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ABSTRACT

In addition to estimating the positions of acoustical
sources, estimating their mutual correlations can yield im-
portant informations about the sources. A simple example
is the pairing of a source and its images in a reverberant
environment, as they are perfectly correlated. Jointly esti-
mating the positions and correlations of sources is a com-
putational challenge, both in memory and time complexity
since the entire covariance matrix of the sources has to be
recovered (and not only its diagonal as for standard pow-
ers estimation). Correlated sources are also known to pre-
vent the application and subspace-based methods such as
MUSIC. We propose to estimate the covariance matrix of
the sources in a greedy way, using the Orthogonal Least
Squares algorithm. This algorithm allows efficient identi-
fication of the sources, with reasonable computational re-
quirements. The performances of the method are demon-
strated with experimental measurements, using correlated
sources (multiple sources emitting the same signal, or a
unique source with a reflection).

1. INTRODUCTION

Source imaging is an important problem of acoustical sig-
nal processing, with applications in industrial acoustics,
source separation, medical imaging, etc. Several methods
have been proposed to solve this problem, such as the well-
known delay-and-sum (DAS) beamformer, Bayesian esti-
mation methods, or sparsity based techniques. The focus
of this communication is the joint estimation of the posi-
tions (or directions) of acoustical sources with their covari-
ance matrix. In other words, our goal is to localize, and
identify sources that are correlated. Applications include
pairing of sources with their reflections in reverberant en-
vironments, and imaging of distributed sources.

Correlated sources is a challenge for subspace-based
methods such as MUSIC or ESPRIT. Indeed, in this
case where the covariance matrix of the sources is rank-
deficient, and the signal subspace has a lower dimension
that the number of the sources.

Here, the correlation of the sources is not considered
a nuisance, but a characteristic of the sources to be esti-
mated. Estimation of the covariance of the sources is a

numerical challenge. Indeed, if the space is discretized us-
ing L points, the dimension of the covariance matrix of the
sources is L × L. It is here necessary to design a low-
complexity algorithm, if possible, linear in the size of the
grid. Indeed, a quadratic algorithm would already have a
complexity O(L4), implying extremely long computations
even for moderate size problems.

Estimation methods for the covariance matrix of
sources have been proposed, such as a variant of the DAS
beamformer, limited by its resolution, or convex optimiza-
tion based methods. These proposed methods have com-
plexity O(L6), or O(L3L3

h), where Lh is an upper bound
on the number of independent sources.

The method we propose, named CMF-OLS for Covari-
ance Matrix Fitting by Orthogonal Least Squares [1] 1 , is
based on the greedy sparse recovery algorithm OLS [2, 3],
similar to the more popular Orthogonal Matching Pursuit
(OMP) algorithm [4, 5]. Using the particular structure of
the covariance matrix to be estimated, the complexity of
the algorithm is linear in the size of the discretization, al-
lowing its application to large-scale problems. Also, its
only parameter is the number of sources, which can be es-
timated by inspecting the convergence of the algorithm. In-
dividual sources can be extracted from the covariance ma-
trix after its estimation.

2. PROBLEM AND STATE OF THE ART

We assume that the microphone array providing the N × 1
measurements x(t) contains N elements. The position of
the sources are assumed to be described by a parameter
Θ, discretized on a grid {Θ`}`=1,...,L. For narrowband
sources, the measurements can be decomposed as

x(ti) =

L∑
`=1

a(Θ`)s`(ti) + n(ti), (1)

where al = a(Θ`) is theN×1 is the steering vector model-
ing the propogation between the position Θl and the array,
sl(ti) is the amplitude of the source l at instant ti modeled
as a random variable, and n(ti) models the noise, assumed
spatially white and gaussian with variance σ2.

1 Figures used in this paper are reprinted with permission from [1].
Copyright 2019, Acoustical Society of America



With the N × L matrix A = [a1, . . . ,aL] formed by
the L steering vectors corresponding to the L candidate
sources of the predefined grid, the signal model can be
rewritten as

x(ti) = As(ti) + n(ti), (2)

where s(ti) contained the amplitudes of the sources sl(ti),
with only a few nonzero coefficients.

Assuming that the noise and the sources are indepen-
dent, the covariance matrix Γ of the measurements is de-
composed as

Γ = E{x(ti)x(ti)
H} = ACAH + σ2I, (3)

where C is the L× L covariance matrix of the sources.
In practice, the covariance matrix Γ is estimated using

the sample covariance matrix of a set of I measurements:

G =
1

I

I∑
i=1

x(ti)x(ti)
H ≈ Γ. (4)

Our goal is to estimate the covariance matrix of the
sources C from the knowledge of the estimated covariance
matrix of the measurements G.

2.1 State of the art

Several estimation methods have been proposed for this
problem, mostly based on convex optimization. A repre-
sentative example is the Sparse Spectrum Fitting method
[6, 7], where the covariance matrix is estimated as the so-
lution of the following optimization problem

ĈSpSF = arg min
C
‖G−ACAH‖2F + λ‖C‖1

s.t. C ≥ 0. (5)

where the `1 norm promotes sparsity of the estimation,
which is also constrained to be symmetric positive semi-
definite. Variants include a modification of the problem
aiming at the joint estimation of the noise level [8], or an
additional term promoting low-rank matrices [9]. Com-
putation complexity of these methods is in the order of
L6, making them unusable for even moderately sized prob-
lems.

The MACS method was also proposed [10]. Replacing
a convex problem by a non-convex problem in a lower di-
mensional space, the complexity is reduced to O(L3L3

h),
where Lh is a bound on the number of sources, still too
high for large scale problems.

3. GREEDY ALGORITHM FOR CORRELATED
SOURCE LOCALIZATION

The method we propose, based on the Orthogonal Least-
Squares algorithm [2], aims at identifying the sources in
an iterative way, i.e. incrementing a set S of columns such
that

G ≈ ASCAH
S , (6)

The algorithm will operate as follows :

• Initialization: k = 1, residual R0 = G, and set of
indices of identified sources S0 = ∅.

• Identification of an additional source of index l?,
Sk = Sk−1 ∪ {l?}

• Update of the residual Rk, by removing the contri-
bution of the identified sources to the covariance ma-
trix

• k ← k + 1, iterate until a stopping criterion is met
(number of sources, norm of the residual, etc.).

Sources are identified by projecting the residual Rk on
the space of the covariance matrices that can be generated
by the set of sources Sk augmented by a candidate source
l. The source l? maximizing the Frobenius norm of the
projection is added to the set of sources.

The residual is updated by taking the projection of the
covariance matrix on the space of covariance matrix gen-
erated by this new set of sources Sk+1. Elementary linear
algebra calculations show that the orthogonal projection of
a matrix M on the space of covariance matrices generated
by a set of sources S is found as:

ΠS(M) = A⊥S A⊥HS MA⊥S A⊥HS (7)

where A⊥S is the matrix of an orthogonal basis of the space
spanned by the vectors a(Θl) for l ∈ S.

The complexity of the agorithm is O(LN2K), where L
is the size of the grid, N the number of microphones, and
K the number of steps of the algorithm. Its memory foot-
print is dominated by the size of the dictionary LN . We
emphasize here the fact that the computation complexity is
linear with respect to the size of the grid.

Extensive discussion of the algorithm and additional
mathematical and implementation details are found in [1].

4. EXPERIMENTAL RESULTS

We present here some experimental results, highlighting
the performances of the method. A planar array of 128
MEMS microphones is used, placed in a disk of radius
1.5m with four sources (see figure 1), at a distance of 4.3m
from the array in an anechoic chamber (see figure 2). Re-
sults for two experiments are given here, with the following
setup:

• two pairs of correlated sources (visible on figure 3),

• two sources, with a planar reflector.

Measurements are filtered around the frequency f =
2.2kHz, and the region of interest is a 2m×2m rectangle,
discretized using L = 400×200 = 8e4 points. Additional
experiments and extensive discussion are given in [1].

4.1 Two pairs of coherent sources

Results of the DAS beamformer and the two groups of
sources identified by CMF-OLS are pictured on figure 4.
At this frequency, the DAS beamformer is unable to sepa-
rate the two closely spaced sources. In constrast, the four



Figure 1. Microphone array layout.
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Figure 2. Setup of the experiment.
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Figure 3. Sources layout.
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Figure 4. Results of the CMF-OLS algorithm and output
of the DAS beamformer. Two pairs of correlated sources
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Figure 5. Results of the CMF-OLS algorithm and out-
put of the DAS beamformer. The two identified blocks of
sources are given, with the covariances estimated by the
DAS beamformer.

sources are correctly localized by CMF-OLS, and correctly
grouped in pairs of correlated sources.

Figure 5 shows the two groups of sources separately. the
CMF-OLS results are superimposed over the covariances
estimated by the beamformer.

4.2 Two sources and a reflector

In a second experiment, a planar reflector is introduced in
the anechoic chamber. It is expected here that two image
sources appear, symmetric to the actual sources with re-
spect to the reflector, completely correlated with their re-
spective original sources.

The results of fig. 6 fulfill the expectations: two pairs of
correlated sources are identified, with positions symmetric
with respect to the reflector. Here, f = 2.93kHz , the
scan area has dimensions 7m×1.5m, including the virtual
source space, discretized over L = 1.05e5 points.
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Figure 6. Results of the CMF-OLS algorithm and output
of the DAS beamformer. Two sources with reflections.

5. CONCLUSION

A numerically efficient algorithm for the joint localization
of acoustical sources and estimation of their correlations
is introduced. The low computational complexity of the
method allows application to large-scale problems.
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