gate Control-NOT which can be expressed also as a function of projectors :

CNOT =Π0 ⊗ I2 +Π1 ⊗ σx =Π0 ⊗ I2 +Π1 ⊗ iRx(π)

which is a control gate on the unitary Pauli operator σx =X (the NOT gate) and corresponds geometrically to
a reflection or equivalently a rotation around the Ox axis of angle π multiplied by the imaginary number i.

The following questions arise : is there a link between the Lorentz space-time structure and entanglement?
Do they have a common origin? These questions could be related with the lack of mechanical understanding
of the nature of a relativistic spinor. Spinors are often identified with qubits, for example the complex 1-qubit
column vector |ψ〉 = (ψ1, ψ2)

T transforms under left-multiplication with matrices in the SU(2) special-unitary
group like a 2-spinor [2] and Dirac 4-spinors can be associated with 2-qubit states. The physics related to
the information content of the Lorentz group is often overlooked, not being considered for actual applications
in Quantum Information. Spinor algebra arises by the Lorentz invariance constraint in the quantum Hilbert
space framework and conversely spinor algebra implies Lorentz invariance. Therefore the Lorentz group can
be considered as a bridging algebraic structure between Quantum Information and Relativity Theory. Also the
logic content of the associated linear algebra structures [3] could provide a new perspective to further explore
this matter.
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Minkowski metric matrix entangling power and quantum concurrence

The Minkowski metric is represented by the diagonal matrix 𝑮 acting on space-time quadrivectors:
𝑮 = diag(+1,−1,−1,−1)

In the language of Quantum Information 𝑮 can be viewed as a quantum entangling gate

it acts in a similar way as the Control-Z gate 𝑪𝒛 = diag(+1,+1,+1,−1).

Considering a uniform positive normalized input 2–qubit state:

|  + + =
1

2
|  0 + |  1

1

2
|  0 + |  1 =

1

2
|  00 + |  01 + |  10 + |  11 =

1

2
(1,1,1,1)𝑇

𝑮|  + + = 𝑮
1

2
(1,1,1,1)𝑇 =

1

2
(1,−1,−1,−1)𝑇 =

1

2
|  00 − |  01 − |  10 − |  11 =

1

2
|  0 − − |  1 +

The resulting state is the singlet Bell state for the 2-qubit basis: {|  0 + , |  0 − , |  1 + , |  1 − }

The quantum concurrence𝐶 measures the degree of entanglement,

for a general 2-qubit state: |  φ = 𝑎|  00 + 𝑏|  01 + 𝑐|  10 + 𝑑|  11

The expression of concurrence is: 𝐶(|  φ ) = 2|𝑎𝑑 − 𝑏𝑐|

For the state 𝑮|  + + concurrence is: 𝐶
1

2
1,−1,−1,−1 𝑇 = 1, indicating that it is maximally entangled.

Lorentz group generators and rotations
Rotation generators of the Lorentz group are represented by 4 × 4 matrices:

𝑱1 =

0 0 0 0
0 0 0 𝑖
0 0 0 0
0 −𝑖 0 0

, 𝑱2 =

0 0 0 0
0 0 −𝑖 0
0 𝑖 0 0
0 0 0 0

, 𝑱3 =

0 0 0 0
0 0 0 0
0 0 0 −𝑖
0 0 𝑖 0

A rotation in the Lorentz group can be expressed as [1]: 𝒁3(𝜙) = exp −𝑖𝜙𝑱3 =

1 0 0 0
0 1 0 0
0 0 cos𝜙 −sin𝜙
0 0 sin𝜙 cos𝜙

Lorentz group rotation as a controlled 2-qubit gate

One can decompose the generators 𝑱𝑖 using the Kronecker product: 𝑱3 =
0 0
0 1

⊗
0 −𝑖
𝑖 0

= 𝜫1 ⊗ 𝜎𝑦

𝜫1 is the 1-qubit logical-1 projector |  1  1| and 𝜎𝑦 is a Pauli matrix.

So one has: 𝒁3(𝜙) = exp −𝑖𝜙 𝜫1 ⊗ 𝜎𝑦 = 𝜫0 ⊗ 𝜎0 + 𝜫1 ⊗ exp −𝑖𝜙𝜎𝑦 = 𝜫0 ⊗ 𝜎0 + 𝜫1 ⊗ 𝑹𝒚(2𝜙)

where exp −𝑖𝜙𝜎𝑦 =
cos𝜙 −sin𝜙
sin𝜙 cos𝜙

= 𝑹𝒚(2𝜙) is a 1-qubit rotation operator of angle 2𝜙 around 𝑂𝑦,

𝜎0 =
1 0
0 1

is the 1-qubit identity operator and 𝜫0 is the 1-qubit logical-0 projector |  0  0|

𝒁3(𝜙) has a structure similar to the Control-NOT logical quantum gate 𝑪𝑁𝑂𝑇 [3]

𝑪𝑁𝑂𝑇 =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

= 𝜫0 ⊗ 𝜎0 + 𝜫1 ⊗ 𝜎𝑥 = 𝜫0 ⊗ 𝜎0 + 𝜫1 ⊗ 𝑖𝑹𝒙(𝜋)

where 𝜎𝑥 =
1 0
0 1

= 𝑿 is the 1-qubit logical-NOT or Pauli-X gate, in Hilbert space it is a reflection or also a

rotation of angle 𝜋 around the 𝑂𝑥 axis on the Bloch sphere multiplied by the imaginary number 𝑖.

 |𝑥  |𝑥

 |𝑦  |𝑥 ⊕ 𝑦

Control-NOT  |𝑥  |𝑥

 |𝑦  |𝑥 ⊕ 𝑅(2𝜙, 𝑦)𝑹(2𝜙)

Control-𝑹(2𝜙)
Lorentz rotation 

𝒁3(𝜙)
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Lorentz Group and Minkowski Metric as Linear Operators of Quantum Information 

• A Lorentz group matrix corresponds to a linear operator acting on a 2-qubit state and the Minkowski metric
matrix of Relativity Theory can be considered an entangling 2-qubit gate.

• A non-relativistic 2-spinor can be identified with a 1-qubit state [2]. Rank-2 spinors, as Dirac 4-spinors, can
be identified with a 2-qubit state, and so on…

• The Minkowski metric, according to the positive energy theorem in General Relativity, represents the
ground state of the metric field. Its maximally entangled character analogous to the singlet Bell state
suggests that entanglement and hyperbolic space are intimately interconnected.

• Quantum Information associated with the logic linear algebraic structures, as proposed in Eigenlogic [3],
could provide a new tool to revisit the geometric structures (rotational and hyperbolic) of the Lorentz
group linking Quantum Mechanics and Relativity Theory.


