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The rapid development of photovoltaic (PV) technology and the growing number and size of PV power plants require increasingly efficient and intelligent health monitoring strategies to ensure reliable operation and high energy availability. Among the various techniques, Artificial Neural Network (ANN) has exhibited the functional capacity to perform the identification and classification of PV faults. In the present review, a systematic study on the application of ANN and hybridized ANN models for PV fault detection and diagnosis (FDD) is conducted. For each application, the targeted PV faults, the detectable faults, the type and amount of data used, the model configuration and the FDD performance are extracted, and analyzed. The main trends, challenges and prospects for the application of ANN for PV FDD are extracted and presented.

Introduction

In recent decades, photovoltaic (PV) technology has experienced an accelerated development as one of the promising renewable energy sources relying on various merits, including pollution-free, safe energy generation, noiseless operation and decreasing installation costs [START_REF] Gonzalo | Survey of maintenance management for photovoltaic power systems[END_REF][START_REF] Santhakumari | A review of the environmental factors degrading the performance of silicon wafer-based photovoltaic modules: Failure detection methods and essential mitigation techniques[END_REF][START_REF] Mellit | Fault detection and diagnosis methods for photovoltaic systems: A review[END_REF]. Nevertheless, due to the outdoor operating conditions (random variations of environmental conditions) and the potential damages involved in the manufacturing, transportation or installation [START_REF] Tsanakas | Faults and infrared thermographic diagnosis in operating c-Si photovoltaic modules: A review of research and future challenges[END_REF], various PV faults may accordingly arise up and lead to different levels of degradation, power loss or even fire hazard [START_REF] Hernández-Callejo | A review of photovoltaic systems: Design, operation and maintenance[END_REF][START_REF] Correa-Betanzo | Photovoltaic-based DC microgrid with partial shading and fault tolerance[END_REF]. It is reported that the power loss in the UK could reach 18.9% in one year [START_REF] Firth | A simple model of PV system performance and its use in fault detection[END_REF], which is found mainly due to the sustained inverter failure and shading fault. As a consequence, it is relevant to conduct efficient health monitoring for PV power plants to ensure the reliability and durability of energy production.

Typical PV fault detection and diagnosis (FDD) strategies can be broadly classified into two categories, visual inspection and automatic fault analysis. The automatic ones could be realized via various methodologies, where the most popular ones include model-based residual analysis and data-driven methods. For the latter one, several kinds of data are commonly used, like electrical measurements, environmental data or images of PV panels. These data-driven analyses can be done with different techniques, such as statistical methods or machine learning technology (MLT) [START_REF] Pillai | A comprehensive review on protection challenges and fault diagnosis in PV systems[END_REF]. Compared to others, MLT is competent and proficient to deal with complex and non-linear problems [START_REF] Livera | Recent advances in failure diagnosis techniques based on performance data analysis for grid-connected photovoltaic systems[END_REF].

MLTs applied for FDD consist of various methods with distinctive principles and structures. The most common ones include Artificial Neural Network (ANN) [START_REF] Youssef | The role of artificial intelligence in photo-voltaic systems design and control: A review[END_REF], Fuzzy Logic (FL) [START_REF] Yi | Fault Detection for Photovoltaic Systems Based on Multi-Resolution Signal Decomposition and Fuzzy Inference Systems[END_REF], Support Vector Machine (SVM) [START_REF] Harrou | An unsupervised monitoring procedure for detecting anomalies in photovoltaic systems using a one-class Support Vector Machine[END_REF], k-Nearest Neighbor algorithm (kNN) [START_REF] Madeti | Modeling of PV system based on experimental data for fault detection using kNN method[END_REF] and Decision Tree (DT) [START_REF] Benkercha | Fault detection and diagnosis based on C4.5 decision tree algorithm for grid connected PV system[END_REF]-based techniques (including random forest (RF) [START_REF] Heinrich | Detection of cleaning interventions on photovoltaic modules with machine learning[END_REF]). Through keyword research 1 and the subsequent content verification in common publishers or research platforms (e.g., Science Direct, IEEE Xplore, Google Scholar, Research gate), the number of reported publications on PV FDD from 2009 to July 2020, for different types of MLTs are summarized and presented in Fig. 1. Fig. 1. Evolution of reported applications of MLTs for PV FDD It can be observed that ANN technique has drawn more research interest during the last decade. All the applications differ in various aspects e.g. input data, data pre-processing, ANN type and structure (Shallow Neural Network (SNN) and Deep Neural Network (DNN) [START_REF] Delalleau | Shallow vs. deep sum-product networks[END_REF] 2 ), parameter configuration, hybrid application and performance. Despite this abundant literature, there is no analysis and comparison of the applications of ANN for PV FDD. This paper is an attempt to fill this gap by doing a review of the papers published from 2009 to July 2020.

As a hierarchical model, one neural network (NN) generally includes one input layer, several hidden layers, and one output layer. Each layer is composed of several connected units (named neurons), each one associated with an activation function. It operates as parallelized processors to deal with complex systems [START_REF] Nelson | Introduction to artificial neural systems[END_REF]. ANN has various merits, like an excellent approximation of nonlinear function, fast decision making, no restriction on the normality or independence of input [START_REF] Nelson | Introduction to artificial neural systems[END_REF] [START_REF] Elsheikh | Modeling of solar energy systems using artificial neural network: A comprehensive review[END_REF]. Thus, ANN has also been widely exploited in other PV domains [START_REF] Mellit | Artificial intelligence techniques for photovoltaic applications: A review[END_REF], including solar radiation prediction [START_REF] Firth | A simple model of PV system performance and its use in fault detection[END_REF], MPP tracking [START_REF] Qazi | The artificial neural network for solar radiation prediction and designing solar systems: a systematic literature review[END_REF], solar energy system modeling [START_REF] Elsheikh | Modeling of solar energy systems using artificial neural network: A comprehensive review[END_REF], PV system sizing [START_REF] Mellit | Artificial intelligence techniques for sizing photovoltaic systems: A review[END_REF], and performance prediction of solar collector system [START_REF] Ghritlahre | Application of ANN technique to predict the performance of solar collector systems -A review[END_REF].

This paper is interested in carrying out a literature review to answer the following questions regarding the use of ANN for PV FDD:

•

How ANN techniques are integrated in the PV FDD? • What types of PV faults are detectable using ANN-based techniques? • What are the performance of these techniques when applied for PV FDD? • What are the challenges and prospects that ANN would face for PV health monitoring?

The contribution of this paper is reflected in:

1) Applications of ANN for PV FDD are, to our best knowledge, firstly summarized in detail based on the type of neural networks: shallow, deep, and hybridized. For each type of application, their pros and limitations have been identified.

2) The common trends for the selection and the configuration of one ANN model when using 1-dimension (1D) or 2-dimension (2D) PV data or when targeting at different types of PV faults have been highlighted.

3) Four reported public PV databases, including both 1D data or 2D images, are identified from the literature and summarized.

4) Common challenges (e.g. the model configuration, availability of public database) and common prospects (e.g. the candidate models, feature transformation between1D and 2D, real-time health monitoring) have also been highlighted.

The remainder of this paper is structured as follows: Section 2 presents a systematic review of the application of SNNs, DNNs and hybridized methods for PV FDD, where the key issues like model configuration, targeted fault, performance are all detailed and analyzed. Then, based on the aforementioned four questions, section 3 discusses the reviewed cases, and some common challenges and prospects are also highlighted. Section 4 concludes the paper.

Application of ANN for PV FDD

This section presents an insight into the various applications of ANN for PV FDD by separating the adopted models into three main groups, SNN, DNN and hybridized neural network (NN).

Application of SNN for PV FDD

Two categories of SNN applications are considered in this subsection, i.e., direct FDD (end-to-end type, where the SNNs output straightforward the fault type) and indirect FDD (where the output data of SNN models need further interpretation to identify the fault type).

Direct FDD

In the literature, various types of SNN models have been applied for direct FDD such as Multilayer Perceptron neural network (MLP) [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF], Radial basis function neural network (RBF) [START_REF] Park | Universal Approximation Using Radial-Basis-Function Networks[END_REF], Probabilistic neural network (PNN) [START_REF] Specht | Probabilistic neural networks[END_REF], Extension neural network (ENN) [START_REF] Wang | Extension neural network and its applications[END_REF], Extreme learning machine (ELM) [START_REF] Huang G Bin | Extreme learning machine: Theory and applications[END_REF], Elman neural network (Elman NN) [START_REF] Elman | Finding Structure in Time[END_REF], and Wavelet neural network (WNN) [START_REF] Alexandridis | Wavelet neural networks: A practical guide[END_REF].

In most cases, different factors (like the network structure, the number of parameters Np (neuron weights and bias), input/output (I/O) setting, activation function, tuning algorithm, PV technology and scale) have been taken into account to reach the best-expected performance. These applications, sorted by model type, are presented in Table 1 followed by a discussion. Focusing on the four questions proposed in the introduction, the applications displayed in Table 1 are now analyzed:

1) Integration of SNN in PV FDD

• ANN type: Ranking the selected models according to their number of uses, MLP comes first (62.5%, 15 out of 24 application cases) followed by PNN, RBF and ENN.

• Model structure: Relatively simple structures are most often considered, 63.6% (21 out of 33 models) with 1 hidden layer and the remaining with 2 hidden layers. The number of neurons in the hidden layer is generally less or around 10, while in some models more neurons are selected [START_REF] Chine | A novel fault diagnosis technique for photovoltaic systems based on artificial neural networks[END_REF][START_REF] Costa | A Comparison of Machine Learning-Based Methods for Fault Classification in Photovoltaic Systems[END_REF][START_REF] Laarabi | Artificial neural network modeling and sensitivity analysis for soiling effects on photovoltaic panels in Morocco[END_REF]. As for the number of parameters, its value is generally less than 500 in the reviewed cases.

• Amount of data: Total data volumes used are in the order of hundreds or thousands, and there is usually more data for training than for testing (85.7%), while the dataset for validation is relatively less adopted (4 out of 24 cases). In term of data type, simulation data is the most common one (56.5%, 35 out of 62 reported datasets for training, validation or testing) compared to field-measured data (43.5%). This is because simulation data is easier to obtain despite it may not fully represent actual data due to modeling errors and uncertainties and actual environmental conditions.

• I/O setting: For the input, measured features (like environmental and electrical data) are preferred to calculated ones (like the ratio of voltage or current). VMPP, IMPP, G, TM are the most common ones. The selection of features depends on the target fault and PV plant scale, i.e., module or array level. For the output, some cases (like in [START_REF] Zhang | The Research of Photovoltaic Array Intelligent Fault Diagnosis Based on the BP Neural Network[END_REF][START_REF] Lin | On-line monitoring and fault diagnosis of PV array based on BP neural network optimized by genetic algorithm[END_REF]) use the combination binary output values of each neuron to determine the fault type. In some cases, authors export the feature values that correspond directly either to the fault type (like in [START_REF] Chine | ANN-based fault diagnosis technique for photovoltaic stings[END_REF][START_REF] Garoudja | An enhanced machine learning based approach for failures detection and diagnosis of PV systems[END_REF]) or to the fault severity (like in [START_REF] Salem | Detection and assessment of partial shading in photovoltaic arrays[END_REF][START_REF] Laarabi | Artificial neural network modeling and sensitivity analysis for soiling effects on photovoltaic panels in Morocco[END_REF]), while the others do not specify.

• Activation function: Only in 11 out of 24 cases, the activation function used is specified. In the hidden layer, non-linear functions (like tanh and logsig) are commonly adopted, which permits the learning of complex relationship. As for the output layer, linear functions (like pureline, softmax) are preferred, which allows the multiple outputs for fault classification.

• PV technology and scale: Almost all PV devices tested are in crystalline silicon technology, if specified. This corresponds well to its representation in terms of installed capacity worldwide. Regarding the scale of the platform under test, string or array level are the most common types (23 out of 24 cases), while the module level is less investigated. The reported power rating varies from 40Wp to 29kWp.

2) Detectable faults

Among the targeted PV faults, short circuit (SC), partial shading (PS) and abnormal aging are the most studied ones. The particularity of these faults is their significant impact on the electrical features. Other faults like soiling, line-line fault (LLF), and failures in components on the DC side are relatively less investigated.

3) Performance

Generally, diagnosis accuracy is higher than 90%. However, it should be noted that comparison of performance between different research results is complex due to the difference in the database, model configuration and fault severities (like the cases in [START_REF] Akram | Modeling and Health Monitoring of DC Side of Photovoltaic Array[END_REF][START_REF] Garoudja | An enhanced machine learning based approach for failures detection and diagnosis of PV systems[END_REF]). Nevertheless, in some applications, the applied model is compared on the same benchmark with either other types of ANN, or other MLTs. In these cases, the proposed ANNs have been demonstrated outperforming other ANNs or MLTs.

4) Limitations and prospects

In some cases, redundancy is found in the input feature setting, like the simultaneous use of VMPP, IMPP and PMPP.

Besides, some cases focus on limited fault types, even only one type, which is unsuitable for field application to deal with various unknown faults. However, encouragingly, some SNNs, especially MLP, have proven their efficiency (> 90%) to diagnose various faults for different PV platforms with different scales. These models are promising, as they look suitable for almost all the common PV electrical faults, and can be applied in real-time health monitoring.

The use of field-measured data should be encouraged, particularly for high-scale PV platforms, which are now very common. However, where the amount of faulty data is limited, simulation data could also be adopted. However, they should be as close as possible to the data measured in the field, taking into account the uncertainties and actual measurement conditions. Also, the scope of the faults to be addressed should be broadened towards soiling, line-line fault, and faults in power electronics device.

Indirect FDD

Regarding the indirect applications of SNNs (i.e., output features need further interpretation for fault identification), few researches have been reported. The typical ones are presented in Table 2. Based on Table 2, the following analysis can be conducted:

1) Integration of SNN in PV FDD

As in the previous section, MLP is still the favorite model. Similar to the prediction of PV performance [START_REF] Ghritlahre | Application of ANN technique to predict the performance of solar collector systems -A review[END_REF], environmental data is used as input to predict PV electrical features that are analyzed for fault identification.

2) Detectable faults

Since all the model outputs are the electrical features, it is accordingly the faults that introduce a significant impact on the electrical features that are mainly addressed, like OC and PS.

3) Performance

The number of studies is limited compared to the direct ones, but all the reported accuracy is similarly higher than 90%.

4) Limitations and prospects

These indirect applications need an additional diagnosis module to analyze the output features. Furthermore, among these schemes, a comparison of the predicted features with the measured ones is the most common type. However, this kind of analysis could be fully realized inside one ANN by adding the measured features as inputs as it has been already done like in [START_REF] Khelil | Fault detection of the photovoltaic system by artificial neural networks[END_REF][START_REF] Pahwa | Performance evaluation of machine learning techniques for fault detection and classification in PV array systems[END_REF][START_REF] Basnet | An Intelligent Fault Detection Model for Fault Detection in Photovoltaic Systems[END_REF]. Therefore, the capabilities of the ANN should be fully exploited instead of complexifying the methodology.

Application of DNN for PV FDD

The Deep NN (DNN) applied for PV FDD has two main types, Convolutional Neural Network (CNN) and Deep Belief Network (DBN) [START_REF] Hinton | A Fast Learning Algorithm for Deep Belief Nets[END_REF]. Regarding the CNNs, various well-designed structures have been practiced, such as LeNet [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF], GoogLeNet [START_REF] Szegedy | Going deeper with convolutions[END_REF], VGG [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF], R-CNN [START_REF] Girshick | Rich feature hierarchies for accurate object detection and semantic segmentation[END_REF], ResNet [START_REF] He | Deep Residual Learning for Image Recognition[END_REF], AlexNet [START_REF] Krizhevsky | ImageNet classification with deep convolutional neural networks[END_REF], Attention U-Net [START_REF] Oktay | Attention U-Net: Learning Where to Look for the Pancreas[END_REF], YOLO [START_REF] Redmon | YOLOv3: An Incremental Improvement[END_REF]. Compared to SNN models, DNNs mainly differ in the model depth, and input data type. For the input, instead of 1-dimensional (1D) features (e.g., electrical or environmental features), DNNs deal with 2-dimensional (2D) ones, which include PV images, generated graphs or matrix.

In this section, the application of DNNs using PV image data is firstly presented. Then, the DNNs handling other types of 2D data will be investigated. At the end of each part, the applications will be discussed in the light of the four questions raised in the introduction.

DNNs using PV image data

The 2D PV data for DNNs consists of visual (Vis.), electroluminescence (EL) or thermal infrared (IR) images, as listed in Table 3. For each application, the type, structure, input type and size, pre-processing method, data partitioning and the targeted PV fault will be taken into account. All this information is summarized in Table 4 with the unfolded hierarchical structure of three examples of DNNs illustrated in Fig. 2. Fig. 2 Examples of CNN structures adopted for PV FDD: (a) LeNet-5 [START_REF] Sun | Defect Detection of Photovoltaic Modules Based on Convolutional Neural Network[END_REF] (low number of layers and low number of parameters), (b) Li et al. scheme [START_REF] Li | Deep Learning Based Module Defect Analysis for Large-Scale Photovoltaic Farms[END_REF] (low number of layers and high number of parameters), (c) VGG-19 [START_REF] Deitsch | Automatic classification of defective photovoltaic module cells in electroluminescence images[END_REF] (high number of layers and high number of parameters). Based on Table 4, the applications of DNNs using 2D PV image data are analyzed from the following aspects:

1) Integration of DNN in PV FDD

• Model type and structure: CNN models are the most common ones, which may be due to its popularity in image processing and pattern recognition in recent years. Among the applied CNN models, 12 out of 19 are based on the entire or partial structure of mature models (like LeNet and VGG in Fig. 2 (a)(c)), while the remaining six are thoroughly redesigned (like Fig. 2 (b)). As for the structure, the majority of DNNs are more complicated than SNN ones from both model depth and the number of parameters. However, it should be noted that more layers do not necessarily lead to higher Np, which can be observed from the models in Fig. 2 (b) and (c). Np mainly depends on the sizes of fully connected layers and the kernel, which are determined by the structure and vary from case to case.

• Input setting: For the origins of the images, indirect images (collected by EL or IR devices) are preferred to visual ones. EL images are the most adopted (11 use cases) as they may embed more fault information.

Regarding the scope, cell level images are the most adopted (10 cases), while those at module level (6 cases) and at array level (3 cases) are relatively less investigated.

• Data augmentation: It is often practiced when the original dataset is not large enough or to increase the model generalization capability. In the reviewed cases, more than half (11 cases) implements this technique, with usually rotation and flip.

2) Detectable faults

At the cell level, cracking in various forms is the most frequently examined defect. At the module and network level, hot spots, delamination, soiling and interconnect failures are generally covered. A common feature of these faults is their marked presence in the adopted images. This allows the various DNNs, which are competent in pattern recognition, to identify them.

3) Performance

Overall, 13 out of 19 cases have achieved classification accuracy higher than 90%. Similarly, due to the diversity in various aspects for most applications, no further quantified global conclusion can be drawn. However, in some cases, based on the same benchmark, the proposed model has exhibited higher performance compared to other DNNs or MLTs.

4) Limitations and prospects

It is noted that more than half of the reported applications can only do binary classification, i.e., identify healthy or faulty condition. In some works, where both binary and multi-class classifications (more than 1 fault type) are conducted, the multi-class FDD accuracy is found lower than that of binary classification. This, in a sense, reflects the difficulty in precise PV faults diagnosis using image data. Besides, some models are highly complex, which could increase the computational expense. Thus, it is suggested to develop CNN model with appropriate architecture like in [START_REF] Karimi | Automated Pipeline for Photovoltaic Module Electroluminescence Image Processing and Degradation Feature Classification[END_REF][START_REF] Akram | CNN based automatic detection of photovoltaic cell defects in electroluminescence images[END_REF] to reduce unnecessary complexity. It is noteworthy that authors in [START_REF] Deitsch | Automatic classification of defective photovoltaic module cells in electroluminescence images[END_REF][START_REF] Akram | CNN based automatic detection of photovoltaic cell defects in electroluminescence images[END_REF] have used identical public PV image dataset [START_REF] Buerhop-Lutz | A Benchmark for Visual Identification of Defective Solar Cells in Electroluminescence Imagery[END_REF]. Then, the comparison of different models and performance is made possible. Regarding the real-time application in large-scale power plants, DNNs also show some potential, especially via UAV-captured aerial images. However, the automatic detection of PV panels and subsequent segmentation is still a tedious task. Although some research has been dedicated to this problem [START_REF] Malof | A deep convolutional neural network and a random forest classifier for solar photovoltaic array detection in aerial imagery[END_REF], the robustness and precision still require further reinforcement through more field tests.

DNNs using other 2D data

In addition to PV images data, DNN models for PV FDD also process graphs or data matrix generated from 1-D features as shown in Fig. 3. For example, Lu et al. [START_REF] Lu | Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph[END_REF] and Manohar et al. [START_REF] Manohar | Enhancing the reliability of protection scheme for PV integrated microgrid by discriminating between array faults and symmetrical line faults using sparse auto encoder[END_REF] extract graphs from sequential V and I data. Chen et al. [START_REF] Chen | Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions[END_REF] combine I-V curve data with G and TM to form up a 404 feature matrix. Similar I-V curve-based approaches are also applied in [START_REF] Gao | A Novel Fault Identification Method for Photovoltaic Array via Convolutional Neural Network and Residual Gated Recurrent Unit[END_REF][START_REF] Hopwood | Neural Network-Based Classification of String-Level IV Curves from Physically-Induced Failures of Photovoltaic Modules[END_REF]. Besides, Aziz et al. adopted Continuous Wavelet Transform (CWT) [START_REF] Rioul | Fast algorithms for discrete and continuous wavelet transforms[END_REF] to generate scalograms (2-D graphs) from environmental and array electrical parameters. A similar approach is also employed in [START_REF] Lu | DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems[END_REF]. The details of these applications are presented in Table 5. Similarly, these applications of DNNs using other 2D data are examined from the following perspectives:
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1) Integration of DNN in PV FDD

In these cases, 1D features are transformed directly (like using time-series graphs) or indirectly (via specific transformation methods) to 2D features. Since these features are not real PV images, data augmentation is not generally performed.

2) Detectable faults

The common target faults are PS, OC, LLF and AF. As the inputs are still based on the electrical or environmental 1D features, these faults are similar to the ones detected by SNNs.

3) Performance

Four out of seven cases achieved an accuracy of more than 95%, which is comparatively higher than DNNs using image data (90%). The reason behind may be fault feature separability is higher with internal variables of parameters rather than image data.

4) Limitations and prospects

Low effective information ratio is observed in some cases [START_REF] Lu | Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph[END_REF][START_REF] Chen | Deep residual network based fault detection and diagnosis of photovoltaic arrays using current-voltage curves and ambient conditions[END_REF]. Especially in [START_REF] Lu | Fault diagnosis for photovoltaic array based on convolutional neural network and electrical time series graph[END_REF], the time-series graphs of current or voltage contain a large area of white zone (as shown in Fig. 3 (a)), which contributes to increase the size of the DNN input features. This problem is eased in [START_REF] Lu | DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems[END_REF][START_REF] Aziz | A Novel Convolutional Neural Network-Based Approach for Fault Classification in Photovoltaic Arrays[END_REF] by adopting specific transformation techniques.

The FDD schemes based on transformation from 1D to 2D have been developed to benefit from the considerable experience in image processing, with the expectation to improve the diagnosis performance. However, these schemes still require further validation and comparison with the ones using the same original 1D data and with other techniques, like the SNNs as mentioned earlier that generally have lower complexity

Hybridization of ANN for PV FDD

In order to enhance the ANN performance, several researchers have combined ANN with other techniques for different objectives, like:

• Extraction or pre-processing of input features,

• Improvement of ANN algorithm,

• Optimization of ANN parameters,

• Post-processing of output features.

According to these specific objectives, the applications of the hybridized techniques are summarized in Table 6. As it has been done for the other techniques, hybridized ANNs are analyzed in light of the questions raised in the introduction:

1) Integration of hybridized ANN in PV FDD

• Integrated technology & usage: Among the studied hybridization applications, extraction and pre-processing of input features are the most common objectives, covering both SNN and DNN models. Using DWT for electrical signals, and GLCM to extract features from images are the typical schemes. These techniques serve to eliminate useless information and improve the quality of input, which is essential to the performance of one ANN model. Besides, some post-processing techniques are also applied, generally in DNNs, to classify high-dimension output features. In other cases, the techniques assist in mitigating the inherent limits of the ANN technique, like the tricky procedure of parameter optimization, the time-consuming labelling work, and the imperfect learning algorithm.

• ANN model: Both SNNs (13 cases) and DNNs (6 cases) have been practiced for hybridization. Among SNNs, MLP is still the most popular. Among DNNs, CNNs with various structures are more considered. The favored model type and other aspects of the model configuration are similar to the aforementioned observations in the single applications of SNNs or DNNs.

2) Detectable faults:

When based on 1D features (i.e., before pre-processing), the typical target faults include PS, OC, SC and LLF. For those dealing with 2D features, defects at cell level and soiling fault are more investigated.

3) Performance:

Overall, the majority of applications (17 out of 19) achieve accuracy better than 90%. In some cases, the comparison showed that hybridization improves classification performance.

4) Limitations and prospects:

In some cases, the hybridization could increase the complexity of the FDD scheme. However, it is worthy to accept this cost if a significant amelioration is achieved. Therefore, the performance comparison is necessary to validate the combined techniques. However, this is not always reported. Nevertheless, globally, hybridization is promising, not only to improve the accuracy, but also to make possible the transformation of features from 2D to1D. Like in [START_REF] Heil | Continuous and Discrete Wavelet Transforms[END_REF], 1D features extracted from 2D images are used as input. On one side, this transformation reduces the input features dimension, and, on the other side, allows the use of simple SNN for the diagnosis instead of DNN. This approach can significantly simplify the tuning and training process of the NN.

Discussion

For a better understanding of the previously described applications (73 cases), a discussion from a statistical perspective is presented in this section to provide an answer to each of the four questions raised in the introduction.

Which are the PV faults detectable by ANN?

All the common faults [START_REF] Pillai | A comprehensive review on protection challenges and fault diagnosis in PV systems[END_REF] are firstly presented in the form of 'PV DC-side fault tree' as in Fig. 4. It is based on 4 structural levels, i.e., PV cell, module, array and DC side level. The faults detected by the ANN technique are then summarized and marked as 'leaves' of the 'tree', where the number of studies using SNN or DNN is presented after the fault name, and the total number is expressed by the nuance of the block edge color (darker represents more studies). 

Edge colorbar

XXX (a+b)

Example:

There are totally (a+b) studies on XXX fault,where a studies using SNN, b studies using DNN, and the edge color corresponds to the number (a+b). Overall, the presented ANN techniques with different configurations can detect almost all the common faults on the PV system DC side. However, some faults like PID (almost eliminated thanks to technological improvement) and back-sheet adhesion loss are uncovered. This may be due to the detection's difficulty (limited input data, weak fault signature) or current little research interest in this context. From a quantitative aspect, short circuit module, partial shading, open circuit module and abnormal aging are the most studied ones because of their stronger signature and easy reproducibility in simulation or field tests.

Regarding the applied ANN methodology, almost all the permanently visible faults (cell crack, delamination, discoloration) are usually detected with DNN models. The other ones, like shading, structure failure and electrical faults, are detected with SNN models. This difference may mainly come from the characteristics of the fault. Indeed, permanently visible faults generally introduce a more significant impact on PV images data rather than on 1D data. Thus, DNN models that can conduct efficient image processing (using 2D data) are preferred while SNN models seem more suitable for the other faults (using 1D data).

What are the performance?

As we have seen previously, it is difficult to give a clear answer with regard to the various applications developed on different platforms. Nevertheless, on the basis of the results summarized in Tables 1, 2, 4, 5 and 6, some partial conclusions can be drawn:

• Most of the proposed ANNs can achieve classification accuracy higher than 90%, while in other cases, the relatively less satisfying performance is supposed mainly due to the low separability of the adopted input features or the improper type or structure of the developed models.

• Hybrid models generally perform better than the original ones with the average reported improvement of accuracy as 3.9% relying on the integrated techniques.

• In some applications, using the same benchmark, the proposed ANN outperforms other MLTs (like DT, RF, SVM, etc.) with the average reported improvement of accuracy as 3.8%. However, it should be noted that this shows only a general trend and does not necessarily mean that the ANN always outperforms other MLTs. These results are valid in the cases presented and depend on how these candidate techniques are developed and parameterized.

How is ANN integrated in PV FDD?

Source of dataset

The input 1D data is obtained at 57.6% from simulation and 42.4% from field measures among the reported training, validation and test dataset. The popularity of simulation data may be owing to its good controllability of test conditions (e.g., independent control of G and T) and low acquisition cost. However, the approximation to real PV conditions is restricted. On the opposite, despite field data reflects the operational condition, its wide application is still limited because of weak condition controllability (weather conditions, season, etc.) and measurement issues (accessibility, sensors). Therefore, the selection of data sources is a trade-off among all the aforementioned factors. Whereas, it is still recommended to use at least the field data as the test dataset to evaluate model performance under real conditions.

2D data includes PV image, generated graph or matrix. With regard to image dataset, except very few cases that employ generated PV faulty images, the majority of the adopted dataset is captured in the field. In recent years, taking benefit from the rapid development of drone technology, UAV with an embedded camera has been widely used for remote inspection of PV power plants. Abundant EL or IR images have been gathered. Nevertheless, the quantity of the original dataset is always inadequate to fulfill a fine-tuning and may consequently introduce the underfitting problem (i.e., a model cannot capture any trend [START_REF] Narayan | An analysis of underfitting in MLP networks[END_REF]). A common solution is to perform rotation, flip, adding blurry, adjusting illumination or other operations to enrich the original dataset. These transformations are found convenient and efficient to enhance the generalization ability of the DNNs. As for the generated graph or matrix that are based on 1D features, the first results are promising but still require further validation of the necessity of the 1D-to-2D FDD scheme.

Data pre-processing

Since 1D values lie usually in different ranges, e.g. irradiations range from 0 to 1300 W/m 2 while the temperature varies from -10 to 80 °C (in the reviewed applications), they are usually normalized before being introduced into the ANN. The results show a significant decrease in the iteration process, especially when the features are centered and standardized.

For 2D data, the unification of image size and digital pre-processing (like graying operation, RGB separation) are also necessary.

Type of data

1D data is presented in Fig. 5 (a) with 4 categories (environmental, electrical, model-calculated, and compared data (ratio between 2 parameters)) and 2D data is presented in Fig. 5 (b). For 1D data, environmental and electrical measures are the most frequent. Among single data type, VMPP and IMPP are the most selected ones, as they reflect the MPP changes due to various faults. G (specifically, plane-of-array irradiance) and TM (backplane module temperature), which are almost always measured have gained similar acceptance because of their impact on PV performance. VOC and ISC are also employed but to a lesser extent probably due to the measurement difficulty when the PV system is operating. The model-calculated and compared data are up to now less used probably due to PV model accuracy and calculation complexity for parameter extraction.

For 2D data, EL and visual images are preferred to IR and other data types as input features to DNN models. For IR technology, the cost and complexity of the equipment is still an issue, and moreover the operating point and the environmental conditions (outside temperature, wind velocity, …) make it difficult to interpret and process the images. The other 2D data types are just beginning to be used, and their application will grow with new 1D-to-2D transformation techniques.

Applied ANN models

All the reported model types with their cumulative number of publications are presented in Fig. 6. It is observed that, among the various ANN types, MLP and CNN are the most popular ones. This, to a certain degree, shows their efficiency and adaptability. In the meantime, other models like RBF and PNN have also been exploited for a limited number of applications. However, it should be noted that research interest in CNN models has grown rapidly since 2017, making it possible to envisage its development in the coming years. On the other hand, it is also necessary, for each model, to keep an eye on the time gap between the theoretical development and its first application as presented in Fig. 6 3 . Regarding the SNN models in Fig. 7 (a), ample time gaps are observed for almost all the models. This is 3 The MLP model discussed here refers to the MLP integrated with BP learning algorithm, which was firstly reported in 1986 [START_REF] Rumelhart | Learning representations by back-propagating errors[END_REF] LeNet 1998

ResNet particularly evident for RBF, PNN and MLP with more than 20 years. However, ENN is an exception with only a 7-year time gap probably because its creator has conducted the application. This phenomenon of large theory-toapplication time gap may be due to three reasons: firstly, based on the literature [START_REF] Forman | Using measurements to detect electrical problems in operational photovoltaic arrays[END_REF][START_REF] Dumas | Photovoltaic Module Reliability Improvement through Application Testing and Failure Analysis[END_REF][START_REF] Hamdy | Reliability analysis of photovoltaic systems[END_REF], it has been observed that research on PV FDD started in the 1980s with conventional methods (power loss or I-V curve analysis); secondly, the increasing availability of data collected from PV power plant; finally the growing concern of operators to improve the energy efficiency of their plants.

As for the DNN models shown in Fig. 7 (b), large time-gaps are also identified for the LeNet and DBN models. Nevertheless, the time-gap displays a decreasing trend for the newly developed models, especially for VGG, GoogLeNet and ResNet whose applications have started in 2018. This evolution may be owing to the gradual maturity and dissemination of image processing and pattern recognition.

Parameter configuration

For each ANN model, there are several key configurations, the number of hidden layers, the activation function, the loss function, the learning rate, the combination of convolutional and pooling layers (for CNN), all of which are troublesome to be directly determined. Therefore, comparative studies with different settings are crucial to finding an optimal configuration, like the reported cases in [START_REF] Chine | ANN-based fault diagnosis technique for photovoltaic stings[END_REF][START_REF] Dhimish | Comparing Mamdani Sugeno fuzzy logic and RBF ANN network for PV fault detection[END_REF][START_REF] Li | Deep Learning Based Module Defect Analysis for Large-Scale Photovoltaic Farms[END_REF].

Besides, since CNN models are commonly more complicated than SNN ones, there are some open-access models pre-trained with standard image datasets (like ImageNet [START_REF] Deng | ImageNet: A large-scale hierarchical image database[END_REF]). These models could be adopted and get further trained by PV image dataset, which may save the training time and promote the PV FDD performance, as the application in [START_REF] Li | Intelligent fault pattern recognition of aerial photovoltaic module images based on deep learning technique[END_REF]. However, these models, generally with complex and deep structures, may introduce unnecessary redundancy for the application to PV FDD. Consequently, under the circumstances with limited computing capability or using a large number of samples, the structure of these models should also be thoroughly re-examined.

Summary of applications

The three reviewed application scenarios using SNN, DNN or hybrid methods, differ in various aspects, all of which have been investigated and discussed before. Now, the key features of these scenarios are summarized and compared. The pros and cons are also presented. 

What are the challenges and prospects of ANN for PV FDD?

For SNNs, DNNs, and hybrid applications, their corresponding limitations and prospects have been detailed. Here, some common points will be discussed as follows:

Challenges

•

Model configuration

Generally, the model configuration is a tough and tedious task. Various aspects like model structure (layer number, order and size), learning algorithm, loss function, activation function, need to be determined. Regarding the application in PV FDD, when using certain types of PV features and targeting specific types of faults, there should be a commonality in the best-performing models. Under these cases, instructional strategies for the model configuration are expected to be given, however, this is not available yet and thus requires further exploration.

• Public PV fault database

In the reviewed literature, the majority of the research relies on their own-developed dataset that makes the comparison of different proposed models and performance nearly impossible. A public database, containing 1D or 2D features for common PV faults and technologies, is in desperate need. This lack is particularly real for 2D image data, since it is time-consuming and expensive to collect large amounts of PV images and do the corresponding labeling work. Up to now, in the reviewed work, some shared datasets (both 1D and 2D type) are presented in Table 8. However, the amount and covered fault types still require further enrichment and integration. Considering PV FDD is an interdisciplinary issue between PV technology and health monitoring, it is essential for researchers to pay additional attention to the development of related FDD techniques. For SNNs, some classical models are still not fully explored, like various autoencoder [START_REF] Dong | A Review of the Autoencoder and Its Variants: A Comparative Perspective from Target Recognition in Synthetic-Aperture Radar Images[END_REF] (sparse, denoising and contractive type), modular neural network [START_REF] Happel | Design and evolution of modular neural network architectures[END_REF] and many variants of recurrent neural network [START_REF] Lipton | A Critical Review of Recurrent Neural Networks for Sequence Learning[END_REF] (e.g., fully recurrent, Hopfield, bidirectional type). For DNNs, driven by the great research interest in pattern recognition and deep learning, models with new structures spring up, like EfficientNet [START_REF] Tan | EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks[END_REF], DenseNet [START_REF] Huang | Densely connected convolutional networks[END_REF], SqueezeNet [START_REF] Gholami | SqueezeNext: Hardware-Aware Neural Network Design[END_REF], ShuffleNet [START_REF] Ma | ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design[END_REF], etc., all of which could be evaluated for PV FDD.

• Different types of input data

Since CNN appears as an efficient tool for image classification, it can be applied to PV images captured by other techniques (e.g., pulse thermography, lock-in thermography and UV fluorescence [START_REF] Huang | Densely connected convolutional networks[END_REF]). This method may permit the identification of more PV fault types (like PID) not covered by traditional ANN models. Besides, with featureextraction or transformation implemented, various novel 2D-to-1D or 1D-to-2D features could be adopted.

• Hybrid methods

Although ANN techniques hold some inherent limits, hybrid methods with feature-extraction approaches, parameter-optimization methods or MLTs are likely to mitigate the problems. In addition, there are various other proved-efficient data-driven methods, e.g., T-test [START_REF] Dhimish | Parallel fault detection algorithm for grid-connected photovoltaic plants[END_REF], Linear Discriminant Analysis (LDA) [START_REF] Li | 2D-LDA: A statistical linear discriminant analysis for image matrix[END_REF], clustering [START_REF] Domeniconi | Subspace clustering of high dimensional data[END_REF], which can also be combined with ANN. Hence, hybridized ANN for PV FDD would become a promising research topic.

•

Real-time health monitoring

Another merit of ANN is its rapid decision making. With a well-trained model, high-precision real-time health monitoring for PV arrays is made possible. Besides, based on the monitoring results, protection functions could be enabled, like the ANN-integrated relay operation of PV microgrid in [START_REF] Manohar | Enhancing the reliability of protection scheme for PV integrated microgrid by discriminating between array faults and symmetrical line faults using sparse auto encoder[END_REF][START_REF] Lu | DA-DCGAN: An Effective Methodology for DC Series Arc Fault Diagnosis in Photovoltaic Systems[END_REF].

• Experiences from other fields

ANN technique is commonly applied, not just in PV FDD, but also in the health monitoring of other systems, like for wind turbines [START_REF] Jiang | Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox[END_REF], gas turbines [START_REF] Wong | Real-time fault diagnosis for gas turbine generator systems using extreme learning machine[END_REF], rolling bearing [START_REF] Ali | Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals[END_REF], etc. Consequently, the practice of ANN technique in these related fields, like the configuration of the model, pre-or post-processing methods, and hybridization, may provide useful experiences for the application in PV FDD.

Conclusion

In this paper, a literature overview for the application of Artificial neural networks for PV fault detection and diagnosis is performed. Artificial neural networks have been proved efficient in the detection and diagnosis task for nearly all the common PV faults, including both the electrical faults (reflected in 1-dimension features, commonly dealt with shallow neural networks) and permanent visible faults (reflected in 2-dimension features, commonly dealt with deep neural networks). The reported classification success rate is higher than 90%. Besides, in some cases, performance comparisons with other machine learning techniques have shown the superiority of the proposed model. As for the model type, Multi-layer perception neural network and Convolutional neural network are identified as the most commonly adopted shallow and deep neural network, respectively. They can be adopted as starting models for future research.

Based on the detailed analyses of use cases, some challenges were identified. The most common ones are the difficulty in configuring the model, and the low availability of an open database on PV system failures. The latter is particularly challenging for deep neural network, as the number of faulty PV images is important for learning.

It is therefore recommended that research groups or operators share as much as possible their databases with 1 and 2-dimension characteristics for healthy and different fault conditions. This database cannot only improve the generalizability of the proposed models, but will also facilitate comparisons.

Also, some prospects have been highlighted. On one side, with the rapid development of deep learning and PV technologies, more types of models and potential input features (including transformed features between 1 and 2 dimension) deserve to be explored. On the other side, the hybridization with other techniques and the application in online health monitoring are worth developing. This review is expected to be useful both for first users and experts in the hot topic of PV plant health monitoring.
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Table 1

 1 Details of PV FDD research using direct SNN

	Year	ANN type,	Amount of data	I/O setting		Activation	PV techno.	FDD Accuracy Target Fault	Notes
	& Ref	Structure	Train Validate Test	Input	Output	function	& scale			
		& Number of										
		parameters										
	2009	MLP	NC	-	NC	• 5 failure modes • 8 causes	• tanh	NC,	100%	• Overheating	• Input data
	[31]	5-9-8	(simu)		(simu)			(hidden layer)	PV array	(average)	• Power loss	normalized to
		Np=139						• logsig			• Driven failure	[-1,1]
								(output layer)			• Abnormal voltage	
											• Abnormal meter	
	2014	MLP	200	-	4	• TM	• 3 faults	• tanh	sc-Si,	90%	• Cell crack	
	[32]	3-4-3	(exp)		(exp)	• VMPP (modu)	(by 3 binary	(hidden layer)	JHX100M,	(average)	• PS	
		Np=34				• IMPP (modu)	codes)		172 PV		• Aging & SC	
									string		module	
									(3.9kWp)			
	2015	MLP	1600	-	400	• G	• Healthy	• NC	NC,	91.94% (average)	• Aging	Trained by
	[33]	4-11-4	(simu)		(simu)	• TA	• 3 faults		PV array	100% (Healthy)	• PS	Levenberg-
		Np=107				• VMPP (array)	(by 4 binary			97.95% (Aging)	• SC module	Marquardt (LM)
						• IMPP (array)	codes)			78.69% (SC) 100% (PS)		back propagation (BP) [24]
												algorithm [70]
	2016	MLP	992	-	NC	• IMPP (array)	• Healthy	NC	NC,	30% (1 SC	• SC module	
	[34]	4-NC-3	(simu)		(exp)	• VMPP (array)	• 2 faults		PV array	module)	• Aging	
		Np NC				• ISC (array)				85% (2 or more		
						• VOC (array)				SC modules) ~100% (Aging,		
										Rs>4Ω)		
	2016	MLP	7819	-	50	• ΔP (string)	• PS	NC	NC,	Training MSE:	• PS (exist or not)	
	[35]	2-20-1	(simu)		(simu)	• ΔISC (string)			116	0.058		
		Np=83							PV string			
		MLP	12495	-	50	• ΔP (string)	• PS factor	NC		Training MSE:	• PS (with shading	
		2-NC-1	(simu)		(simu)	• PMPP (string)				0.067	factor)	
		Np NC										
		MLP	28512	-	10	• PS	• Shaded	NC		Training MSE:	• PS (with number	
		1-NC-1	(simu)		(simu)	factor	module			0.788	of shaded modules)	
		Np NC					number					
	2016	MLP	620	-	155	• RVoc (array)	• 4 faults	• logsig	mc-Si,	90.3%	Cell/diode /module	• Trained by LM
	[36]	3-13-13-1	(simu)		(simu)	• RI-MPP (array)		(hidden layer)	14 PV	(average)	• Shunted	BP algorithm
		Np=251				• RV-MPP (array)			string		• SC	
		RBF							(480Wp)	68.4%	• Inversed	
		3-49-4								(average)	• Connection	
		Np=399									resistance fault	
	2017	MLP	600	200	200	• G	• CI	• logsig	sc-Si,	NC	• 1 SC module	• Fault type co-
	[37]	2-8-8-1	(simu)	(simu)	(simu)	• IMPP (array)		(hidden layer)	Isofoton,		• 4 SC modules	determined by CI
		Np=107							28 PV array			and CV

Table 2

 2 Details on research using indirect FDD

	Year	ANN type,	Amount of data		I/O setting		Follow-up	PV techno	FDD	Target Fault	Notes
	& Ref.	Structure & Number of	Train	Validate	Test	Input	Output	analysis	& scale	accuracy		
		parameters										
	2011	MLP	30	-	NC	• G	• 6	Use a proposed	sc-Si,	99.9%	• SC module	• Number of
	[57]	4-10-6	(simu)		(simu)	• TM	voltages	topology to	SM-55,		(with	models
		Np=120				• VMPP (array)		analyse the 6	32 PV		localization)	equals the
						• IMPP (array)		voltages	(330Wp) array			SC cases
	2015	MLP	134	17	17	• G	• Ppredicted Compare the	Silero Triex	100%	• PS	
	[58]	2-15-15-1	(simu)	(simu)	(simu)	• TM		predicted P with	U300,		• OC string	
		Np=303						measured one	PV array		• MPPT failure	
									(3.6kWp)			
	2016	MLP	2100	-	900	• G	• Ipredicted	Compare the	mc-Si,	NC	• PS (failure	• Input data
	[59]	2-7-12-2	(exp)		(exp)	• TM	• Vpredicted	predicted I, V	BPSX150,		degree could be	normalized
		Np=145						with measured	PV module		quantified)	to [-1,1]
								ones	(150Wp)			

('NC' in all columns represents non-communicated information; 'N1-…Ni-…NL' in 'ANN type & structure' column denotes the structure of model, i.e., Ni neurons in i th layer; '(simu)' and '(exp)' in 'Amount of data' column denotes the data obtained from simulation or field-measurement, respectively. 'array' in 'I/O setting' column represents the electrical data measured in array level; 'ab' in 'PV techno & scale' column denotes a parallel string with b modules connected in series.)

Table 3

 3 Typical PV images used in DNNs for PV FDD

	Vis. images		EL images		IR images		
	Cell level	Module level	Cell level	Module level	Cell level	Module level	Array level
	[70]	[71]	[72]	[73]	[74]	[75]	[76]

Table 4

 4 Application of DNN models using PV image data

	Year
	& ref.

Model, No. of layers & Number of parameters Input setting Data augmentation Amount of data Output setting FDD accuracy Target fault Notes

  

					CNN							
			Type& Size Scope	Original Train Validate Test				
	2018	Adapted	EL images	PV cell • Brightness	-	5120	-	1000	• Healthy	98.4%	Cell crack in form:	• Trained by
	[77]	LeNet-5,	(100100	adjustment		(aug)		(aug)	• 4 faults	(average)	• Linear	Nesterov
		6 layers,	pixels)	• Adding							• Cross	Accelerated
		Np=1.1M		blurring							• Flaky	Gradient (NAG)
				• Rotation							• Broken	algorithm [78]
	2018	LeNet,	EL images	PV cell -	658	600	48	10	• Healthy	99%	• Cell crack	• Trained by
	[79]	7 layers,	(NC)			(orig)	(orig)	(orig)	• 1 fault	(average)		Stochastic Gradient
		Np=0.06M										Descent (SGD)
												algorithm [80]
												• Compared and
												outperforms
												GoogleNet V1
												(accu: 98%)
	2018	VGG-16,	IR images	PV array • Rotation	3336	5190	-	1298	• Healthy	75%	• Damaged	• Images captured
	[81]	21 layers,	(224224	• Flip		(aug)		(aug)	• Defective	(best case)	module	by UAV
		Np=134.2M	pixels)								(fault type not	• Images manually-
											specified)	labeled
												• Impact of data
												balance discussed

model based on LeNet-5 CNN model developed by Li et al.

  Amount of data' column denotes original or augmented data, respectively; The layer number indicated in 'Model' column only refers to the sum of all the inner layers)

	2020	Adapted Proposed	EL images EL images	PV cell • Flip PV cell • GAN-based	98280 1800	90% 6400	-1600	10% 600	• Healthy • Healhty		92.3% 83% (average)	• Damaged cell • Cell crack (3	• Impact of • Compared and
	[82] [93]	VGG-16, CNN,	(120120 (224224		• Rotation model		(aug) (aug)	(aug)	(aug) (orig)	• Defective • 3 faults	(balanced accu 84% (healthy)	(different levels types)	oversampling and outperforms VGG-
		21 layers, 9 layers,	pixels) pixels)		• Translation operation							rate) 83% (break)	crack)	augmentation 16 (accu: 66%),
		Np=0.38M Np=12.9M			• Cropping							82% (micro-crack) 81% (Finger-	discussed ResNet50 (67%) • Impact of depth,
	(a) [72] 2020 [75] [84]	Adapted VGG-19, 24 layers, Np=34.9M Proposed CNN, 9 layers, Np=6.8M Mobilenet 28 layers, Np=4.2M	EL images (300300 pixels) IR images (100100 pixels) IR images (224224 pixels)	PV cell • Rotation • Translation • Flip PV • Flip module • Rotation • Cropping PV module • Flip • Rotation	2624 ( Number of layers: 6 ) 196800 -656 ( Number of parameters: 1.1M ) (aug) (orig) 893 80% -20% (aug) (aug) 798 NC (aug), (orig= -NC (aug) (orig=	IN: Input layer C: Convolutional layer PM: Max pooling layer FL: Flatten layer FC: Fully-connected layer OUT: Output layer Example: PM4: abc denotes the 4 th layer of CNN (excluding input and output 86.6% • Damaged cell interruption) (for sc-Si images) (microcrack, • Defective • Healthy 86.1% (for mc-Si images) insulation fault, connection fault, solder failure) • Healthy 99.23% • Damaged • Defective module (failed interconnection, glass breakage, • Healthy • 4 faults 89.5%(average) • Module hotspot (4 shapes of module hotspot) bonds) /resistive soldering crack, failed	kernel size • Images labeled by experts discussed • Images are from • Blurry images are IR camera and not excluded from internet dataset • Model pretrained • Public dataset [83] 16 (accu: 85.8%) outperforms VGG-• Compared and by EL images
								638)		160)		layer) and the type is max pooling, this
												layer consists of c feature maps with size
	of ab pixel; When the size is 11, • Soiling 97.8% • Soiling (type, ('NC' in all columns represents non-communicated information; '(ab)' in 'Type & Size' refers to the size of images in pixels; '(orig)' and '(aug)' Deep Visible PV • Rotation NC 27537 -18217 • Cleaning means that this layer consists of c neurons. [85] SolarEye images module • Flip (aug) (aug) (binary impact and suggestion for in '
		(based on	(192192				( Number of layers: 9 )			classification)	location)	soiling could also
		ResNet),	pixels)				( Number of parameters: 51.7M )			be determined
	(b)	Np=2.0M	+G, time									
		DBN,	EL images	PV cell -		220	200	-	20	• Healthy		NC	• Cell crack
	[86]	4 layers,	(6464					(orig)		(orig)	• 1 fault	
		Np=4.7M	pixels)									
		Fast RCNN,	IR images	PV array -	…	110	83	-	27	• Healthy		99.7%	• Hot spot	• Images captured
	[87]	28 layers,	(NC)					(orig)		(orig)	• Hot spot		by UAV camera
		Np NC											• Pre-trained VGG-
													16 adopted to
	[76]	Fast RCNN, 13 layers, Np NC	IR images (640534 pixels)	PV array -		CNN model based on VGG-19 900 800 -100 ( Number of layers: 24 ) (orig) (orig) ( Number of parameters: 34.9M )	• Healthy • Hot spot		99.02% 99.42% (healthy) 91.67% (hot spot)	• Hot spot	extract feature map • Images captured by UAV camera • Localization error
													of hot spot is 0.86m
	(c)											
		Fast RCNN	EL images	PV	-		1461	861	-	600	• 3 faults 98.3%(overall)	• Crack	• Fast RCNN is
	[88]	+RCNN (2	(5232	module				(orig)		(orig)			97.5% (Crack)	• Broken	based on VGG-19,
		channels)	2720 pixels)										99% (Broken)	• Unsoldered	RCNN based on
		Np NC											98.5%	ResNet-101
													(Unsoldered)
		Attention	EL images	PV cell • Flip	828	NC		NC	• Healthy	… … 100%	…	…	• Cracks	• Impact of loss
	[89]	U-net	(512512		• Shift		(aug),		(aug)	• Defective	(average)	• Finger	function and
		(34 layers)	pixels)		• Rotation		(orig=		(orig=			interruption	combination of
		Np=8.1M						620)		208)			networks discussed
		YOLOv3,	Visible	PV	-		5400	4320	-	1080	• Healthy		96.3%	• Soiling (bird	• Compared with
	[90]	53 layers,	images	module				(orig)		(orig)	• Soiling		(average)	drop, leaves)	Mask R-CNN
		Np NC											(92.2%)
		Proposed	Vis. images	PV cell -		21245	15996	-	4249	• Healthy		94.3%	• Damaged cell	• Impact of CNN
	[91]	CNN,	(256256					(orig)		(orig)	• 6 cell		(average)	(broken gates,	structure, image
		27 layers,	pixels)								defects		paste spot, dirty	size, training
		Np=101.2M											cell, thick lines,	methods discussed
													scratches, and	• CNN of
													color differences)	multispectral type
		Proposed	Visible	PV	-		8400	5880	1680	840	• Healthy		97.9% (average)	• Delamination	• Input includes
	[71]	CNN,	images	module				(orig)	(orig)	(orig)	• 5 faults		98.9% (healthy)	• Soiling	manually or UAV-
		9 layers,	(224224										100%	• Gridline	captured images and
		Np=51.7M	pixels)										(delamination)	corrosion	generated faulty
													98.2% (soiling) 96.1% (gridline corrosion)	• Snail trail • Discoloration	images • Setting of layers discussed and
													95.7% (snail trail)	visualized by t-
													98.5%	stochastic neighbor
													(discoloration)	embedding (t-SNE)
		Proposed	EL images	PV cell • Flip	2624	80%	-	20%	• Healthy		93.02%	• Damaged cell	• Same dataset used
	[92]	CNN,	(100100		• Rotation		(aug)		(aug)	• Defective	(microcrack,	in [72]
		9 layers,	pixels)		• Cropping							insulation fault,	• Layer setting
		Np=2.5M											connection fault,	discussed
													solder failure)	• Impact of
													augmentation
													discussed
		Proposed	EL images	PV cell • Flip	3550	11360	-	710	• Healthy		99.7% (average)	• Cell crack	• Impact of input
	[73]	CNN,	(5050		• Rotation		(aug)		(orig)	• 2 faults		100% (healthy)	• Corrosion	size discussed
		5 layers,	pixels)										100% (crack)	• Compared with
		Np=0.2M											92% (corrosion)	SVM (accu
													=99.4%) and RF
													(97.5%) and
													outperforms

Table 5

 5 Application details of DNN models using other 2D data

			I								
			0	V							
			I-V curve data							
	Year	Model, No.	I/O setting		Amount of data		PV techno	FDD accuracy	Target	Note
	& Ref	of layers & Number of	Input	Output	Train	Validate	Test	& scale		fault	
		parameters									
	2018	SAE-DNN,	AC side I and	• Healthy	2812	-	1208	NC,	100% (average)	• PS	• Compared and
	[96]	Np NC	V time-series	• 6 faults	(simu)		(simu)	34		• LLF (5	outperforms
			graph					PV array		types)	SVM (accu:
											99.2%), DT
											(99.3%), MLP
											(97.1%)
	2019	Proposed	Array I and V	• Healthy	981	-	419	sc-Si,	99.5% (average)	• LLF	• Results
	[95]	CNN,	time series	• 4 faults	(exp)		(exp)	GL-100	99.7% (Healthy)	• SC module	obtained from 20
		20 layers,	graph,					36	99.2% (SC)	• OC string	random tests
		Np NC	299299					PV array	98.4% (LLF)	(2 types)	
			pixels					(1.8kWp)	99.9% (OC)		
	2019	ResNet,	Matrix (404)	• Healthy	15834	1858	7545	sc-Si,	99.98% (average)	• OC string	• Unbalanced
	[97]	18 layers,	based on array	• 8 faults	(simu)	(simu)	(simu)	GL-100	100% (Healthy, SC,	• PS (3	samples for each
		Np=1863	I-V curve and					36	PS, OC)	types)	case
			TM, G					PV array	99.89% (Aging)	• Aging (2	
					1870 (exp)	215 (exp)	897 (exp)	(1.8kWp)	98.1% (average) 100% (Healthy, SC) 96.68% (PS) 95.45% (OC)	types) • 1 or 2 SC module in 1 string	
									95.81% (Aging)		
	2020	Proposed	Matrix	• Healthy	792	264	264	sc-Si,	100% (average)	• PS (2	• Impact of data
	[98]	CNN+	based on array	• 10 faults	(simu)	(simu)	(simu)	113		types)	missing, and
		Residual-	I-V curve and					PV array		• Aging	anti-inference
		gated	TM, G					(3.4kWp)		• Hybrid	discussed
		recurrent			1136	379	377		98.4% (average)	fault (6	
		unit,			(exp)	(exp)	(exp)			types)	
		7 layers,									
		Np NC									
	2020	Proposed	Matrix	• Healthy	356	-	90	mc-Si,	99.8% (average)	• PS	• Compared with
	[99]	CNN,	extracted from	• 3 faults	(exp)		(exp)	212		• Crack	multi-headed NN
		5 layers,	I-V curve					PV array		• Gridline	(99.3%)
		Np NC	(824)							fault	
	2019	Proposed	Graphs	• Healthy	24000		6000	sc-Si,	98.5% (average)	• AF	• Domain
	[101]	GAN+CNN,	generated from	• 1 fault	(exp)		(exp)	PV array	99.3% (Healthy)		adaptation
		14 layers,	array I,					(1.5kWp)	97.7% (AF)		applied
		Np NC	2020 pixels								• Tested in real
											time FDD

  Input' column refers to the size of images in pixels; '(simu) ' and '(exp) ' in 'Amount of data' column denotes the data obtained from simulation or experimental test, respectively; 'ab' in 'PV techno and scale' column denotes a parallel strings with b modules connected in series.)

	2020	AlexNet	Generated	• Healthy	2419	-	1037		NC,	Noiseless	• AF	• Impact of
	[102]	(transferred),	scalograms,	• 5 faults	(simu)		(simu)	53	condition:	• LLF	training sample
		7 layers,	227227						PV array	74.6% (average)	• OC string	size and noise
		Np=58M	pixels						(735Wp)	Noisy condition of -3dB): (noise power level	types) • PS (2	discussed
										73.2% (average)	
	('(ab)' in '									
			(b)						(d)		
									• G		
								Healthy	• Tm • V CWT	
										Healthy	OC string	LLF
							Current signal	Arc fault		PS1	PS2	AF

Time series graph of V and I (c) OC (array)

• I SC (array)

• V mpp (array)

• I mpp (array)

• P mpp (array)

Table 6

 6 Applications of hybridized ANN for PV FDD Amount of data' column denotes the data obtained from simulation or experimental test, respectively, 'orig' and 'aug' denotes the used images or the images where the input features are extracted are original or augmented, respectively; 'modu' and 'array' in 'I/O setting' column represents the electrical data measured in module level or array level, respectively; 'ab' in 'PV techno & scale' column denotes a parallel strings with b modules connected in series.)

	Aim of	Year	ANN	Integrated techno. Amount of data I/O setting		PV techno.	Target faults	FDD Accuracy Notes
	hybrid	& Ref.	category,		Train	Test	Input	Output	& scale			
	usage		model type,									
			structure,									
			No. of paras									
	Improve	2015	SNN,	Fuzzy logic	32400	10800	• G	• Healthy	NC,	• PS	86% (average)	• k-Folds technique
	ANN	[103]	LAPART	(ameliorate ANN	(simu)	(simu)	• TA	• PS	PV array			is adopted for the
	algorithm		Np NC	structure)	(exp) 5760	(exp) 1441	• IMPP (modu) • vWIND • PMPP (modu)		(3.7kWp)		100% (average)	data partitioning

('NC' in all columns represents non-communicated information; 'N1-…Ni-…NL' in 'ANN type & structure' column denotes the structure of model, i.e., Ni neurons in i th layer; '(simu) ' and '(exp) ' in '

Table 7

 7 Comparison of key features of 3 scenarios of ANN for PV FDD

	Application	Common	Common input	Distribution of	Common pre-	Common	Advantages	Disadvantages
	scenarios	types	data	input data	processing	target		
					operations	PV faults		
	Application of	• MLP	• Electrical data	• 57.6% cases use	• Normalization	• Electrical	• Simple structure	• Weak in processing
	SNN models	• RBF	• Environmental	simulation data,	• Scaling by STC	faults (like SC,	• Easy access of a large	2D data
		• PNN	data	42.4% use	value or	OC, LLF)	number of data (simulation	
		• ENN		experimental data	environmental data	• PS	type)	
		• ELM		• 92.6% electrical		• Aging		
				data are at string or				
				array level, 7.4% are				
				at module level				
	Application of	• CNN	• PV image data	• 55.6% case use	• Image resizing	• Permanent	• Efficient in image	• Require a large
	DNN models	• ResNet	• Generated graph	augmented data,	and segmentation	visible faults	processing	number of labeled 2-D
		• DBN	• Synthetic matrix	44.4% original data	• Data	(like cell crack,	• Dataset for pre-training	data
				• 55.6% input images	augmentation	snail trails)	available on the Internet	• High computational
				at cell level, 33.3% at			• Mature models available	complexity
				module level, 11.1%			on the Internet for reference	• Prone to gradient
				at array level			• Shared weights (for CNN	vanishing
							and ResNet)	
	Hybrid	• For					• Mitigate the inherent limits	• Effort needed to
	application	parameter					of ANN technique	realize efficient
		optimization					• Provide input features with	integration
		• For pre-processing		Depend on SNN or DNN		richer information • Ameliorate the FDD	
		• For post					performance	
		processing						

Table 8

 8 Public PV fault datasets

	Ref.	Data type	Amount of data	Fault type	Lien
	[83]	EL images (PV cell, 300300	2426	• Defective cell	https://github.com/zaebayern/elpv-dataset
		pixels)			
	[73]	EL images (PV cell, 250250	1031	• Cracks	https://osf.io/v6pwe/
		pixels)		• Corrosion	
	[85]	Vis. Images (PV module, 192192	45754	• Soiling	https://deep-solar-eye.github.io/
		pixels)			
	[52]	1D data (environmental and	3000 sets	• LLF	https://github.com/benjamin2044/PV_fault_Python/t
		electrical parameters of PV array)		• OC string	ree/master
	3.4.2. Prospects			
	•	Other candidate models to be evaluated		

Setting of keywords for different MLTs: 'Photovoltaic' +'fault' or 'defect' or 'detection' or 'diagnosis' +technique

SNN and DNN are the 2 categories of ANN, which are distinguished according to the model's depth, i.e., the number of hidden layers. However, it should be noted that this number of layers is a relative notion that principally depends on the models to be compared[START_REF] Delalleau | Shallow vs. deep sum-product networks[END_REF]. Hereafter, based on an overall analysis, we set

hidden layers as the bound, so as to facilitate the presentation and performance comparison presented in the next section.
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