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Résumé. Beaucoup de données ont une structure intrinsèque tensorielle lorsque, par
exemple, plusieurs modalités de la même variable ont été observées sur chaque individu.
Les approches multivoie deviennent alors un choix naturel pour analyser ces données. Les
versions standards de ces approches consistent à imposer au vecteur de poids d’être une
décomposition de PARAFAC de rang 1. Pour certaines applications, les données peuvent
cependant s’avérer trop complexes pour que cette décomposition soit valide. Ce papier
présente une version de la régression logistique multivoie associée à une décomposition de
rang R, l’objectif étant de proposer une méthode de classification applicable aux situations
où la contrainte de rang 1 serait trop restrictive. Un algorithme de directions alternées
est proposé pour la régression logistique multivoie de rang R. Les performances de cette
méthodes sont évaluées sur des données d’électroencéphalogrammes (EEG).

Mots-clés. Analyse multivoie, régression logistique, EEG

Abstract. Data often has an inherent tensor structure (e.g. data where the same set
of variables is collected at different occasions). To deal with such data, multiway models
become a natural choice. Standard multiway models impose weight vectors to be rank-1
PARAFAC decomposition. However in some applications, this constraint appears to be
too restrictive. This paper presents a more general version of multiway logistic regression
(MLR) associated to a rank-R decomposition. The objective of such an approach is to
propose a classification model that can cope with situations where rank-1 constraint may
be too restrictive. An alternating direction algorithm is proposed for rank-R MLR and
its performances are evaluated on electroencephalogram (EEG) data.

Keywords. Multiway analysis, logistic regression, EEG

1 Introduction

Multiway data appears in many research fields as neuroscience, chemometrics or social
networks to name a few. It occurs when the same set of variables is collected through
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variables : j = 1, . . . , J

subjects : i = 1, . . . , I

modes : k = 1, . . . , K

X
y class vector

Figure 1: Three-way data, each sample is represented by K vectors of length J

different modes. For example, this is the case for spatio-temporal data (several images
collected at different time steps) or when a set of measures is acquired through multiple
sensors. See [1] for an overview of methods for the analysis of multiway data.

Let X = {Xijk}1iI,1jJ,1k,K be a third order tensor of dimension I ⇥ J ⇥K where
I is the number of subjects, J the number of variables and K the number of modes (see
Figure 1). The roles of variables and modes are symmetrical and thus can be interchanged.

A first non-multiway option to deal with such tensor data is to unfold the tensor by
concatenating its frontal slices X..k next to each other, leading to X =

⇥
X..1 . . . X..K

⇤

which is a matrix of size I ⇥ JK on which classic statistical methods can be applied.
However, such an approach leads to issues: (i) A problem of size JK could be compu-
tationally impractical for standard computers, (ii) the higher the dimension/order of the
tensor, the more the number of variables obtained by flattening, the higher the risk of
overfitting is, (iii) the results are not easy to interpret as the considered model does not
permit a separate interpretation of the influence of the variables and modes.

A second approach largely used in the multiway literature when the model to construct
uses the tensor variables through a linear form is to impose a Kronecker constraint on
the weight vector: β = βJ

⌦βK . Taking into account the multiway structure of the data
with a Kronecker constraint reduces the degree of freedom from JK to J +K, which may
limit overfitting effects and computation time. Moreover, the study of the contributions
of the variables and modes is made easier by analysing each vector βJ and βK separately.

This rank-1 constraint was used for example in Multiway Logistic Regression (MLR)
[2]. However, such a constraint can be too restrictive when effect of variables and modes
are not strictly parallel. Therefore a higher rank decomposition for β can be considered :

β =
RX

r=1

βK
r ⌦ βJ

r (1)
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Similar rank R approaches has been studied in [3] for Generalized Linear Model and
[4] for Support Vectors Machines. In this paper, we propose a rank-R Multiway Logistic
Regression.

This paper is organized as follows: Section 2 presents a short reminder of (regularized)
logistic regression. The rank-R logistic regression is described in Section 3. Section 4
presents an application on EEG data.

2 Regularized Logistic Regression

Logistic regression can be directly used on tensor data by unfolding the tensor in a matrix.
Let xi be the vector of the KJ observed variables of subject i (xi is then the ith line of the
unfolded tensor X), yi its class (either 0 or 1). Logistic regression relies on maximising the
conditional log-likelihood

Pn
i=1 logP(yi | xi) under the assumption that the conditional

probabilities log-ratio is linear:

log

✓

P(y = 1 | xi)
1− P(y = 1 | xi)

◆

= β0 + βTxi

with β0 and β parameters of the model. From this model it comes the following expression
of the regularized log-likelihood:

C(β0,β,X, y,λ) =
n
X

i=1

yi(β0 + βTxi)− log(1 + exp(β0 + βTxi))− λg(β) (2)

where λ > 0 is a regularization parameter that can be tuned and g(β) is a penalty term.

3 Multiway Logistic Regression

In this section, rank-R multiway logistic regression (R-MLR) is presented. R-MLR is
defined as the following optimization problem:

max
β0, βK , βJ

C(β0,β,X, y,λ) s.t. β =
R
X

r=1

βK
r ⌦ βJ

r (3)

where βJ =
⇥

(βJ
1 )

T . . . (βJ
R)

T
⇤T

and βK =
⇥

(βK
1 )

T . . . (βK
R )

T
⇤T
. An alternating

direction algorithm that monotonically converges is proposed to solve the optimization
problem (3). First, we can note that βTxi can be expressed as:

 

R
X

r=1

βJ
r ⌦ βK

r

!T

xi =
R
X

r=1

(βJ
r )

T
(

(βK
r )

T
⌦ IJ

)

xi
.
=

R
X

r=1

(βJ
r )

TzJr,i (4)
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In addition, two types of regularisation are considered in this paper. First an `2 penalty
with g(β) = 1

2
kβk22 that can be expressed in terms of βJ and βK as follows:

βTβ =

 
RX

r=1

βJ
r ⌦ βK

r

!T RX

r=1

βJ
r ⌦ βK

r

!
=

RX

r=1

kβJ
r k

2
2kβ

K
r k

2
2 + 2

RX

i=1

RX

j=i+1

(βJ
i )

TβJ
j (β

K
i )

TβK
j

= (βJ)TRJβJ

where RJ =
(

(BK)TBK
)

⌦ IJ , with BK =
⇥

βK
1 . . . βK

R

⇤

. As long as the columns of BK

are not colinear, RJ is symmetric positive definite and QJ
`2
= (RJ)−

1
2 =

(

(BK)TBK
)− 1

2⌦IJ
is well defined.

Furthermore, by setting g(β) =
PR

r=1 kβ
J
r ⌦ βK

r k1, R-MLR with variable selection can
also be defined. The interest of this structured sparsity-inducing norms is that, with a
single parameter λ, the sparsity will spread (driven by the data) among ranks, variables
and modes. This penalty term can be expressed as a function of βJ and βK :

R
X

r=1

kβJ
r ⌦ βK

r k1 = kR
JβJk1 (5)

with RJ =
(

kβK
r k1IJ

)

r2{1...R}
a block diagonal matrix. As before, QJ

`1
= (RJ)−1 =

(

kβK
r k

−1
1 IJ

)

r2{1...R}
is well defined.

As a consequence, the objective function of the optimization problem (3) can be ex-
pressed in terms βJ and βK and therefore can be maximized with respect to β0, β

J and βK

using an alternating direction algorithm. Indeed, optimising w.r.t. (β0, (Q
J)−1βJ) can be

seen as applying logistic regression to maximise criterion CJ = C(β0, (Q
J)−1βJ , QJZJ , y,λ)

with ZJ a matrix of size I ⇥ J and zJi =
⇥

(zJ1,i)
T . . . (zJR,i)

T
⇤T
. As variables and modes

play symmetric roles, the same can be done with βK . We can now derive the R-MLR
algorithm presented in Algorithm 1.

4 Application on EEG data and discussion

The objective of this study was to identify whether the infant’s brain encodes the pho-
netic features used by linguists to describe speech. 24 different consonant-vowel syllables
were presented to 25 infants in a randomized order every 1000 ms during one-hour-long
experimental sessions. Brain responses were recorded at 500 Hz with a high-density EEG
net comprising 252 channels. After pre-processing, this EEG experiment yields 25 tensors
of size 24 syllables ⇥ 500 time steps ⇥ 252 channels each. The consonants varied along
the manner of articulation separating the 24 syllables in 2 classes that we want to predict.
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Algorithm 1: Rank R Multiway Logistic Regression

Inputs: ✏ > 0, λ, R, βK(0), penalty
q  − 0
repeat

ZJ
r =

PK
k=1

⇣

βK(q)
r

⌘

k
X..k for r 2 {1, . . . , R}

⇣

ZJ ,βK(q)
⌘

 −

✓

⇥

(ZJ
1 )

T . . . (ZJ
R)

T
⇤T

,
h

(β
K(q)
1 )T . . . (β

K(q)
R )T

iT
◆

if `1 penalty QJ  − QJ
`1

else QJ  − QJ
`2

(β
(q)
0 , (QJ)−1βJ(q)) − argmaxβ0,β C

(

β0, (Q
J)−1β, QJZJ , y,λ

)

ZK
r =

PJ
j=1

⇣

βJ(q)
r

⌘

j
X.j. for r 2 {1, . . . , R}

⇣

ZK ,βJ(q)
⌘

 −

✓

⇥

(ZK
1 )

T . . . (ZK
R )

T
⇤T

,
h

(β
J(q)
1 )T . . . (β

J(q)
R )T

iT
◆

if `1 penalty QK  − QK
`1

else QK  − QK
`2

(β
(q)
0 , (QK)−1βK(q+1)) − argmaxβ0,β C

(

β0, (Q
K)−1β, QKZK , y,λ

)

q  − q + 1
until |CK − CJ | < ✏ CJ ;

return (βK(q),βJ(q), β
(q)
0 )

Regularized logistic regression and R-MLR with R from 1 to 3 are evaluated and com-
pared using Leave-One-Out cross validation: the model is trained on all infants except
one and tested on the remaining one. The Area Under the ROC Curve (AUC), the regu-
larisation parameter λ and the computational time used to run the 25 folds are reported
in Table 1.

From Table 1, we show that, for complex data such as EEG data, higher rank MLR
enable to outperform both rank-1 MLR and regularized logistic regression. For `1 penalty,
finding the best regularization parameter for logistic regression is really challenging given
the required computation time. MLR enables to cut down drastically this computation
time and yields better results for rank 3.

Model AUC λ Time (in s)

LR 0.822 ± 0.19 1000 892
1-MLR 0.815 ± 0.23 6000 282
2-MLR 0.852 ± 0.17 17500 340
3-MLR 0.857 ± 0.18 17500 498

Model AUC λ Time (in s)

LR 0.830 ± 0.19 20 117000
1-MLR 0.816 ± 0.22 6.5 257
2-MLR 0.826 ± 0.18 10 409
3-MLR 0.853 ± 0.19 15 557

Table 1: Cross validation results by Leave-One-Out for `2 (left) and `1 (right) penalties
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In addition, multiway models enable the graphical display of the weights and get insights
into the importance of variables and modes separately (see Figure 2).

(a) `1 penalty (b) `2 penalty
(c) `2 penalty

Figure 2: Weight visualisation for 2-MLR trained on all 25 infants: (a) and (b) show time step weights
and (c) shows the topomap of electrode weights.

Topomaps associated with the `1 penalty (not displayed here due to lack of space) are
consistent with the `2 penalty results. However, similarly to the time weights of the `1
penalty, they are very sparse with few (less than 5%) isolated selected channels. This
variable selection leads spatial/time resolution that is lower than the usual phenomenon
observed and described by neuroscientists. Hence, future works include to combine `1 and
`2 penalties in order to try to catch smoother effects in time and space.

5 Conclusion

Rank-R Multiway Logistic Regression is presented in this paper and shows promising
results in EEG application. While R-MLR is presented for third order tensors, it can be
generalized to any higher order.
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