
HAL Id: hal-03053165
https://centralesupelec.hal.science/hal-03053165

Submitted on 10 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

New insulating and refractory mineral foam: Structure
and mechanical properties

Mathieu Maréchal, Estefanía del Campo Estrada, Gabrielle Moulin, Giana
Almeida, Pin Lv, Gérard Cuvelier, Catherine Bonazzi

To cite this version:
Mathieu Maréchal, Estefanía del Campo Estrada, Gabrielle Moulin, Giana Almeida, Pin Lv, et al..
New insulating and refractory mineral foam: Structure and mechanical properties. Materials Science
and Engineering: A, 2020, 780, pp.139153. �10.1016/j.msea.2020.139153�. �hal-03053165�

https://centralesupelec.hal.science/hal-03053165
https://hal.archives-ouvertes.fr


1 

 

New insulating and refractory mineral foam: structure and mechanical 
properties 

Mathieu Maréchal a, b, Estefanía del Campo Estrada b, Gabrielle Moulin a, Giana Almeida a, 
Pin LV c, Gérard Cuvelier a, Catherine Bonazzi a 

a Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, 91300, Massy, France 

b SAS IPSIIS, 77550, Moissy-Cramayel, France 

c Université Paris-Saclay, CentraleSupélec, LGPM, SFR Condorcet FR CNRS 3417, Centre Européen de 
Biotechnologie et de Bioéconomie (CEBB), 51110, Pomacle, France  

 

Abstract 

The present work focuses on the structure and mechanical properties of a new type of 
refractory thermal insulation mineral foam. Studies of the structure of solid foam enabled 
visualisation of the impact of the formulation and manufacturing processes on the final 
microstructure.  
Solid foam structures were investigated using scanning electron microscopy and X-ray 
tomography making it possible to reveal and quantify primary porosity, wall porosity, and 
microstructure, and to better understand the effects of the manufacturing steps. Mechanical 
compression and bending properties were evaluated on solid and ceramic foams and 
compared with the properties of commercial insulating mineral materials. At equivalent 
density, ceramic foam exhibited higher crushing strength than solid foam or commercial 
samples, with no modification of its microstructure.  
 
Keywords: Solid foam, tomography, multi-scale analysis, foaming, porous ceramic material. 
 
1. Introduction 

Building energy consumption represents over 40% of the total energy consumed in France, 
and in Europe fluctuates between 25% in Luxembourg to more than 45% to Estonia, Latvia 
and Hungary (D’Agostino et al. [1]). The number of buildings in the world is expected to 
double by 2060. Two thirds of these buildings will be constructed in countries that do not 
currently have mandatory building energy codes in place. In the African continent alone, this 
will represent an additional floor area of almost 90 billion m2, more than three times the 
present African building floor area (Organisation for Economic Co-Operation and 
Development [2]). Many thermal insulator materials are available on the market which reduce 
energy costs by up to 60% (Fragos and Trouillez [3]). Concrete is the main material used for 
building construction (Flatt et al. [4]), and recent studies (Clément [5], Liu et al. [6], Shimizu 
et al. [7]) have explored the application of porous plasters, concretes or bricks as insulators to 
replace standard dense structured materials. 
 
Fire protection is also a key industrial parameter. Internal industry policies promote the 
reduction of high temperature and fire risks by choosing refractory insulation materials 
(Fennelly and Perry [8]). In so doing, manufacturers also want to reduce the associated 
insurance costs. Today, the choice of insulating refractory materials is less diverse than that of 
other materials used in the building sector, as only mineral insulation materials are available. 
Because of their high heat resistance, refractory concrete, insulating refractory bricks, and 
especially refractory ceramic fibre are the most frequently used materials for applications over 
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1,200 °C. Mullite or alumina wool are also used in the case of high temperatures, whereas 
calcium silicate and microporous materials may be preferred for lower temperatures, typically 
under 1,000 °C (Shimizu et al. [7], Promat [9], SISTAC [10] ). 
In recent decades, porous ceramics have been developed  to withstand high temperatures or 
corrosive environments (Scheffler and Colombo [11]). Four types of processes for 
manufacturing macroporous ceramics are reported in the literature: partial sintering, replica 
technique, sacrificial template, and direct foaming (Studart et al. [12], Colombo [13], Pabst et 
al. [14], Hammel et al.[15], Nishihora et al. [16]). Direct foaming involves the aeration of a 
ceramic or pre-ceramic suspension in wet foam that is dried and then sintered to become a 
ceramic foam. The mineral foam used in the present study can be linked to this method. 
 
Many studies have been conducted on the control and the impact of manufacturing processes 
on bubble size distribution in wet foam (Kroezen et al. [17], Mary [18], Drenckhan and Saint-
Jalmes [19]). The drying process is also well documented in the literature (Mujumdar [20], 
Vasseur [21], Vasseur [22]), but many mechanisms, including coarsening, coalescence, 
drainage, shrinkage, and parameters, including saturated water vapour pressure, and viscosity, 
can have an impact on the drying step of a foam. Sintering is a thermal finishing treatment to 
bond particles into a coherent, predominantly solid structure via phenomena that often occur 
at the atomic scale (German [23]). Sintering involves other mechanisms than drying, as well 
as high temperatures which mean the material is subject to additional risks (cracks, collapse, 
melting) if the process is not properly controlled. 
 
The relation between the structure and the mechanical properties of porous materials can be 
studied using the well-known method of Gibson and Ashby [24]. Different porous structures 
have been investigated, and several models proposed for foam structures depending on the 
nature of the pores. The authors assumed that the pores could be approximated by periodic 
cellular units characterized by edge length and thickness. For open-cell foams, using beam 
mechanics, their model made it possible to predict variations in the Young modulus or 
crushing strength as a function of the porosity fraction.  
 
Few studies of highly porous materials like plaster (Clément [5]), concrete (Liu et al. [6]), 
bricks (Shimizu et al. [7]), or ceramic foam (Bouterf et al. [25]), have combined 
investigations of the structure and mechanical properties. Thanks to recent advances in 
imaging techniques, especially X-ray tomography (Vicente et al. [26]), the microstructure of 
materials is now increasingly frequently studied. Maier et al. [27] recently evaluated ceramic 
foams using this method. 
 
The present paper analyses a new insulating and refractory material that can solve issues 
concerning building and industrial infrastructure. We investigated the creation of porosity, the 
organisation of the structure throughout the foam manufacturing process, and the mechanical 
properties of material. 
 
The study focussed on identifying structure using a multiscale analysis based on two imaging 
techniques: scanning electron microscope (SEM) and X-ray tomography. SEM examination 
provided information on the structure of the macro and microporosity of the foam before and 
after sintering. By applying two types of protocols at two voxel sizes (9 and 1 µm), X-ray 
tomography provided complementary information on pore distribution and on the total 
porosity of the material. Mechanical properties were investigated before and after sintering, 
with compressive and 3-point bending tests. These tests enabled the characterisation of the 
material and revealed the new properties acquired by sintering. 
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2. Preparation and characterisation of foams 

2.1. Foam manufacturing process 

Foams were manufactured in a 4-step process: mixing, foaming, drying, and sintering (Figure 
1). 

 
Figure 1: four-step foam manufacturing process.  

The manufacturing of foam was based on patent [28]. The slurry was composed of three main 
ingredients: mineral powder, water and binding agent. The mineral powder was a calcined 
kaolin MolochiteTM 72 µm (Imerys refractory minerals, Saint Austell, UK), with chemical 
composition of 54% SiO2, 42% Al2O3, 2% K2O, 1.3% Fe2O3, and traces of MgO, CaO and 
TiO2. The binding agent was a mixture of alkali metal silicate solutions (alkali metal of 
sodium and potassium) from Ceradel-Socor (Paris, France). Organic additives were added as 
stabilisers of the wet foam (less than 5% of the slurry), that were then destroyed during the 
sintering step.  
 
The ingredients were mixed to form a mineral suspension (slurry). The suspension was then 
loaded into a tank and pumped into a continuous rotor-stator type mixer using a peristaltic 
pump. Air was co-injected using an El-flow® Select mass flowmeter (Bronkhorst, Ruurlo, 
NL). After passing the aeration device, the wet foam was pushed through a pipe and poured 
into a mould. Moulds (400 × 490 × 110 mm) filled with the wet foam, were then placed in a 
kiln (around 30 m3) equipped with two Sauno VT3/2 kW (Logosol, Härnösand, Sweden) 
temperature controlled (60°C) in drying units for seven days. The drying step resulted in a 
solid mineral foam, which was then sintered in a THA 460 F/18 kW electrical furnace 
(Enitherm, Deluz, France) to obtain a ceramic foam. The temperature in the furnace was 
raised from room temperature to 950 °C in 7 hours, then maintained at constant temperature 
for 30 min, and finally cooled for 24 hours before the ceramic foam was removed. The final 
matrix of ceramic foam was only composed of mineral powder and binding agent. 
 

2.2. Samples used for the study 
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A single batch of mineral slurry was used for all the experiments. The only change made was 
to the air injection rate, which was increased from 70 to 160 L.h-1, in normal temperature and 
pressure conditions, during the manufacturing of the wet foam. The slurry flow rate and rotor 
rotation speed were kept constant (50 L.h-1 and 300 rpm, respectively). The moulds were 
filled with wet foam to a height of approximately 60 mm at different air injection rates. 

Four samples of solid foam hereafter referred to as A, B, C and D, with apparent densities of 
500 (A), 370 (B), 320 (C), and 270 (D) kg.m-3, and four samples of ceramic foam (also named 
A to D) with apparent densities of 500 (A), 370 (B), 310 (C) and 260 (D) kg.m-3, were used 
for the study (Figure 2, (1)). 

 

Figure 2: Implementation of one of the foams selected for mechanical tests, SEM and tomography cutting. The red fire 
symbol means the selected sample was subject to a sintering step at 950 °C. 

Figure 2 shows how the foam was prepared for the mechanical tests (compression and 3-point 
bending) plus the imaging techniques (SEM and X-ray tomography) used. 

Each piece of solid foam was cut into two equal parts. Each part was used for mechanical 
tests. In addition, half of one part was sintered to produce a ceramic foam, giving a total of 
eight different samples studied (4 densities x 2 conditions, i.e., before and after sintering). For 
the purpose of comparison, two kinds of highly porous materials suitable for thermal 
insulation were used to test the mechanical properties: a light SkamoCeramic Hipor 450® 
brick (Skamol, Tranbjerg, Denmark) with a density of 450 kg.m-3 (Skamol [29]) and a ultra-
light Multipor® concrete with a density of 115 kg.m-3 (Ytong [30]). 

The samples were prepared for imaging analysis as follows: a band saw was used to cut the 
big samples (step (1) and (2)). After cutting the foam in half widthwise (1), the resulting slice 
was cut lengthwise (2). The foam was ruptured by bending it by hand (3) to obtain a more 
natural break, since using a cutting machine would probably have modified the true 
microstructure of the foam. One half was used for SEM analysis, and the other half for 
tomography analysis. Any excess solid foam was removed with a carbide saw to reach 1 cm 
height before SEM analysis (4). Four cylindrical samples of solid foam (named A to D) were 
obtained using a hole saw with a diameter of 1.8 cm. In addition, a punch with a diameter of 
0.3 cm was used to extract another foam cylinder from sample C. The foam cylinder with a 
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diameter of 0.3 cm was used for 1 µm-tomography analysis, and the cylinders with an 1.8 cm 
diameter were used for 9 µm-tomography analysis (5). After solid foam analysis (SEM and 
X-ray tomography), the samples were sintered at 950 °C. 

2.3. Foam structures 
2.3.1. SEM 

The microstructure of solid and ceramic foams was investigated using a Quanta 200 FEG 
Environmental Scanning Electron Microscope (ESEM) (FEI, Hillsboro, OR, USA) with the 
following conditions: secondary electron detector, mode low vacuum, Torr pressure: 0.8, 
voltage: 10 kV. Images of samples A, B, C and D, before and after sintering, were acquired at 
x100, x400 and x1500 magnification. For easier comparison, SEM images were acquired of 
exactly the same imaging section before and after sintering to identify any changes caused by 
the process. 

The method used to measure shrinkage is based on Stokes theorem, using a procedure 
developed by Perré and Huber [31] and described by Almeida et al. [32]. Two shrinkage 
parameters were mathematically defined, hereafter X- and Y- shrinkage axes.  

The Meshpore software developed by Perré [33] was used to determine both shrinkage 
parameters, working with pairs of images of the same foam before (initial) and after 
(deformed) sintering. A closed chain of material points, chosen as discriminant points of the 
foam on the initial image, was first plotted and duplicated before switching to the deformed 
image. By translation on the duplicated chain, each point was then moved to the correct 
location on the deformed image. Finally, the X and Y shrinkage axes were automatically 
calculated using the “strain” command (Figure 3). 

   

  

Figure 3: Example of foam shrinkage measurement using Meshpore software in initial (a) and deformed (b) images. Pictures 
correspond to foam B before and after sintering, with a blue line in the original image and a green line in the deformed 
image. 
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2.3.2. X-ray tomography analysis 

The microstructure of the mineral foam was explored using X-ray tomography techniques, 
with voxel sizes of 1 and 9 µm to investigate different microstructure levels. 

An X-ray micro-computed tomograph (µ-CT) Desktom 130 (RX Solutions, Chavanod, 
France) was used for larger scale investigation. An X-ray generator with sealed microfocus 
tubes in small spot mode (source settings: 8 W, 50 kV and 160 µA) was used in the µ-CT 
chamber. An Option 2520 imager was used to acquire 896 images with an exposure time of 
0.4 s and an averaging frame (i.e. number of images per second) of 2.5. Samples were 
scanned in 11 min with a voxel size of 9 µm in the µ-CT chamber. 

µ-CT analysed the sample and produced projections that were compiled to make a 3D 
reconstruction of the material. The initial quality of the images was improved using XAct 2® 
(RX Solutions, Chavanod, France) software to remove blur and ring artefacts, and to adjust 
contrast and brightness. At the end of this step, a 7 x 7 x 10 mm paving block (Figure 6-A), 
was extracted for further analysis. 

Porosities in the solid materials were quantified after analysis using Simpleware ScanIP™ 
software (Synopsys, Mountain View, CA, USA). A median filter was applied over neighbours 
of 1 voxel, and a threshold technique was used to separate the pore and wall fractions (two 
complementary masks, a wall mask and a pore mask, were produced). After these treatments, 
the software was able to determine the volume fractions of the pore and the wall at a voxel 
size of 9 µm. Watershed algorithm was performed on the pore mask to separate adjacent 
elements. The option discarding all particles that touched boundaries was also used during 
watershed algorithm to exclude pores that were not located entirely inside the volume 
analysed in the study. Figure 7 shows the 3D structure of the foam after watershed algorithm. 
Afterward, the number and size of the pores was calculated using the calculation functions of 
the software. The volume of each pore was then converted into an equivalent spherical 
diameter and the total volume fraction vs the equivalent spherical diameter was drawn. 

A nano-computed tomograph (nano-CT) EasyTom XL 150/160 (RX-solutions, Chavanod, 
France) with 500 nm maximum voxel size was used to investigate the walls of the foam in 
more detail before and after sintering. A high temperature, a heat resistant tracker made in 
metal alloy was glued inside the sample to be sure to analyse exactly the same volume before 
and after sintering.  

Samples were scanned for 4 hrs at a voxel size of 1 µm, using a nano-focus tube and source 
settings of 70 kV and 140 µA. A CCD detector, size 2004 × 1336 mm was used, and 1,568 
radiographs were acquired with an exposure time of 1.5 s and an averaging frame of 6. XAct 
2® was also used to improve contrast and extract a paving block of 1.9 × 1.9 × 1.1 mm for 
further analysis (Figure 6-B). Post analysis was performed to quantify total porosity using 
Simpleware ScanIPTM. No median filter was applied to avoid smoothing the walls and losing 
information on wall porosity. A threshold technique was also used to separate the pore + wall 
pore fraction in one part and the wall fraction in the other part. 

2.4. Density 
2.4.1. Apparent density 
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The four ceramic foams (A, B, C, D) were weighed with 0.01 g accuracy and their volume 
was calculated by simply measuring their dimensions with a calliper or a VolScanProfiler 600 
(Stable Micro Systems, Godalming, UK). 

2.4.2. Wall density 

An AccuPyc 1330 (Micromeritics, Norcross, GA, USA) air pycnometer was used to 
determine the density of the mineral foam’s wall without porosity. After calibration of the 
volume of the empty sample chamber, the metal cylinder was filled 2/3 full with crushed 
foam, and the volume of the porous material was calculated from the pressure by applying 
Boyle’s law. The cylinder was then weighed with and without the powder. Each measurement 
was made 9 times (3 repetitions of 3 analyses for each sample). 

2.5. Mechanical properties 
2.5.1. Compression 

A TA.HD Plus texture Analyser (Stable Micro Systems, Godalming, UK) with a force 
capacity of 750 kgf (7,360 N) equipped with a cylindrical metal plate 10 cm in diameter (lp), 
was used for the compression tests. Cylindrical samples about 38 mm in diameter and 50-60 
mm in height were used to determine crushing strength (σ*) (Figure 4 1-A). The height of the 
cylinders was reduced for ceramic foam A, due to a recorded maximum force greater than 
7,360 N that could damage the measuring cell. A prestress level of 2 kPa was applied prior to 
recording to ensure optimal plate-sample contact. Test speed was 1 mm.s-1. The crushing 
strength σ* (MPa) was calculated as follows: 

 �∗ = �����	 	 
(1) 

where Fmax is the breaking force in compression and S0 is the surface area of the sample 
before the test. 

2.5.2. Three-point bending test  

The bending properties of the foam (flexural strength and Young modulus), were determined 
using the same mechanical test machine equipped with a 3-point bending device (Figure 4 1-
B) at a force capacity of 100 kgf  (981 N). 

According to equation (2) and EN NF 310 (AFNOR [34]), the dimensions of test pieces (Vs) 
of the solid and ceramic foam, and of the commercial materials, were as close as possible to 
10 mm in thickness (t), 50 mm in width (b) and 250 mm in length (L2) except for the ceramic 
foams for which L2 was shorter. The test speed was 0.01 mm.s-1 to obtain a rupture after at 
least 30 s. 

 �� =  ∗ �� ∗ � =  ∗ (�	 + �	) ∗ � (2) 

Apparent Young modulus (E*, in MPa) was determined using the following formula (AFNOR 
[34]): 

 �∗ = ���(�� − ��)
����(�� − ��) (3) 
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where F2-F1 is the increase in load on the straight section of the deformation load curve (F1 ≈ 
10%, F2 ≈ 40% of the breaking load, respectively), a2-a1 is the increase in deflection at the 
mid-section of the sample, l1 is the distance between the centres of the supports, b is the 
sample width and t the sample thickness. 

 

Flexural strength (Fm in MPa) was determined as follows (AFNOR [34]):  

 �� = �������	���  (4) 

 
where Fmax is the breaking force in bending, l1 is the distance between the centres of the 
supports, b is the sample width and t the sample thickness. 

                   

1-A       1-B 

   

2-A       2-B 

Figure 4: Schematics of the devices (1) and determination methodology (2) used for the compression (A) and 3-point bending 
test (B). The example of an experimental curve is that of ceramic foam A. 

2.5.3. Statistical analysis of the mechanical properties of the samples 

Statistical analysis was performed using XLSTAT 2016 software (Addinsoft, Paris, France). 
Analysis of variance (ANOVA) was performed to evaluate differences between average 
values using Tukey's test. Significance level of p ≤ 0.05 was used. 

3. Results 
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3.1. Foam structure 
3.1.1. SEM 

The images of the foams in Figure 5 were acquired by SEM. They show the surface structure 
of the solid and ceramic foams with an apparent density ranging from 260 - 500 kg.m-3. All 
the foams had similar structures. They were composed of a mineral matrix surrounding large 
pores. Observation of solid and ceramic foams at three levels of magnification (x100, x400 
and x1,500) made it possible to distinguish two kinds of porosity: macroporosity, i.e., most 
pores were more than 50 µm in diameter, named primary porosity, and wall porosity, with 
smaller pores (diameter < 5 µm). Primary porosity and wall porosity formed a continuous 
open network. 
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Figure 5: Solid foam before (A: 500 kg.m-3, B: 370 kg.m-3, C: 320 kg.m-3, D: 270 kg.m-3) and after sintering at 950 °C (A: 
500 kg.m-3, B : 370 kg.m-3, C: 310 kg.m-3 , D: 260 kg.m-3). 

Foams labelled A (solid and ceramic, with a density of 500 kg.m-3) had smaller pores and 
thicker walls than foams B, C and D (with lower densities ranging from 260 to 370 kg.m-3). 
More precisely, the lower the density, the larger the pore size and the finer the walls (more 
details in section 3.1.2 and Figure 7). Nevertheless, the wall structure of all the foams we 
examined appeared to be very similar irrespective of the porosity level. 

In the sintering step, slight shrinkage was observed with a few distortions of the pores. Apart 
from this, wall porosity did not change, and no evidence of sintering or melting of pore walls 
leading to porosity losses was observed. 

Shrinkage during the sintering step was evaluated in the SEM images (magnification x100) 
using Meshpore software. The results are summarised in Table 1. All the samples examined 
exhibited shrinkage values < 5%, and most were < 2%. Local shrinkage appears to be 
independent of both density and direction (X and Y axes). 
 
Table 1:  X and Y-axis shrinkage in absolute values of SEM foam using Meshpore software 

Foam 
Density (kg.m-3) X-Axis shrinkage 

(%) 
Y-Axis shrinkage 

(%) Before After 
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sintering sintering 

A 500 500 
1.37 3.75 
0.91 1.43 
1.88 1.64 

B 370 370 
1.74 0.75 
0.57 1.30 

C 320 310 
3.68 2.89 
2.03 0.67 

D 270 260 2.85 2.59 
 

3.1.2. X-ray Tomography  

µ-CT made it possible to analyse samples in 3D, and to quantify 2,500 objects (counted as 
pores) inside 402 mm3 (foam D) to more than 7,200 objects (pores) inside 328 mm3 (foam A) 
(Figure 7). 

At 9-µm voxel size, the pore fraction was found to be connected (> 99%) in all samples. At 
this voxel size, some walls could not be detected at all, and the dimensions of some were < 5 
µm in the SEM images (Figure 5) or on nano-CT images at 1-µm voxel size (Figure 6). 

Wall porosity was visible at 1-µm voxel size, and could be estimated. For foam C, the volume 
fraction of the wall was 13% for solid foam and 11.7% for ceramic foam. At 9-µm voxel size, 
the volume fraction of the wall was 21.5% in both solid and ceramic foam C. The density of 
foam C was measured experimentally and the results were compared to theoretical calculation 
using equation (5) : 

 � = (� − �) ∗ �� (5) 

where ρ is the theoretical density of the foam, ρd the density of the solid without porosity and 
Φt the total porosity. Both methods produced very similar results, with differences < 15 kg.m-3 
for solid and ceramic foams. 
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Figure 6: Slices of foam C obtained using tomography and XAct 2® software under different conditions: (A) one slice of 
foam obtained at a voxel size of 9-µm; (B) one slice of the same foam obtained with 1-µm voxel size; one slice of the solid 
foam before sintering (C) and after sintering (D) at 1-µm voxel size. (B) and (D) are two slices from the same analysis of 
ceramic foam. 

Wall porosity was determined using two hypotheses. First, the fraction of total (Φt) porosity 
was satisfactorily estimated from nano-CT analysis at 1-µm voxel size. Second, total porosity 
was the sum of primary (Φp) and wall porosity (Φw). Based on these considerations, wall 
porosity was estimated as follows:  

 � =	� −	�! = � − �
∗

�� −�!	 (6) 

where ρ*  is the apparent density of the foam and ρd the density of the solid without porosity.  
 
Estimated wall porosity values are summarized in Table 2. Two methods were used to 
estimate Φw using equation (6). Method 1 was applied to all foam samples using measured ρ

* 
and ρd, and Φp found with µ-CT analysis, whereas method 2 was applied to foam C using Φt 

found with nano-CT analysis and the same Φp used in method 1. For solid foam C, for 
example, it represented 9% and 8.5% of the total volume fraction of the foam with method 1 
and 2, respectively.  
 
The walls were porous and were composed of about 40% porosity. The proportion of porosity 
inside the wall (i.e. the estimated ratio of Φw of foam to the volume fraction of the walls) 
increased with density from 37% to 42% and from 41% to 47% in the solid and ceramic 
foams, respectively. It therefore appears that the sintering step also had an impact on this 
ratio. 
 
Table 2: Summary of the volume fraction of the foams. The data obtained by experimental tomography analysis are in bold. 
Two values are given for foam C, both found with equation (6), but the first using estimated Φt from method 1, and the 
second (in bold) using estimated Φt from method 2. 

Foam Φp 
(%) 

Φw of 
foam 
(%) 

Φt 

(%) 

Volume 
fraction of 
wall (%) 

Porosity 
proportion 

inside the wall 
(%) 
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Solid 
foam 

A 69.2* 11.3 80.5 30.8* 37 
B 76.1* 9.4 85.5 23.9* 39 
C 78.5* 9 8.5 87.5 87** 21.5* 42 40 
D 82* 7.5 89.5 18* 42 

Ceramic 
foam 

A 67.2* 13.3 80.5 32.8* 41 
B 76.9* 8.6 85.5 23.1* 37 
C 78.5* 9.4 9.8 87.9 88.3** 21.5* 44 46 
D 80.9* 8.9 89.8 19.1* 47 

* obtained with 9-µm voxel size using µ-CT 
** obtained with 1-µm voxel size using nano-CT 

Figure 7 shows the cumulative volume fractions of the pores plotted as a function of 
equivalent spherical pore diameters for foams of different porosities before and after sintering. 
Ceramic foams had the same pore distributions as their solid foam counterparts. In both cases, 
the denser the foam, the smaller and the more numerous the pores. 
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Figure 7: The graph at the top of the figure shows pore size distribution of solid (in black) and ceramic foam (in colour) with 
the smallest pores having equivalent spherical diameter in the order of 10-4 mm. The two bottom rows show reconstructed 
foam 3D pore structures (without wall mask) obtained with Simpleware ScanIPTM software. Foam A and D are represented 
before and after sintering.  

Table 3 list the characteristic values of pore size distribution in the foams. In solid foams, 
10% of total volume fraction had equivalent spherical diameters < 0.340 mm for foam A, and 
< 0.490 mm for foam D. This ratio of 1.45 did not change much for D50 and D90 with values 
of 1.45 and 1.49 respectively. There was also an increasing trend in comparison with B and C 
foams. There was a 1.44, 1.45, 1.49 increase between ceramic foam A and ceramic foam D 
for D10, D50 and D90.   

The span of the size distribution is defined as follows: 

 �!�" = #$	 −#�	#�	 		 (7) 

Span values for solid and ceramic foams were low and similar, ranging from 0.7 to 0.8 mm. 
Generally, the smaller the span, the more homogeneous the pore size and the more stable the 
foam (Cantat et al. [35]). 

Table 3: Pore size distribution of solid and ceramic foam samples. D10, D50 and D90 correspond to respectively 10%, 50% 
and 90% of pore volume fraction with a diameter below the given value. For example, D10 = 0.4 mm means that 10% of 
volume fraction of pores had an equivalent spherical diameter < 0.4 mm. 

Foam D10 (mm) D50 (mm) D90 (mm) span 

Solid foam 

A 0.341 0.573 0.778 0.8 
B 0.410 0.651 0.848 0.7 
C 0.446 0.724 0.971 0.7 
D 0.490 0.832 1.163 0.8 

Ceramic foam 
 
 

A 0.333 0.562 0.763 0.8 
B 0.405 0.643 0.852 0.7 
C 0.442 0.720 0.946 0.7 
D 0.480 0.817 1.134 0.8 

 
3.2. Mechanical properties 

3.2.1. Compression 

The crushing strength of the foams was investigated and compared to that of commercial 
samples (Figure 8). The crushing strength σ

* increased with density and after sintering. 
Ceramic foams exhibited very high σ* values, up to 3 times higher than those measured on 
solid foams for the highest densities (500 kg.m-3). For lighter foams (250 kg.m-3 in density), 
σ

* was < 1 MPa for both solid and ceramic foams. Hence, the higher the density, the bigger 
the difference between the compressive strength of solid and ceramic foams. Considering that 
sintering had no effect on foam density, the increase in compressive strength cannot be 
explained by a change in porosity. Table 4 illustrates these behaviours in ceramic and solid 
foam, with significant differences in compressive strength for foams A and B, whereas there 
was no significant difference in C and D. 

At the same density, values measured on light brick were slightly lower than those measured 
on solid foam and much lower than those measured on ceramic foam. No significant 
difference in σ* was found between light brick, ceramic foams C and D, and solid foams B 
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and C. It is therefore possible to use porous insulation materials that are lighter than brick but 
have the same mechanical properties in compression. 

Ultra-light concrete was lighter than all the other materials tested and σ* values were thus 
weaker. Based on Figure 8, it is likely that if the density of solid and ceramic foams could be 
reduced to values close to those of ultra-light concrete, their mechanical behaviour would 
probably be very similar to their own, with a very light material well suited for insulation. 

 

Figure 8: Crushing strength vs density of solid foam, ceramic foam, and commercial porous materials: light brick and ultra-
light concrete, using equation (8) for solid and ceramic foams. Power law model values are in grey for ceramic foam and in 
black for solid foam. Average experimental values for commercial porous material were 0.201 MPa for 110 kg.m-3 (ultra-
light concrete) and 1.32 MPa for 459 kg.m-3 (light brick).  

Power law models according to equation (8) were fitted to experimental data for both ceramic 
and solid foams (Figure 8): 
 �∗ = %�∗" (8) 
 
where σ* and ρ*are the crushing strength and the density of the foam, respectively, and A and 
n are two constants. 
 
Crushing strength of solid foams evolved almost like the square of the density (n = 2.17) 
whereas values of ceramic foam evolved with almost the cube of the density (n = 2.99). This 
reflects the higher dependence of fracture properties on density in ceramic materials. At the 
lowest densities, the properties of the two materials are more similar. The same observation 
also applies to the mechanical properties of commercial porous materials. Light brick was 
fitted, with medium correlation, to solid foam values. By extrapolation of the power law 
model (Figure 8), ultra-light concrete was fitted to either solid or ceramic foam values. 
 
In the literature, many studies used specific models based on Gibson and Ashby [24] to 
predict mechanical properties with respect to the overall structure of a cellular solid. For 
open-cell materials, the model is based on a unit cell composed of an open pore surrounded by 
walls represented by a cubic array of struts of square cross section and length. For 
compressive behaviour of brittle foam materials, the authors proposed the following relation 
between crushing strength and density:  
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where σ*/σs is the relative crushing strength defined as crushing strength of material 
normalised by theoretical crushing strength of the solid counterpart (the wall), ρ*/ρs, the 
relative density defined as the apparent density of material normalised by density of the wall, 
C and α, two constants depending on geometry and size of the pores of the cellular material.  

According to Gibson and Ashby [24], foams with fracture dominant behaviour and open-cell 
structures have C and α values of 0.2 and 3/2, respectively, leading to the following equation : 

 �∗
�� = 	. � '

�∗
��(

�
�
 (10) 

 

Wall properties cannot be accessed experimentally. The theoretical density of the wall ρs was 
estimated from a volume balance of the ingredients of the non-aerated suspension equal to 
1600 kg.m-3. The crushing strength of wall material σs was then estimated using equation (10). 
An average value of σs equal to 52 MPa and 108 MPa was found for solid foams and ceramic 
foams A, B, C and D, respectively. 
 
Figure 9 shows relative crushing strength vs the relative density of the solid and ceramic 
foams, highlighting the fact that the Gibson and Ashby equation fitted measurements of the 
present foams in the range of the values studied. The fit was relatively good for solid foams 
(r2 = 0.94), but less good for the ceramic ones (r2 = 0.72), with only one of the four average 
values closely fitting the model. The model overestimates the crushing strength values for low 
density, and conversely, the experimental values are higher for denser samples. 

 

Figure 9: Relative crushing strength vs relative density of solid and ceramic foam using the Gibson and Ashby model.  

 
An adjusted power law model of the same form as Gibson and Ashby (equation (9), was used 
to better fit the experimental data, with C and α values of 0.55 and 2.17 for solid foams, and 
1.9 and 2.99 for ceramic foams (r2 = 0.99). The slope was steeper than those proposed by 
Gibson and Ashby. 
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3.2.2. Bending properties 

Figure 10 presents a plot of Young modulus (E*) vs foam density (ρ*). Slightly higher E* 
values were found for ceramic foams, but they did not significantly differ from those 
measured on solid foams (Table 4). Hence, sintering had no effect on the E*. 

A power law model based on equation (11) was adjusted to solid and ceramic E* experimental 
values (Figure 10): 

 �∗ = %′�∗",	 (11) 
   
where A’ and n’ are two constants of the power law model. 

Young modulus E* of the solid and ceramic foams increased with almost the square of ρ* in 
the range of studied values, where n’ = 2.14 for solid foam and n’ = 1.80 for ceramic foams. 

E* of ultra-light concrete was 84 ± 8 MPa for a density of 100 ± 1 kg.m-3. This E*, appeared to 
behave similarly in solid and ceramic foams by extrapolation of power law model (Figure 10). 
For the present range of low densities, the properties of the matrix of this material would be of 
the same order of magnitude as that of our materials. 

No measurement of light bricks was possible as the material is too brittle and very sensitive to 
slight deformation in tension.  

 

Figure 10: Young modulus of ultra-light concrete, ceramic foam and solid foam vs density using the power law model from 
equation (11). Power law model values are in grey for ceramic foam and in black for solid foam. 
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Figure 11: Relative Young modulus vs relative density using the Gibson and Ashby model on solid and ceramic foam.  

Like for the compression tests, a Gibson and Ashby model was expressed using the following 
equation: 

 
�∗
�� = &′ '

�∗
��(

-
 (12) 

where E* and Es are the apparent Young modulus of material measured in flexion and the 
theoretical Young modulus of the wall material, respectively,  ρ*and ρs, the apparent density 
of material and the density of the solid counterpart, respectively, C’ and β  are two constants 
that provide information on the topology and deformation mechanism of the cell material 
(Ashby [36]). 

According to Gibson and Ashby [24], C’ and β are equal to 1 and 2, respectively, for brittle 
open-cell foams, leading to this expression : 

 
�∗
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��(

�
 (13) 

Equation (13) was applied with ρs = 1600 kg.m-3 to estimate the Es of foams A, B, C and D, 
and average Es values of 14,200 and 18,400 MPa were found for solid foam and ceramic 
foam, respectively. Young modulus measured in flexion for solid foams satisfactorily fitted 
the Gibson and Ashby equation for solid foams (r2 = 0.99) and ceramic foam (r2 = 0.97). 

Values of E*  for a low density of 110 kg.m-3 were estimated using Es calculated for foams 
with equation (13), and were 67 MPa and 87 MPa for solid and ceramic foam, respectively. 
These values are lower than those found for ultra-light concrete (Table 4) and for solid foam 
and similar to values found for ceramic foam. 

For more dense materials like concrete, Ashby and Jones [37] published Young modulus data 

which ranged between 20,000 and 40,000 MPa for densities ranging from 2,200 to 2,500 
kg.m-3. These values are in agreement with the results found for solid and ceramic foams for 
Es (14,200 and 18,400 MPa for solid and ceramic foam, respectively) and ρs (1,600 kg.m-3). 
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Flexural strength Fm also increased with an increase in the density of the materials (Figure 
12), like all the mechanical properties tested is this study. This type of foam is more sensitive 
to tensile fracture than compression and thus bending failure will spread easily and damage 
the material (Belrhiti et al. [38]; Scheffler and Colombo [11]).  

 

Figure 12: Flexural strength of materials vs density using power law model. Power law model values are represented in grey 
for ceramic foam and in black for solid foam. 

The difference in Fm between solid and ceramic foams A, B, C and D was significant, despite 
the fact the density of the ceramic foams (except for ceramic foam A) was significantly lower. 
The flexural strength of the solid foam was weaker than that of the ceramic foams; for a 
density value of 500 kg.m-3, the bending strength value of solid foams will be half as high. 
Hence, the denser the material, the bigger the difference in Fm.  

Equation (14) was used to fit experimental data on solid and ceramic foam Fm: 

 �� = %"�∗""	 (14) 

where A”  and n”  are constants of the power law model. 

Experimental values of Fm and density of ceramic and solid foams fitted the power law model 
well. Like compressive strength, Fm values of ceramic foam evolved like the square of foam 
density (n”  = 2.24) and like the cube of foam density (n”  = 2.95) for solid foam.  

Fm of ultra-light concrete was 0.101 ± 0.005 MPa, revealing no significant difference in Fm 
between ultra-light concrete, solid foam C and D, and ceramic foam D. For these materials, 
the lighter the material, the smaller the Fm gap. 

According to these considerations, if the density of the foam materials were reduced to 100 
kg.m-3 (ultra-light concrete density), Fm values would probably be close to the average value 
of the ultra-light concrete.  
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Table 4: Mechanical properties of the materials* 

Materials 
Compression test  3-point bending test 

ρ
* (kg.m-3) σ

* (MPa)  ρ
* (kg.m-3) E* (MPa) Fm (MPa) 

Ultra-light 
concrete 

110 ± 1a 
0.201 ± 
0.024a 

 
100 ± 1a 84 ± 8a 

0.101 ± 
0.005a 

Light brick 459 ± 8e 
1.32 ± 
0.13c 

 
- - - 

Solid foam A 486 ± 5f 
2.297 ± 
0.048d 

 
465 ± 6e 1163 ± 38e 

1.41 ± 
0.04d 

Solid foam B 375 ± 6d 
1.22 ± 
0.39bc 

 
367 ± 2d 804 ± 20d 

0.77 ± 
0.03bc 

Solid foam C 308 ± 12c 
0.74 ± 
0.14abc 

 
284 ± 3c 495 ± 13bc 

0.40 ± 
0.02ab 

Solid foam D 241 ± 5b 
0.512 ± 
0.051ab 

 
240 ± 4b 269 ± 19ab 

0.19 ± 
0.03a 

Ceramic foam A 494 ± 4f 
6.34 ± 
0.75e 

 
514 ± 22f 1612 ± 189f 

3.00 ± 
0.22e 

Ceramic foam B 357 ± 3d 
2.108 ± 
0.040d 

 
315 ± 25c 690 ± 188cd 

1.33 ± 
0.31d 

Ceramic foam C 294 ± 7c 
1.24 ± 
0.37bc 

 
307 ± 21c 731 ± 62cd 

1.00 ± 
0.18cd 

Ceramic foam D 246 ± 6b 
0.804 ± 
0.010abc 

 
234 ± 11b 399 ± 77b 

0.53 ± 
0.11ab 

*Values with different superscript letters in the same column are significantly different at p ≤ 0.05 

Rupture property values (σ*and Fm) also depended on the nature and the cohesion of the wall, 
and in this study depended more on sintering than E*. It was possible to fit all the mechanical 
values (E*, σ* and Fm) obtained in this study with power law models, making the mechanical 
properties of the foams predictable.  

4. Discussion 
4.1. Structure  

 
A multiscale analysis combining SEM and tomography techniques was used to better 
understand the mechanisms that create and influence foam structure. The advantage of 
tomography analysis will also be discussed in this section. 
 
The primary porosity of foam is created during mixing, especially during the foaming step. 
The greater the quantity of air incorporated, the thinner the liquid matrix around the bubbles. 
During the drying step, there is competition between thermal expansion of air inclusions and 
water evaporation which reduces the volume of the matrix. When the binding agent is 
sufficiently concentrated, the matrix becomes solid and the overall volume can no longer 
vary. At this point, an open network of pores is generated and evaporation continues, leading 
to the creation of wall porosity and a larger open network of pores. The formation of pseudo 
star-shaped cavities was observed in the foams (Figure 13) which could be explained by local 
demixing leading to separation of the phases between a continuous aqueous phase and mineral 
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particles. The aqueous phase then only contains a very small number of mineral particles, and 
after solidification, the network becomes too weak and falls apart, creating connections 
between adjacent pores. This phenomenon was also observed by Samson [39] in other mineral 
foams. 

 

Figure 13: SEM images of a solid mineral foam C before and after sintering, illustrating the formation of a demixing zone in 
the liquid matrix. This zone was formed after the disappearance of the liquid film deprived sufficient mineral particles and 
binding agent to form non-porous matrix. This phenomenon leads to interconnection between pores after solidification of the 
matrix. Inside the white dotted oval, after sintering, it was also possible to see the disappearance of additional weak region. 

Solid foams A to D (Figure 2) were dried in the same environment with similar relative 
humidity and temperature. The expansion of bubbles is driven by heat, and the composition of 
continuous phase can influence rheological properties (Bey et al. [40]) and increase or reduce 
heat expansion. According to this hypothesis, the influence of expansion of the bubbles is 
proportionally equivalent in all foams. Assuming similar drying conditions, evaporation 
occurred in the same way in all the foams tested, meaning that shrinkage and particle stacking 
of the continuous phase were comparable. The structure of the wall in Figure 5 supports this 
hypothesis and wall porosity corresponds to the volume fraction of evaporated water that 
forms a continuous porous network inside the wall. 

The impact of porosity is clearly visible in the SEM images (Figure 5). When the proportion 
of incorporated air increased, the pores appear to be less spherical, larger, and to have thinner 
walls. This trend suggested the span value increases with porosity but the experimental values 
showed no significant change in the span linked to the density of the material (Table 3). 
Primary porosity decreased with density but remained largely predominant (representing more 
than 80% of the total porosity in all the foam samples). In the solid foam resulting from the 
same initial suspension, wall porosity must still be similar. Combining µ-CT and nano-CT 
analyses enables full access to porosity even when the wall is less than 9 µm thick, which 
would be impossible with µ-CT analysis alone. Even though wall porosity accounted for only 
a small amount of total porosity, it still modified the behaviour of the solid foam matrix, 
increasing open and total porosity with smaller pores than those in primary porosity (the wall 
pores were smaller than the size of the wall), leading to better thermal properties by reducing 
thermal conduction in the solid matrix (Glicksam [41]). 
 
The sintering step appeared to have no major effect on foam structure despite some local 
shrinkage (Table 1) leading to limited matrix damage (Figure 5). The wall porosity did not 
collapse but remained the same after sintering. In ceramic manufacturing, the aim of the 
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sintering step is to improve cohesion inside the matrix and the main consequence is the 
reduction of  porosity inside the wall materials (Nishihora et al. [16]). With ceramic foam, 
neither SEM nor X-ray tomography analysis revealed melting or fusion of particles in the 
wall, which could cover the pores (Figure 6). Moreover, pore distribution between solid and 
ceramic foam remained almost the same (Figure 7). Sintering therefore had no significant 
impact on primary porosity. 
 
Ceramic foams were slightly less dense than solid foams due to the loss of residual mass 
induced by the sintering step, which was not offset by loss of volume. This was confirmed by 
X-ray tomography analysis (Table 2), which showed that the average wall porosity of ceramic 
foams was greater than that of solid foams, implying minor impacts on porosity. If only 
porosity were considered, solid foams would have a stronger structure with fewer flaws than 
ceramic foams. 

Many studies quantified the bubbles or pores in the foams using 2D analysis, leading to small 
numbers and lack of representativeness of the entire volume of foam.  The smallest number of 
bubbles has been reported to be at least 500 (Mary [18]) and at least 500 pores in the present 
study. This number means that additional pores do not have a significant impact on pore size 
distribution. When the experimental X-ray tomography protocol was used, at least 5 times the 
limit value of pores was analysed. X-ray tomography turned out to be a powerful tool for the 
analysis of foam structure. This technique enables visualisation of foam wall and the 3D 
quantification of pores in the air fraction of the foam. X-ray tomography is also a non-
destructive and rapid method, and analysis can be accomplished in a few minutes, or 
alternatively, a more detailed analysis can be performed depending on the degree of resolution 
required (up to 500 nm voxel size). 

4.2. Mechanical properties 

The foams studied here are brittle materials (Figure 4-2), and porosity governs at first order, 
the mechanical strength that decreases with increasing air fraction (Gibson and Ashby [24]). 
The mechanical properties (E*, σ* and Fm) of the materials are not exempt from this rule. 
When the wall thickness decreases due to an increase in pore size and a decrease in density, 
the wall becomes weaker and fractures rapidly appear, thereby reducing the mechanical 
properties. At low density (< 250 kg.m-3) there is only a minor difference in mechanical 
properties between solid and ceramic foam, whereas at higher density (close to 500 kg.m-3) 
the difference is bigger. 
 
If there is no increase in the number of cohesive bonds, it is probable that a reorganisation of 
matrix structure itself could improve the mechanical properties after sintering, for example, 
by reducing wall porosity. In ceramics, for instance, the porcelain sintering temperature has to 
be above 1,200 °C to achieve complete densification of the matrix (Sánchez et al. [42]). No 
evidence of either melting or fusion of wall particles was observed in ceramic foams, the 
improvement of mechanical properties after sintering therefore cannot be explained by this 
kind of matrix densification.  
 
Higher sintering temperature should lead to partial or total densification of the matrix with 
additional risks like shrinkage or phase transition (melting or crystallisation). In this case the 
final product will be denser with better mechanical properties. Sintering at 950 °C improves 
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the mechanical properties of the foams especially crushing and flexural strength without loss 
of porosity, demonstrating the ability of the material to enhance wall resistance without major 
changes in microstructure, thus limiting stress or cracking inside the material. One hypothesis 
is that sintering reduces the micro fragility of the walls and therefore increases the breaking 
strength (Fm and σ*) without causing significant variation in the mechanical properties with 
only slight deformation (little variation in Young's modulus) with no significant difference in 
E* between solid and ceramic foams. 

The presence of weakening phenomena like microcracks or large pores inside the wall, will 
have a more negative effect on the crushing strength of the material. “For brittle open-cell 
foams of same relative density, the crushing strength decreases with increasing cell size" 
(Gibson and Ashby [24]). This citation explains part of the standard deviation of foam values, 
meaning that the material has no monodisperse pore size distribution (Figure 7) or that 
microcracks are probably not visible to the naked eye. No major weakness was observed in 
the lighter foam studied here, which is very promising for applications that require a certain 
level of mechanical resistance in compression and insulation. 

The crushing strength of solid and ceramic foams can be quite satisfactorily fitted with the 
Gibson and Ashby model. The better fitting for solid foam is probably explained by 
morphological aspects. The overall structure and the size of the foam pores do not change 
much (Figure 7) but shrinkage, microcracks or even small tears in the wall can appear locally, 
thereby modifying the pore and wall structure. Furthermore, sintering leads to mass and 
volume loss, implying reorganisation of the structure, which is globally offset because the 
density remains the same. The sintering step leads to deformation (weakening) and 
restructuration (enhanced cohesion) in the parts not concerned by Gibson and Ashby analysis, 
leading to less satisfactory fitting. 

When Gibson and Ashby [24] applied their theory to other brittle foams, they suggested that 
the difficulty lay in the need to determine flaw size inside the wall to obtain a good estimation 
of σs.. Fracture-dominated structures, like foams with open-cell structure, have weak regions 
which reduce both stiffness and strength (Ashby [36]). This leads to lower mechanical 
property values than equivalent strength-dominated structure or ideal fracture-dominated 
structure (with no flaws). The latter perfectly follows Gibson and Ashby equations (Ashby 
[36]). 

To determine crushing strength, Xu et al. [43] applied the Gibson and Ashby model and found 
that C and α increased with pore size and post-heat treatment, thereby reducing the strength of 
the material. In our study, the result was different because sintering increased the crushing 
strength but did not significantly affect pore size. Pore geometry and especially 
transformation of the matrix could explain the increase in C and α. Gibson and Ashby 
equations give estimations correlated with σ

* experimental trend of solid and ceramic foam. 
Using Gibson and Ashby’s prediction, σ*of ceramic foam leads to high compressive resistance 
with very light mineral material (consequently insulating) for use in the building sector when 
relatively low conductivity < 0.050 W.m2.K-1 is required (Abu-Jdayil et al. [44]). 

Xu et al. [43] found that values of relative Young modulus were more affected by porosity 
than by pore size leading to slight variations in C’ and β. These authors attributed variations in 
C’ to pore geometry, whereas the variation in β was attributed to unit cell size. In our study, 
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the difference before and after sintering was quite small and almost symmetrical compared to 
theoretical value of C’ and β found by Gibson and Ashby.  

The density of ultra-light concrete is below the range of foam densities studied with thermal 
conductivity of 0.045 W.m-1.K-1 (Ytong [30]). The mechanical properties of lower density 
solid and ceramic foams (like ultra-light concrete) can be estimated using the Gibson and 
Ashby equation, and similar mechanical properties were found for foam materials. Mineral 
foams could thus be used for the same applications as ultra-light concrete, and provide better 
thermal resistance.  
 
Mechanical properties depend on the structure and properties of the matrix. At equivalent 
density, light brick matrix has lower crushing strength in compression than solid foam. Both 
materials are composed of fired clay particles, but have different cohesive bonds and 
porosities, meaning solid foam has better bending properties.  Mineral foam could also 
replace light brick with similar mechanical properties and lighter density, thereby saving raw 
material (lighter material) and energy in the process because of the energy-intensive sintering 
of brick in general with temperature > 1,300 °C (Zhang et al. [45]). 
 
The 3-point bending test is more difficult to set up than the compressive test because of the 
brittle nature and dimensions of the sample. Some authors used other techniques to evaluate 
mechanical properties, including a 4 point bending test (Babiak et al. ([46]), Brazilian test 
(Belrhiti et al. [38]) or resonant frequency and impulse excitation techniques (Pabst et al. 
[14]).  
 
Thus, a wide range of flexural strength or crushing strength is feasible without considerably 
increasing density, meaning the material can be used as structural or insulation material. In 
general, the lower the density, the lower the thermal conductivity (Samson [39], Asadi et al. 
[47]). Porosity weakens the mechanical strength of foams, but by adjusting the parameters 
that control primary and wall porosity, it is possible to have sufficient mechanical properties 
with low density. 
 
5. Conclusion 
 
This article explored the structure of foams using multiscale analysis combined with 
investigation of mechanical properties which are summarized in this section. 

Porosity leads to a change in structure when the air fraction is increased. Larger pores were 
found in lighter foams by SEM and X-ray tomography analysis but the range of distribution 
was the same between the samples. Pores were distributed in an open continuous network 
made of two kinds of porosity. The main kind is primary porosity, which is created during 
foaming and extended in the drying step. The second kind is wall porosity made after matrix 
solidification and evaporation of water leaving small interconnected wall pores that are also 
connected with the larger pores resulting from primary porosity.  

Mechanical properties are influenced by both porosity and the sintering step. At the 
microscale, pore and wall structures influence mechanical behaviour and the more air 
incorporated, the less efficient the mechanical properties will be. The wall structure does not 
change substantially after sintering, and there is no notable shrinkage or deformation of the 
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structure. At 950 °C, no sintering occurs between particles, with little impact in the case of 
slight deformation (low Young modulus variation) while important mechanical properties 
increase significantly in the case of major deformation (marked variations in crushing and 
flexural strength). The impact of sintering was clearly demonstrated by comparison with 
crushing and flexural strength data on solid and ceramic foams. 

Power law models fit solid and ceramic foams satisfactorily. The Gibson and Ashby models 
were less correlated with experimental data because of the difficulty involved in properly 
estimating the intrinsic properties of the matrix, multimodal distribution and pore geometry. 
The lower degree of correlation with ceramic foam is attributed to changes in structure and 
mechanical properties that occurred during the sintering step.  

The commercial samples tested in this study had lower or similar mechanical properties than 
those of mineral foams (at similar density), especially concerning flexural strength where light 
bricks cannot be characterised because of their brittleness. By reducing density values to those 
of ultra-light concrete, mineral foams could probably be used in similar applications with 
better thermal properties. 

All these investigations show that it is possible to manage and predict mechanical properties 
with control foaming and sintering treatment to obtain light and sufficiently strong material. 
The mineral foams tested in this study are a really innovative way to construct a non-fibrous, 
breathable, safe, and efficient building and can be used in countless applications (furnace 
insulating panels, fire doors, burners, etc.) thanks to their refractory and mechanical 
properties. They will facilitate the recycling of construction wastes (bricks, slate, clay, etc) or 
upcycling of mineral powder from deposits.   
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