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Abstract: The rapid development of photovoltaic (PV) technology and the growing number and size of PV power 

plants require increasingly efficient and intelligent health monitoring strategies to ensure reliable operation and 

high energy availability. Among the various techniques, Artificial Neural Network (ANN) has exhibited the 

functional capacity to perform the identification and classification of PV faults. In the present review, a systematic 

study on the application of ANN and hybridized ANN models for PV fault detection and diagnosis (FDD) is 

conducted. For each application, the targeted PV faults, the detectable faults, the type and amount of data used, 

the model configuration and the FDD performance are extracted, and analyzed. The main trends, challenges and 

prospects for the application of ANN for PV FDD are extracted and presented. 

Keywords: photovoltaic; artificial neural network; fault detection; fault classification; machine learning; deep 

learning; 

Highlights: 

• Applications of ANN technique and hybrid application for PV FDD are summarized. 

• Detectable PV faults with ANN technique and diagnosis performance are investigated. 

• Reported public PV database of 1D data and 2D images are summarized. 

• Common trends on the selection and the configuration of model are identified.  

• Challenges and prospects on PV FDD using ANN techniques are presented. 

1. Introduction 

In recent decades, photovoltaic (PV) technology has experienced an accelerated development as one of the 

promising renewable energy sources relying on various merits, including pollution-free, safe energy generation, 

noiseless operation and decreasing installation costs [1–3]. Nevertheless, due to the outdoor operating conditions 

(random variations of environmental conditions) and the potential damages involved in the manufacturing, 

transportation or installation [4], various PV faults may accordingly arise up and lead to different levels of 

degradation, power loss or even fire hazard [5,6]. It is reported that the power loss in the UK could reach 18.9% 

in one year [7], which is found mainly due to the sustained inverter failure and shading fault. As a consequence, 

it is relevant to conduct efficient health monitoring for PV power plants to ensure the reliability and durability of 

energy production.  

Typical PV fault detection and diagnosis (FDD) strategies can be broadly classified into two categories, visual 

inspection and automatic fault analysis. The automatic ones could be realized via various methodologies, where 

the most popular ones include model-based residual analysis and data-driven methods. For the latter one, several 

kinds of data are commonly used, like electrical measurements, environmental data or images of PV panels. These 

data-driven analyses can be done with different techniques, such as statistical methods or machine learning 

technology (MLT) [8]. Compared to others, MLT is competent and proficient to deal with complex and non-linear 

problems [9].  
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MLTs applied for FDD consist of various methods with distinctive principles and structures. The most common 

ones include Artificial Neural Network (ANN) [10], Fuzzy Logic (FL) [11], Support Vector Machine (SVM) [12], 

k-Nearest Neighbor algorithm (kNN) [13] and Decision Tree (DT) [14]-based techniques (including random forest 

(RF) [15]). Through keyword research1 and the subsequent content verification in common publishers or research 

platforms (e.g., Science Direct, IEEE Xplore, Google Scholar, Research gate), the number of reported publications 

on PV FDD from 2009 to July 2020, for different types of MLTs are summarized and presented in Fig. 1.  

 
1 Setting of keywords for different MLTs: ‘Photovoltaic’ +’fault’ or ’defect’ or ‘detection’ or ‘diagnosis’ +technique 

name (‘neural network’/’fuzzy logic’/’support vector machine’ /’kNN’ /’decision tree’/’random forest’) 

Nomenclature 

Techniques related terminology 

1D, 2D 1 Dimension, 2 Dimension 

ANN Artificial Neural Network 
ART Adaptive Resonance Theory 

BP Back Propagation 

CNN Convolutional Neural Network 
DBN Deep Belief Network 

DnCNN Denoising CNN 

DNN Deep Neural Network 
DT Decision Tree 

DWT Discrete Wavelet Transform 

ENN Extension Neural Network 
FDD Fault Detection and Diagnosis 

FL Fuzzy Logic 

GA Genetic Algorithm 
GAN Generative Adversarial Network 

GK-FCM Gaussian Kernel function-based Fuzzy C-Means 

GLCM Grey Level Co-occurrence Matrix 
I/O Input and Output 

KELM/ELM (Kernel based) Extreme Learning Machine 

kNN k-Nearest Neighbors 
LAPART Laterally Primed Adaptive Resonance Theory 

LDA Linear Discriminant Analysis 

LM Levenberg-Marquardt 
LRMR Low Rank Matrix Recovery 

MSE Mean Squared Error 
MLP Multi-layer Perception 

MLT Machine Learning Technique 

MRA Multi Resolution Analysis 
MSDP Multistate Data Processing  

NAG Nesterov Accelerated Gradient 

NMS Nelder-Mead Simplex 
NN Neural Network 

PCA Principal Component Analysis 

PSO Particle Swarm Optimization  
PNN Probabilistic Neural Network 

ReLU Rectified Linear Unit 

ResNet Deep Residual Network 
RBF Radical Basis Function 

RBM Restricted Boltzmann Machine 

RMSE Root Mean Squared Error 
RNN Recurrent Neural Network  

SA Simulated Annealing 

SCG Scaled Conjugate Gradient 
SGD Stochastic Gradient Descent 

SNN Shallow Neural Network 

SVM Support Vector Machine 
t-SNE t-Distributed Stochastic Neighbor Embedding 

WNN Wavelet neural network  

 
 

 

Photovoltaic related terminology 

AC Alternating Current 
AF Arc Fault 

BPD Bypass diode 

DC Direct Current 
EL Electroluminescence 

FF Fill factor 

GF Ground Fault 
IGBT Insulated Gate Bipolar Transistor 

IR Infrared thermography 

LLF Line-to-line fault 
mc-Si Multicrystalline Silicon 

MPP(T) Maximum Power Point (Tracking) 

OC Open Circuit 
PID Potential Induced Degradation  

PS Partial Shading 

PV Photovoltaic 
SC Short Circuit 

sc-Si Single crystalline Silicon 

UAV Unmanned Aerial Vehicle 
  

Symbol 

CI Classification coefficient of current 

CV Classification coefficient of voltage 
CR Resistance coefficient 

Ep RMSE of parameter identification 

fval Optimal fitness value of I-V curve 
G Solar irradiance (W/m2) 

I Output current (A) 

IAC AC side current (A) 
Iload Load current (V) 

IMPP Current at MPP (A) 

Iph Photocurrent (A) 
ISC Short circuit current (A) 

n Ideality factor 

Np Number of ANN parameters 
PMPP Power at MPP (W) 

PR Power ratio (%) 

RI-MPP Ratio of current at MPP (%) 
RS Series resistance (Ω) 

RV-MPP Ratio of voltage at MPP 
RVoc Ratio of open circuit voltage (%) 

TA Ambient temperature (°C) 

TM Module temperature (°C) 
V Output voltage (V) 

VAC Inverter voltage (V) 

VMPP AC side voltage (V) 
Vload Load voltage (V) 

VOC Open circuit voltage (V) 

VR Voltage ratio (%) 
vWIND Wind speed (m/s) 

dWIND Wind direction 
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Fig. 1.  Evolution of reported applications of MLTs for PV FDD 

It can be observed that ANN technique has drawn more research interest during the last decade. All the applications 

differ in various aspects e.g. input data, data pre-processing, ANN type and structure (Shallow Neural Network 

(SNN) and Deep Neural Network (DNN) [16]2), parameter configuration, hybrid application and performance. 

Despite this abundant literature, there is no analysis and comparison of the applications of ANN for PV FDD. This 

paper is an attempt to fill this gap by doing a review of the papers published from 2009 to July 2020. 

As a hierarchical model, one neural network (NN) generally includes one input layer, several hidden layers, and 

one output layer. Each layer is composed of several connected units (named neurons), each one associated with 

an activation function. It operates as parallelized processors to deal with complex systems [17]. ANN has various 

merits, like an excellent approximation of nonlinear function, fast decision making, no restriction on the normality 

or independence of input [17][18]. Thus, ANN has also been widely exploited in other PV domains [19], including 

solar radiation prediction [20], MPP tracking [21], solar energy system modeling [18], PV system sizing [22], and 

performance prediction of solar collector system [23]. 

This paper is interested in carrying out a literature review to answer the following questions regarding the use of 

ANN for PV FDD: 

• How ANN techniques are integrated in the PV FDD? 

• What types of PV faults are detectable using ANN-based techniques? 

• What are the performance of these techniques when applied for PV FDD? 

• What are the challenges and prospects that ANN would face for PV health monitoring? 

The contribution of this paper is reflected in: 

1) Applications of ANN for PV FDD are, to our best knowledge, firstly summarized in detail based on the 

type of neural networks: shallow, deep, and hybridized. For each type of application, their pros and 

limitations have been identified. 

2) The common trends for the selection and the configuration of one ANN model when using 1-dimension 

(1D) or 2-dimension (2D) PV data or when targeting at different types of PV faults have been highlighted. 

3) Four reported public PV databases, including both 1D data or 2D images, are identified from the literature 

and summarized. 

4) Common challenges (e.g. the model configuration, availability of public database) and common prospects 

(e.g. the candidate models, feature transformation between1D and 2D, real-time health monitoring) have 

also been highlighted. 

The remainder of this paper is structured as follows: Section 2 presents a systematic review of the application of 

SNNs, DNNs and hybridized methods for PV FDD, where the key issues like model configuration, targeted fault, 

performance are all detailed and analyzed. Then, based on the aforementioned four questions, section 3 discusses 

the reviewed cases, and some common challenges and prospects are also highlighted. Section 4 concludes the 

 
2 SNN and DNN are the 2 categories of ANN, which are distinguished according to the model’s depth, i.e., the 

number of hidden layers. However, it should be noted that this number of layers is a relative notion that principally 
depends on the models to be compared [16]. Hereafter, based on an overall analysis, we set 3 hidden layers as the 

bound, so as to facilitate the presentation and performance comparison presented in the next section. 
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paper. 

2.  Application of ANN for PV FDD 

This section presents an insight into the various applications of ANN for PV FDD by separating the adopted 

models into three main groups, SNN, DNN and hybridized neural network (NN).  

2.1. Application of SNN for PV FDD 

Two categories of SNN applications are considered in this subsection, i.e., direct FDD (end-to-end type, where 

the SNNs output straightforward the fault type) and indirect FDD (where the output data of SNN models need 

further interpretation to identify the fault type).  

2.1.1. Direct FDD  

In the literature, various types of SNN models have been applied for direct FDD such as Multilayer Perceptron 

neural network (MLP) [24], Radial basis function neural network (RBF) [25], Probabilistic neural network (PNN) 

[26], Extension neural network (ENN) [27], Extreme learning machine (ELM) [28], Elman neural network (Elman 

NN) [29], and Wavelet neural network (WNN) [30]. 

In most cases, different factors (like the network structure, the number of parameters Np (neuron weights and bias), 

input/output (I/O) setting, activation function, tuning algorithm, PV technology and scale) have been taken into 

account to reach the best-expected performance. These applications, sorted by model type, are presented in Table 

1 followed by a discussion. 

Table 1  Details of PV FDD research using direct SNN 

Year 

& Ref 

ANN type, 

Structure 

& Number of 

parameters 

Amount of data I/O setting Activation 

function 

PV techno. 

& scale 

FDD Accuracy Target Fault Notes 

Train Validate Test Input Output 

2009 

[31] 

MLP 

5-9-8 

Np=139 

NC  

(simu)  

- NC  

(simu)  
• 5 failure modes • 8 causes • tanh 

(hidden layer) 

• logsig 

(output layer) 

NC, 

PV array 

100% 

(average) 
• Overheating 

• Power loss 

• Driven failure 

• Abnormal voltage 

• Abnormal meter 

• Input data 

normalized to 

[-1,1] 

2014 

[32] 

 

MLP 

3-4-3 

Np=34 

200  

(exp)  

- 4  

(exp)  
• TM 

• VMPP (modu) 

• IMPP (modu) 

• 3 faults 

(by 3 binary 

codes) 

• tanh 

(hidden layer) 

 

sc-Si, 

JHX100M,  

172 PV 

string 

(3.9kWp)  

90% 

(average) 
• Cell crack 

• PS 

• Aging & SC 

module 

 

2015 

[33] 

MLP 

4-11-4 

Np=107 

1600 

(simu)  

- 400  

(simu)  
• G 

• TA  

• VMPP (array) 

• IMPP (array) 

• Healthy 

• 3 faults  

(by 4 binary 

codes) 

• NC NC, 

PV array 

91.94% (average) 

100% (Healthy) 

97.95% (Aging) 

78.69% (SC) 

100% (PS) 

• Aging 

• PS 

• SC module 

Trained by 

Levenberg-

Marquardt (LM) 

back propagation 

(BP) [24] 

algorithm [70] 

2016 

[34] 

MLP 

4-NC-3 

Np NC 

992  

(simu)  

- NC  

(exp)  
• IMPP (array) 

• VMPP (array) 

• ISC (array) 

• VOC (array) 

• Healthy 

• 2 faults 

NC NC, 

PV array 

30% (1 SC 

module) 

85% (2 or more 

SC modules) 

~100% (Aging, 

Rs>4Ω) 

• SC module 

• Aging 

 

2016 

[35] 

MLP 

2-20-1 

Np=83 

7819 

(simu)  

- 50  

(simu)  
• ΔP (string) 

• ΔISC (string)  

 

• PS NC NC, 

116 

PV string 

 

Training MSE: 

0.058 
• PS (exist or not)  

 MLP 

2-NC-1 

Np NC 

12495 

(simu)  

- 50  

(simu)  
• ΔP (string)  

• PMPP (string)  

• PS factor NC Training MSE: 

0.067 
• PS (with shading 

factor)  

 

 MLP 

1-NC-1 

Np NC 

 

28512 

(simu)  

- 10  

(simu)  
• PS 

 factor 

• Shaded 

module 

number 

NC Training MSE: 

0.788 
• PS (with number 

of shaded modules)  

 

2016 

[36] 

MLP 

3-13-13-1 

Np=251 

620  

(simu)  

- 155  

(simu)  
• RVoc (array) 

• RI-MPP (array) 

• RV-MPP (array) 

• 4 faults • logsig 

(hidden layer) 

 

mc-Si, 

14 PV 

string 

(480Wp) 

 

90.3% 

(average) 

Cell/diode /module  

• Shunted 

• SC 

• Inversed 

• Connection 

resistance fault 

• Trained by LM 

BP algorithm 

 RBF 

3-49-4 

Np=399 

 68.4% 

(average) 

2017 

[37] 

MLP 

2-8-8-1 

Np=107 

600  

(simu)  

200 

(simu) 

200 

(simu)  
• G 

• IMPP (array) 

• CI 

 

• logsig 

(hidden layer) 

 

sc-Si, 

Isofoton, 

28 PV array 

NC • 1 SC module 

• 4 SC modules 

• Fault type co-

determined by CI  

and CV 
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• TM 

• VMPP (array) 

• CV (1.7kWp) 

 
• Faulty string 

 

• Trained by LM 

BP algorithm 

2017 

[38] 

 

MLP  

6-7-12-1 

Np=164 

NC 

(exp)  

- 

 

NC  

(exp)  
• G 

• TM  

• VOC (modu) 

• ISC (modu) 

• VMPP (modu) 

• IMPP (modu) 

• 4 faults 

 

NC 

 

sc-Si, 

BP-MSX120, 

418 PV 

array 

(8.6Wp) 

79.86% 

(average) 

Cell/diode/module 

• Shunted 

• SC 

• Inversed 

• Connection 

resistance fault 

 

MLP  

6-7-11-1 

Np=155 

• 3 faults 90.79% 

(average) 

PS & BPD as  

• OC 

• Inversed 

• Shunted 

2017 

[39] 

MLP 

2-10-3 

Np=65 

70% 

(simu) 

- 30% 

(simu)  
• VMPP (string) 

• IMPP (string) 

• 5 faults 

• (by 3 binary 

codes) 

• logsig 

(hidden layer) 

• purelin 

(output layer) 

NC, 

13 PV 

string 

 

NC • 1 or 2 modules 

inversed  

PS (3 levels) 

• Trained by LM 

BP algorithm 

2018 

[40] 

MLP 

6-25-4 

Np=285 

1397  

(exp)  

- 394  

(exp)  
• VMPP (string) 

• IMPP (string) 

• Vload  

• Iload  

• Vb (battery) 

• Ib (battery) 

• Healthy 

• 3 faults 

 

• tanh 

(hidden layer) 

• logsig 

(output layer) 

mc-Si, 

12 PV 

string 

(180Wp) 

97.4% 

(average) 
• SC module 

• OC module 

• SC battery 

• Input data 

normalized to 

[-1,1] 

2019 

[41] 

 

MLP 

7-33-6 

Np=475 

28800  

(simu)   

- 4800 

(simu)  
• G 

• TA 

• VMPP (array) 

• IMPP (string1, 

string 2) 

• VAC (inverter) 

• IAC (inverter)   

• Healthy 

• 5 faults 

 

NC mc-Si, 

28 PV array 

(5.3kWp) 

99.7% 

(average) 
• PS 

• Aging 

• SC module 

• OC string 

• Inverter fault 

• Compared and 

outperforms DT 

(accu: 89.9%), 

kNN (82.5%) and 

SVM (98.6%) 

2019 

[42] 

MLP 

6-35-1 

Np=287 

80% 

(exp)  

10%  

(exp) 

10%  

(exp)  
• G 

• TA 

• vWIND 

• dWIND 

• Humidity 

• Rainfall 

• Soiling rate • tanh 

(hidden layer) 

• purelin 

(output layer) 

NC, 

PV module 

R2=92.8% 

(fitting rate) 
• Soiling • Input data 

normalized to 

[0.1, 0.9] 

2020 

[43] 

MLP 

5-10-16 

Np=241 

4368 

(simu)   

936 

(simu)   

936 

(simu)   
• G 

• TM  

• VMPP (array) 

• IMPP (array) 

• PMPP (array) 

 

• 16 faults • tanh 

(hidden layer) 

• logsig 

(output layer) 

2 types (sc-Si 

and thin film), 

97 PV array 

(9.1kWp) 

99.6% 

(average) 
• SC 

• OC 

• Mismatch 

• Multi faults 

• Scaled 

Conjugate 

Gradient (SCG) 

[44] algorithm is 

adopted 

2020 

[45] 

MLP 

2-NC-2 

Np NC 

NC 

(exp) 

- NC 

(exp) 

Signal strength 

indicator of 2 

antennas 

• Distance 

between 

antennas to AF 

NC NC, 

PV simulator 

(2.7kWp) 

Planar location 

error<0.2m 

(within a range of 

4m) 

• AF • Data 

augmented 

• Bayesian 

regularized 

2020 

[46] 

MLP 

8-5-1 

Np=59 

1200 in 

total 

(simu)  

  • G 

• TM (average) 

• VMPP (array) 

• IMPP (array) 

• PMPP (array) 

• FF (array) 

• ISC (array) 

• VOC (array) 

• 6 faults • tanh 

(hidden layer) 

 

NC, 

67 PV array 

(3.5kWp) 

99.9% 

(average) 
• PS (2 types) 

• SC module 

• LLF 

• BPD SC 

• Temperature non-

uniformity 

• Input data 

normalized to  

[0, 1] 

• Compared with 

DT (accu: 

95.9%), RF 

(96.6%) 

 

2018 

[47] 

 

RBF  

2-5-5-5 

Np=77 

 

4536  

(exp)  

 

648 

(exp) 

 

1296  

(exp)  

 

• PR (string) 

• VR (string) 

 

• 5 faults 

 

NC 

 

mc-Si, 

SMT6(60), 

15 PV 

string 

(1.1kWp) 

 

77.7% 

(average) 

 

• Only PS 

• 1 to 4 faulty 

modules without PS 

 

• Input data 

normalized to [-

1,1] 

 RBF  

2-7-7-9 

Np=151 

 • 9 faults  92.1% 

(average) 
• Only PS 

• 1 to 4 faulty 

modules without PS 

• 1 to 4 faulty 

modules with PS  

 

2020 

[48] 

RBF 

2-10-1 

Np=43 

97200 in total 

(exp) 
• G 

• PMPP (string) 

 

• Healthy 

• 9 faults 

NC mc-Si, 

SMT6(60), 

110 PV 

string 

(2.2kWp) 

98.6% 

(average) 
• OC module • Input data 

normalized to  

[0, 1] 
MLP 

2-10-10-1 

Np=153 

98.9% 

(average) 

 

2015 

[49] 

 

PNN 

4-4-4-1 

Np=49 

 

160 

(simu)  

 

- 

 

340  

(simu)  

 

• G 

• TA  

• VMPP (array) 

• IMPP (array) 

 

• Healthy 

• 3 faults 

 

NC 

 

mc-Si, 

TSM-

290PC14, 

520 PV 

array 

(29kWp) 

 

98.53% 

(average) 

100% (Healthy) 

97.6% (OC50) 

96.5% (OC75) 

100% (LLF) 

 

• OC (2 types) 

• LLF 

 

• OC50/75 means 

50% /75% or less 

PV modules are 

OC 

2017 

[50] 

PNN 

4-4-2-1 

2224  

(simu)   

- 736  

(simu)  
• G 

• TM  

• Healthy 

• Faulty 

NC sc-Si, 

Isofoton, 

100% • 3 SC modules 

• 10 SC modules 

• For fault 

detection 
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Np=37 2224  

(simu)   

NC 

(exp) 
• VMPP (array) 

• IMPP (array) 

215 PV 

array 

(9.5kWp) 

82.3% • 1 OC string 

PNN 

4-4-3-1 

Np=43 

1668  

(simu)   

552  

(simu)  
• G 

• TM  

• VMPP (array) 

• IMPP (array) 

• 3 faults 100% • For fault 

diagnosis 

1668  

(simu)   

NC 

(exp) 

98.2% 

2019 

[51] 

 

PNN 

2-2-5-1 

Np=29 

400  

(exp)  

- 500 

(exp)  
• VMPP (array) 

• IMPP (array) 

• Healthy 

• 4 faults 

NC mc-Si, 

43 PV array 

(2.9kWp) 

97% 

(average) 
• SC module 

• OC string 

• LLF 

• Multi faults 

• Input data 

normalized by 

STC value 

2020 

[52] 

PNN 

7-8-8-3 

Np=170 

3000 

(exp) 

- 600 

(exp) 
• G 

• TM (average) 

• VMPP (string1) 

• VMPP (string2) 

• IMPP (string1) 

• IMPP (string2) 

• Weather 

• Healthy 

• 2 faults 

• ReLU 

(hidden layer) 

• softmax 

(output layer) 

NC, 

23 PV array 

(1.8kWp) 

100% 

(average) 
• LLF 

• OC string 

• Use Adam as 

optimizer 

• k-fold [53] 

validation 

• Input data 

normalized 

2010 

[54] 

 

ENN 

4-10 

Np=54 

1995 

(simu)  

- 1995 

(simu)  
• PMPP (array) 

• VMPP (array) 

• IMPP (array) 

• VOC (array) 

 

• Healthy 

• 9 faults 

• NC sc-Si,  

NT-R5E3E, 

29 PV array 

(3.2kWp) 

100%  

(average) 

93.3%  

(average) 

• 1 to 3 module 

faults in 1 or 2 

string 

 

MLP 

4-9-10 

Np=149 

 

2014 

[55] 

WNN 

4-12-5 

Np=129 

400 

(exp) 

- 100  

(exp) 
• VOC (array) 

• ISC (array) 

• VMPP (array) 

• IMPP (array) 

• Healthy 

• 4 faults 

• sigmoid 

(output layer) 

sc-Si,   

PV array 

96%  

(average)  
• SC 

• OC 

• PS 

• Aging 

• Use Gaussian 

function for 

hidden layer 

MLP 

4-12-5 

Np=129 

79%  

(average) 

2018 

[56] 

Elman NN 

8-18-4 

Np=246 

3600 

(exp) 

- 800 

(exp) 
• G 

• TA  

• Vin  

• Iin  

• Vload  

• Iload  

• VMPP (array) 

• IMPP (array) 

 

• Healthy 

• 3 faults 

• NC NC, 

42 mini PV 

array 

(40.3Wp) 

 

99.5% 

(average) 
• PS 

• OC string 

• Total shading 

 

 

( ‘NC’ in all columns represents non-communicated information; ‘N1-…Ni-…NL’ in ‘ANN type & structure’ column denotes the structure of model, 

i.e., Ni neurons in ith layer; ‘(simu) ’ and ‘(exp) ’ in ‘Amount of data’ column denotes the data obtained from simulation or experimental test, 
respectively; ‘modu’, ‘string’ or ‘array’ in ‘I/O setting’ column represents the electrical data measured at module, string or array level, respectively; 

‘ab’ in ‘PV techno and scale’ column denotes a parallel strings with b modules connected in series) 

 

Focusing on the four questions proposed in the introduction, the applications displayed in Table 1 are now analyzed: 

1) Integration of SNN in PV FDD 

⚫ ANN type: Ranking the selected models according to their number of uses, MLP comes first (62.5%, 15 out 

of 24 application cases) followed by PNN, RBF and ENN.  

⚫ Model structure: Relatively simple structures are most often considered, 63.6% (21 out of 33 models) with 1 

hidden layer and the remaining with 2 hidden layers. The number of neurons in the hidden layer is generally 

less or around 10, while in some models more neurons are selected [36,41,42]. As for the number of 

parameters, its value is generally less than 500 in the reviewed cases.  

⚫ Amount of data: Total data volumes used are in the order of hundreds or thousands, and there is usually more 

data for training than for testing (85.7%), while the dataset for validation is relatively less adopted (4 out of 

24 cases). In term of data type, simulation data is the most common one (56.5%, 35 out of 62 reported datasets 

for training, validation or testing) compared to field-measured data (43.5%). This is because simulation data 

is easier to obtain despite it may not fully represent actual data due to modeling errors and uncertainties and 

actual environmental conditions. 

⚫ I/O setting: For the input, measured features (like environmental and electrical data) are preferred to 

calculated ones (like the ratio of voltage or current). VMPP, IMPP, G, TM are the most common ones. The 

selection of features depends on the target fault and PV plant scale, i.e., module or array level. For the output, 

some cases (like in [32,33]) use the combination binary output values of each neuron to determine the fault 

type. In some cases, authors export the feature values that correspond directly either to the fault type (like in 
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[38,50]) or to the fault severity (like in [35,42]), while the others do not specify. 

⚫ Activation function: Only in 11 out of 24 cases, the activation function used is specified. In the hidden layer, 

non-linear functions (like tanh and logsig) are commonly adopted, which permits the learning of complex 

relationship. As for the output layer, linear functions (like pureline, softmax) are preferred, which allows the 

multiple outputs for fault classification.  

⚫ PV technology and scale: Almost all PV devices tested are in crystalline silicon technology, if specified. This 

corresponds well to its representation in terms of installed capacity worldwide. Regarding the scale of the 

platform under test, string or array level are the most common types (23 out of 24 cases), while the module 

level is less investigated. The reported power rating varies from 40Wp to 29kWp. 

2) Detectable faults 

Among the targeted PV faults, short circuit (SC), partial shading (PS) and abnormal aging are the most studied 

ones. The particularity of these faults is their significant impact on the electrical features. Other faults like soiling, 

line-line fault (LLF), and failures in components on the DC side are relatively less investigated.  

3) Performance  

Generally, diagnosis accuracy is higher than 90%. However, it should be noted that comparison of performance 

between different research results is complex due to the difference in the database, model configuration and fault 

severities (like the cases in [49,50]). Nevertheless, in some applications, the applied model is compared on the 

same benchmark with either other types of ANN, or other MLTs. In these cases, the proposed ANNs have been 

demonstrated outperforming other ANNs or MLTs. 

4) Limitations and prospects 

In some cases, redundancy is found in the input feature setting, like the simultaneous use of VMPP, IMPP and PMPP. 

Besides, some cases focus on limited fault types, even only one type, which is unsuitable for field application to 

deal with various unknown faults. However, encouragingly, some SNNs, especially MLP, have proven their 

efficiency (> 90%) to diagnose various faults for different PV platforms with different scales. These models are 

promising, as they look suitable for almost all the common PV electrical faults, and can be applied in real-time 

health monitoring. 

The use of field-measured data should be encouraged, particularly for high-scale PV platforms, which are now 

very common. However, where the amount of faulty data is limited, simulation data could also be adopted. 

However, they should be as close as possible to the data measured in the field, taking into account the uncertainties 

and actual measurement conditions. Also, the scope of the faults to be addressed should be broadened towards 

soiling, line-line fault, and faults in power electronics device. 

2.1.2. Indirect FDD  

Regarding the indirect applications of SNNs (i.e., output features need further interpretation for fault 

identification), few researches have been reported. The typical ones are presented in Table 2. 

Table 2 Details on research using indirect FDD 
Year 

& Ref. 

ANN type, 

Structure 

& Number of 

parameters 

Amount of data I/O setting Follow-up 

analysis 

PV techno 

& scale 

FDD 

accuracy 

Target Fault Notes 

Train Validate Test Input Output 

2011 

[57] 

MLP 

4-10-6 

Np=120 

 

30 

(simu)  

- NC 

(simu)  
• G 

• TM 

• VMPP (array) 

• IMPP (array) 

• 6 

voltages 

Use a proposed 

topology to 

analyse the 6 

voltages 

sc-Si, 

SM-55, 

32 PV 

array 

(330Wp) 

99.9% • SC module 

(with 

localization) 

• Number of 

models 

equals the 

SC cases 

2015 

[58] 

MLP 

2-15-15-1 

Np=303 

 

134 

(simu)  

17  

(simu)  

17 

(simu)  
• G 

• TM 

• Ppredicted Compare the 

predicted P with 

measured one  

Silero Triex 

U300,  

PV array 

(3.6kWp) 

100%  • PS 

• OC string 

• MPPT failure 

 

2016 

[59] 

MLP 

2-7-12-2 

Np=145 

 

2100 

(exp)  

- 900 

(exp)  
• G 

• TM 

• Ipredicted 

• Vpredicted 

Compare the 

predicted I, V 

with measured 

ones  

mc-Si, 

BPSX150, 

PV module 

(150Wp) 

NC • PS (failure 

degree could be 

quantified) 

• Input data 

normalized 

to [-1,1] 
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2018 

[60] 

MLP 

2-10-1 

Np=43 

 

70% 

(exp) 

- 30% 

(exp) 
• G 

• TM 

• Ppredicted Compare the 

predicted P with 

measured one 

NC, 

PV array 

(6.2MWp) 

90% • Inverter fault  

(‘NC’ in all columns represents non-communicated information; ‘N1-…Ni-…NL’ in ‘ANN type & structure’ column denotes the structure of model, 

i.e., Ni neurons in ith layer; ‘(simu)’ and ‘(exp)’ in ‘Amount of data’ column denotes the data obtained from simulation or field-measurement, 

respectively. ‘array’ in ‘I/O setting’ column represents the electrical data measured in array level; ‘ab’ in ‘PV techno & scale’ column denotes a 

parallel string with b modules connected in series.) 

Based on Table 2, the following analysis can be conducted: 

1) Integration of SNN in PV FDD 

As in the previous section, MLP is still the favorite model. Similar to the prediction of PV performance [23], 

environmental data is used as input to predict PV electrical features that are analyzed for fault identification. 

2) Detectable faults 

Since all the model outputs are the electrical features, it is accordingly the faults that introduce a significant impact 

on the electrical features that are mainly addressed, like OC and PS.  

3) Performance 

The number of studies is limited compared to the direct ones, but all the reported accuracy is similarly higher than 

90%. 

4) Limitations and prospects 

These indirect applications need an additional diagnosis module to analyze the output features. Furthermore, 

among these schemes, a comparison of the predicted features with the measured ones is the most common type. 

However, this kind of analysis could be fully realized inside one ANN by adding the measured features as inputs 

as it has been already done like in [37,46,52]. Therefore, the capabilities of the ANN should be fully exploited 

instead of complexifying the methodology. 

 

2.2. Application of DNN for PV FDD 

 

The Deep NN (DNN) applied for PV FDD has two main types, Convolutional Neural Network (CNN) and Deep 

Belief Network (DBN) [61]. Regarding the CNNs, various well-designed structures have been practiced, such as 

LeNet [62], GoogLeNet [63], VGG [64], R-CNN [65], ResNet [66], AlexNet [67], Attention U-Net [68], YOLO 

[69]. Compared to SNN models, DNNs mainly differ in the model depth, and input data type. For the input, instead 

of 1-dimensional (1D) features (e.g., electrical or environmental features), DNNs deal with 2-dimensional (2D) 

ones, which include PV images, generated graphs or matrix.  

In this section, the application of DNNs using PV image data is firstly presented. Then, the DNNs handling other 

types of 2D data will be investigated. At the end of each part, the applications will be discussed in the light of the 

four questions raised in the introduction.  

2.2.1. DNNs using PV image data 

The 2D PV data for DNNs consists of visual (Vis.), electroluminescence (EL) or thermal infrared (IR) images, as 

listed in Table 3. For each application, the type, structure, input type and size, pre-processing method, data 

partitioning and the targeted PV fault will be taken into account. All this information is summarized in Table 4 

with the unfolded hierarchical structure of three examples of DNNs illustrated in Fig. 2. 

Table 3 Typical PV images used in DNNs for PV FDD 
Vis. images EL images IR images 

Cell level Module level Cell level Module level Cell level Module level Array level 

       
[70] [71] [72] [73] [74] [75] [76] 
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Fig. 2 Examples of CNN structures adopted for PV FDD: (a) LeNet-5 [77] (low number of layers and low number of 

parameters), (b) Li et al. scheme [71] (low number of layers and high number of parameters), (c) VGG-19 [72] (high 

number of layers and high number of parameters). 

Table 4  Application of DNN models using PV image data 
Year 

& ref. 

Model, No. of 

layers & 

Number of 

parameters  

Input setting Data 

augmentation 

Amount of data Output 

setting 

FDD accuracy Target fault Notes 

Type& Size Scope Original Train Validate Test 

2018 

[77] 

Adapted 

LeNet-5, 

6 layers, 

Np=1.1M 

EL images 

(100100 

pixels) 

PV cell • Brightness 

adjustment 

• Adding 

blurring 

• Rotation 

- 5120 

(aug) 

- 1000  

(aug) 
• Healthy 

• 4 faults 

98.4%  

(average) 

Cell crack in form: 

• Linear 

• Cross 

• Flaky 

• Broken 

• Trained by 

Nesterov 

Accelerated 

Gradient (NAG) 

algorithm [78] 

2018 

[79] 

LeNet, 

7 layers, 

Np=0.06M  

  

EL images 

(NC) 

PV cell - 658 600 

(orig) 

48  

(orig) 

10  

(orig) 
• Healthy 

• 1 fault 

99% 

(average) 
• Cell crack  

 

• Trained by 

Stochastic Gradient 

Descent (SGD) 

algorithm [80]  

• Compared and 

outperforms 

GoogleNet V1 

(accu: 98%) 

2018 

[81] 

VGG-16, 

21 layers, 

Np=134.2M 

 

IR images  

(224224 

pixels) 

PV array 

 
• Rotation 

• Flip 

3336 5190  

(aug) 

- 1298  

(aug) 
• Healthy 

• Defective 

75%  

(best case) 
• Damaged 

module 

(fault type not 

specified) 

• Images captured 

by UAV 

• Images manually-

labeled 

• Impact of data 

balance discussed 

 

CNN model based on LeNet-5

CNN model developed by Li et al. 

…

IN: Input layer

C: Convolutional layer

PM: Max pooling layer

FL: Flatten layer

FC: Fully-connected layer

OUT: Output layer

Example: PM4: abc denotes the 4th

layer of CNN (excluding input and output 

layer) and the type is max pooling, this

layer consists of c feature maps with size 

of ab pixel; When the size is 11, 

means that this layer consists of c neurons.

( Number of layers: 6 )

( Number of parameters: 1.1M )

( Number of layers: 9 )

( Number of parameters: 51.7M )

( Number of layers: 24 )

( Number of parameters: 34.9M )

CNN model based on VGG-19

… … ……

(a)

(b)

(c)
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2018 

[82] 

Adapted  

VGG-16, 

21 layers, 

Np=0.38M 

 

EL images 

(120120 

pixels) 

PV cell • Flip 

• Rotation 

• Translation 

• Cropping 

 

98280 90%  

(aug) 

- 10% 

(aug) 
• Healthy 

• Defective 

92.3%  

(balanced accu 

rate) 

• Damaged cell 

(different levels 

crack) 

• Impact of 

oversampling and 

augmentation 

discussed 

2019 

[72] 

Adapted 

VGG-19, 

24 layers, 

Np=34.9M 

 

EL images 

(300300 

pixels) 

PV cell • Rotation 

• Translation 

• Flip 

2624 196800 

(aug) 

- 656  

(orig) 
• Healthy 

• Defective 

86.6% 

(for sc-Si images) 

86.1% 

(for mc-Si images) 

 

• Damaged cell 

(microcrack, 

insulation fault, 

connection fault, 

solder failure) 

• Images labeled by 

experts 

• Blurry images are 

not excluded from 

dataset 

• Public dataset [83] 

2019 

[84] 

Mobilenet 

28 layers, 

Np=4.2M 

 

IR images 

(224224 

pixels) 

PV 

module 
• Flip 

• Rotation 

 

798 NC 

(aug), 

(orig= 

638) 

 

- 

  

NC  

(aug) 

(orig= 

160) 

• Healthy 

• 4 faults 

89.5%(average) • Module hotspot 

(4 shapes of 

module hotspot) 

• Compared and 

outperforms VGG-

16 (accu: 85.8%)  

2018 

[85] 

Deep 

SolarEye 

(based on 

ResNet), 

Np=2.0M 

 

Visible 

images 

(192192 

pixels) 

+G, time 

PV 

module 
• Rotation 

• Flip 

NC 27537  

(aug) 

- 18217  

(aug) 
• Soiling 97.8% 

(binary 

classification) 

 

• Soiling (type, 

impact and 

location) 

• Cleaning 

suggestion for 

soiling could also 

be determined 

2018 

[86] 

DBN, 

4 layers, 

Np=4.7M 

 

EL images 

(6464 

pixels) 

PV cell - 220 200  

(orig) 

- 20  

(orig)  
• Healthy 

• 1 fault 

NC • Cell crack  

2019 

[87] 

Fast RCNN, 

28 layers, 

Np NC 

IR images 

(NC) 

PV array - 110 83 

(orig) 

- 27 

(orig) 
• Healthy 

• Hot spot 

99.7%  • Hot spot • Images captured 

by UAV camera  

• Pre-trained VGG-

16 adopted to 

extract feature map 

2020 

[76] 

Fast RCNN, 

13 layers, 

Np NC 

 

IR images 

(640534 

pixels) 

PV array - 900 800 

(orig) 

- 100 

(orig) 
• Healthy 

• Hot spot 

99.02%  

99.42% (healthy) 

91.67% (hot spot) 

• Hot spot • Images captured 

by UAV camera  

• Localization error 

of hot spot is 0.86m 

2020 

[88] 

Fast RCNN 

+RCNN (2 

channels) 

Np NC 

 

EL images 

(5232 

2720 pixels) 

PV 

module 

-  1461 861 

(orig) 

- 600 

(orig) 
• 3 faults 98.3%(overall) 

97.5% (Crack) 

99% (Broken) 

98.5% 

(Unsoldered) 

• Crack 

• Broken 

• Unsoldered 

• Fast RCNN is 

based on VGG-19, 

RCNN based on 

ResNet-101 

2020 

[89] 

Attention  

U-net 

(34 layers) 

Np=8.1M 

EL images 

(512512 

pixels) 

PV cell • Flip 

• Shift 

• Rotation 

828 NC 

(aug),  

(orig= 

620) 

 

 NC  

(aug) 

(orig= 

208) 

 

• Healthy 

• Defective 

100% 

(average) 
• Cracks 

• Finger 

interruption 

• Impact of loss 

function and 

combination of 

networks discussed 

2020 

[90] 

 

YOLOv3, 

53 layers, 

Np NC 

 

Visible 

images 

 

PV 

module 

- 5400 4320 

(orig) 

- 1080 

(orig) 
• Healthy 

• Soiling 

96.3% 

(average) 
• Soiling (bird 

drop, leaves) 

• Compared with 

Mask R-CNN 

(92.2%)  

2018 

[91] 

Proposed 

CNN, 

27 layers, 

Np=101.2M 

 

Vis. images 

(256256 

pixels) 

PV cell - 21245 15996 

(orig) 

- 4249  

(orig) 
• Healthy 

• 6 cell 

defects 

94.3% 

(average) 
• Damaged cell 

(broken gates, 

paste spot, dirty 

cell, thick lines, 

scratches, and 

color differences) 

• Impact of CNN 

structure, image 

size, training 

methods discussed 

• CNN of 

multispectral type 

2019 

[71] 

Proposed  

CNN, 

9 layers, 

Np=51.7M 

 

Visible 

images 

(224224 

pixels) 

PV 

module 

- 8400 5880  

(orig) 

1680  

(orig) 

840  

(orig) 
• Healthy 

• 5 faults 

97.9% (average) 

98.9% (healthy) 

100% 

(delamination) 

98.2% (soiling) 

96.1% (gridline 

corrosion) 

95.7% (snail trail) 

98.5% 

(discoloration) 

 

• Delamination 

• Soiling 

• Gridline 

corrosion 

• Snail trail 

• Discoloration 

• Input includes 

manually or UAV-

captured images and 

generated faulty 

images 

• Setting of layers 

discussed and 

visualized by t- 

stochastic neighbor 

embedding (t-SNE)  

2019 

[92] 

Proposed  

CNN, 

9 layers, 

Np=2.5M 

 

EL images 

(100100 

pixels) 

PV cell • Flip 

• Rotation 

• Cropping 

 

2624 80% 

(aug) 

- 20% 

(aug) 
• Healthy 

• Defective 

93.02%  

 
• Damaged cell 

(microcrack, 

insulation fault, 

connection fault, 

solder failure) 

• Same dataset used 

in [72]  

• Layer setting 

discussed 

• Impact of 

augmentation 

discussed 

2019 

[73] 

Proposed  

CNN, 

5 layers, 

Np=0.2M 

 

EL images 

(5050 

pixels) 

PV cell 

 
• Flip 

• Rotation 

 

3550 11360 

(aug) 

- 710 

(orig) 

 

• Healthy 

• 2 faults 

99.7% (average) 

100% (healthy) 

100% (crack) 

92% (corrosion) 

 

• Cell crack 

• Corrosion 

• Impact of input 

size discussed 

• Compared with 

SVM (accu 

=99.4%) and RF 

(97.5%) and 

outperforms 
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2020 

[93] 

Proposed  

CNN, 

9 layers, 

Np=12.9M 

 

EL images 

(224224 

pixels) 

PV cell • GAN-based 

model 

operation 

1800 6400 

(aug) 

1600 

(aug) 

600 

(orig) 
• Healhty 

• 3 faults 

83% (average) 

84% (healthy) 

83% (break) 

82% (micro-crack) 

81% (Finger-

interruption) 

 

• Cell crack (3 

types) 

 

• Compared and 

outperforms VGG-

16 (accu: 66%), 

ResNet50 (67%) 

• Impact of depth, 

kernel size 

discussed 

2020 

[75] 

Proposed  

CNN, 

9 layers, 

Np=6.8M 

 

IR images 

(100100 

pixels) 

PV 

module 
• Flip 

• Rotation 

• Cropping 

 

893 80% 

(aug) 

- 20% 

(aug) 
• Healthy 

• Defective 

99.23%  

 
• Damaged 

module (failed 

interconnection, 

glass breakage, 

crack, failed 

/resistive soldering 

bonds) 

 

• Images are from 

IR camera and 

internet 

• Model pretrained 

by EL images 

 
(‘NC’ in all columns represents non-communicated information; ‘(ab)’ in ‘Type & Size’ refers to the size of images in pixels; ‘(orig)’ and ‘(aug)’ 

in ‘Amount of data’ column denotes original or augmented data, respectively; The layer number indicated in ‘Model’ column only refers to the sum 

of all the inner layers) 

 

Based on Table 4, the applications of DNNs using 2D PV image data are analyzed from the following aspects: 

1) Integration of DNN in PV FDD 

⚫ Model type and structure: CNN models are the most common ones, which may be due to its popularity in 

image processing and pattern recognition in recent years. Among the applied CNN models, 12 out of 19 are 

based on the entire or partial structure of mature models (like LeNet and VGG in Fig. 2 (a)(c)), while the 

remaining six are thoroughly redesigned (like Fig. 2 (b)). As for the structure, the majority of DNNs are more 

complicated than SNN ones from both model depth and the number of parameters. However, it should be 

noted that more layers do not necessarily lead to higher Np, which can be observed from the models in Fig. 

2 (b) and (c). Np mainly depends on the sizes of fully connected layers and the kernel, which are determined 

by the structure and vary from case to case. 

⚫ Input setting: For the origins of the images, indirect images (collected by EL or IR devices) are preferred to 

visual ones. EL images are the most adopted (11 use cases) as they may embed more fault information. 

Regarding the scope, cell level images are the most adopted (10 cases), while those at module level (6 cases) 

and at array level (3 cases) are relatively less investigated.  

⚫ Data augmentation: It is often practiced when the original dataset is not large enough or to increase the model 

generalization capability. In the reviewed cases, more than half (11 cases) implements this technique, with 

usually rotation and flip.  

2) Detectable faults 

At the cell level, cracking in various forms is the most frequently examined defect. At the module and network 

level, hot spots, delamination, soiling and interconnect failures are generally covered. A common feature of 

these faults is their marked presence in the adopted images. This allows the various DNNs, which are 

competent in pattern recognition, to identify them. 

3) Performance 

Overall, 13 out of 19 cases have achieved classification accuracy higher than 90%. Similarly, due to the 

diversity in various aspects for most applications, no further quantified global conclusion can be drawn. 

However, in some cases, based on the same benchmark, the proposed model has exhibited higher 

performance compared to other DNNs or MLTs. 

4) Limitations and prospects 

It is noted that more than half of the reported applications can only do binary classification, i.e., identify 

healthy or faulty condition. In some works, where both binary and multi-class classifications (more than 1 

fault type) are conducted, the multi-class FDD accuracy is found lower than that of binary classification. This, 

in a sense, reflects the difficulty in precise PV faults diagnosis using image data. Besides, some models are 

highly complex, which could increase the computational expense. Thus, it is suggested to develop CNN 

model with appropriate architecture like in [73,92] to reduce unnecessary complexity. It is noteworthy that 

authors in [72,92] have used identical public PV image dataset [83]. Then, the comparison of different models 

and performance is made possible. Regarding the real-time application in large-scale power plants, DNNs 
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also show some potential, especially via UAV-captured aerial images. However, the automatic detection of 

PV panels and subsequent segmentation is still a tedious task. Although some research has been dedicated to 

this problem [94], the robustness and precision still require further reinforcement through more field tests.  

 

2.2.2. DNNs using other 2D data 

In addition to PV images data, DNN models for PV FDD also process graphs or data matrix generated from 1-D 

features as shown in Fig. 3. For example, Lu et al. [95] and Manohar et al. [96] extract graphs from sequential V 

and I data. Chen et al. [97] combine I-V curve data with G and TM to form up a 404 feature matrix. Similar I-V 

curve-based approaches are also applied in [98,99]. Besides, Aziz et al. adopted Continuous Wavelet Transform 

(CWT) [100] to generate scalograms (2-D graphs) from environmental and array electrical parameters. A similar 

approach is also employed in [101]. The details of these applications are presented in Table 5. 

 
Fig. 3 Examples of other 2D input features for DNN: (a) array I and V time-series graph [95], (b) synthetic matrix 

[97], (c) current-generated graphs [101], (d) 1-D features-generated scalograms [102] 

Table 5  Application details of DNN models using other 2D data 
Year 

& Ref 

Model, No. 

of layers & 

Number of 

parameters 

I/O setting Amount of data PV techno 

& scale 

FDD accuracy Target 

fault 

Note 

Input  Output Train Validate Test 

2018 

[96]         

SAE-DNN, 

Np NC 

 

AC side I and 

V time-series 

graph 

 

• Healthy 

• 6 faults 

2812 

(simu) 

- 1208 

(simu) 

NC, 

34  

PV array 

 

100% (average) 

 
• PS 

• LLF (5 

types) 

 

• Compared and 

outperforms 

SVM (accu: 

99.2%), DT 

(99.3%), MLP 

(97.1%) 

2019 

[95] 

Proposed  

CNN, 

20 layers, 

Np NC 

Array I and V 

time series 

graph, 

299299 

pixels 

• Healthy 

• 4 faults 

981 

(exp) 

- 419  

(exp) 

sc-Si, 

GL-100 

36  

PV array 

(1.8kWp) 

99.5% (average) 

99.7% (Healthy) 

99.2% (SC) 

98.4% (LLF) 

99.9% (OC) 

• LLF 

• SC module 

• OC string 

(2 types)  

• Results 

obtained from 20 

random tests 

2019 

[97] 

ResNet, 

18 layers, 

Np=1863 

Matrix (404) 

based on array 

I-V curve and 

TM, G 

• Healthy 

• 8 faults 

15834 

(simu) 

1858  

(simu) 

7545 

(simu) 

sc-Si, 

GL-100 

36  

PV array 

(1.8kWp) 

99.98% (average) 

100% (Healthy, SC, 

PS, OC)  

99.89% (Aging)  

• OC string 

• PS (3 

types) 

• Aging (2 

types) 

• 1 or 2 SC 

module in 1 

string 

• Unbalanced 

samples for each 

case 

 

1870 

(exp) 

215  

(exp) 

897  

(exp) 

98.1% (average) 

100% (Healthy, SC) 

96.68% (PS) 

95.45% (OC) 

95.81% (Aging)  

2020 

[98] 

Proposed 

CNN+ 
Residual-

gated 

recurrent 

unit, 

7 layers, 

Np NC 

 

Matrix 

based on array 

I-V curve and 

TM, G 

• Healthy 

• 10 faults 

792 

(simu) 

264 

(simu) 

264 

(simu) 

sc-Si, 

113 

PV array 

(3.4kWp) 

100% (average) 

 
• PS (2 

types) 

• Aging 

• Hybrid 

fault (6 

types) 

• Impact of data 

missing, and 

anti-inference 

discussed 

1136 

(exp) 

379 

(exp) 

377 

(exp) 

98.4% (average) 

 

2020 

[99] 

Proposed 

CNN, 

5 layers, 

Np NC 

Matrix 

extracted from 

I-V curve 

(824) 

 

• Healthy 

• 3 faults 

356 

(exp) 

- 90 

(exp) 

mc-Si, 

212 

PV array 

99.8% (average) 

 
• PS 

• Crack 

• Gridline 

fault 

• Compared with 

multi-headed NN 

(99.3%) 

2019 

[101] 

Proposed 

GAN+CNN, 

14 layers, 

Np NC 

  

Graphs 

generated from 

array I, 

2020 pixels 

• Healthy 

• 1 fault 

24000 

(exp) 

 6000 

(exp) 

sc-Si, 

PV array 

(1.5kWp) 

 

98.5% (average) 

99.3% (Healthy) 

97.7% (AF) 

 

• AF • Domain 

adaptation 

applied 

• Tested in real 

time FDD 

I-V curve data
V

I

0

G and T data

T G I1 V1

T G I2 V2

T G I3 V3

… … … …

T G I40 V40

404 feature matrix

(a)

Time series graph of V and I

(c)

Healthy OC string LLF

PS1 PS2 AF

• G

• Tm

• VOC (array)

• ISC (array)

• Vmpp (array)

• Impp (array)

• Pmpp (array)

CWT

(b) (d)

Healthy

Arc fault
Current 

signal
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2020 

[102] 

AlexNet 

(transferred), 

7 layers, 

Np=58M 

Generated 

scalograms,  

227227 

pixels 

• Healthy 

• 5 faults 

2419 

(simu) 

- 1037 

(simu) 

NC, 

53  

PV array 

(735Wp) 

 

Noiseless 

condition: 

74.6% (average) 

Noisy condition 

(noise power level 

of -3dB): 

73.2% (average) 

• AF 

• LLF 

• OC string 

• PS (2 

types) 

 

 

• Impact of 

training sample 

size and noise 

discussed 

(‘(ab)’ in ‘Input’ column refers to the size of images in pixels; ‘(simu) ’ and ‘(exp) ’ in ‘Amount of data’ column denotes the data obtained from 

simulation or experimental test, respectively; ‘ab’ in ‘PV techno and scale’ column denotes a parallel strings with b modules connected in series.) 

 

Similarly, these applications of DNNs using other 2D data are examined from the following perspectives:  

1) Integration of DNN in PV FDD 

In these cases, 1D features are transformed directly (like using time-series graphs) or indirectly (via specific 

transformation methods) to 2D features. Since these features are not real PV images, data augmentation is not 

generally performed. 

2) Detectable faults 

The common target faults are PS, OC, LLF and AF. As the inputs are still based on the electrical or environmental 

1D features, these faults are similar to the ones detected by SNNs. 

3) Performance 

Four out of seven cases achieved an accuracy of more than 95%, which is comparatively higher than DNNs using 

image data (90%). The reason behind may be fault feature separability is higher with internal variables of 

parameters rather than image data. 

4) Limitations and prospects 

Low effective information ratio is observed in some cases [95,97]. Especially in [95], the time-series graphs of 

current or voltage contain a large area of white zone (as shown in Fig. 3 (a)), which contributes to increase the 

size of the DNN input features. This problem is eased in [101,102] by adopting specific transformation techniques. 

The FDD schemes based on transformation from 1D to 2D have been developed to benefit from the considerable 

experience in image processing, with the expectation to improve the diagnosis performance. However, these 

schemes still require further validation and comparison with the ones using the same original 1D data and with 

other techniques, like the SNNs as mentioned earlier that generally have lower complexity 

 

2.3. Hybridization of ANN for PV FDD 

In order to enhance the ANN performance, several researchers have combined ANN with other techniques for 

different objectives, like: 

• Extraction or pre-processing of input features,  

• Improvement of ANN algorithm,  

• Optimization of ANN parameters,  

• Post-processing of output features.  

According to these specific objectives, the applications of the hybridized techniques are summarized in Table 6.  

Table 6 Applications of hybridized ANN for PV FDD  

Aim of 

hybrid 

usage 

 

Year 

& Ref. 

ANN 

category, 

model type, 

structure, 

No. of paras 

Integrated techno. Amount of data I/O setting PV techno.  

& scale 

Target faults FDD Accuracy Notes 

Train Test Input Output 

Improve 

ANN 

algorithm 

2015 

[103] 

SNN, 

LAPART 

Np NC 

Fuzzy logic 

(ameliorate ANN 

structure) 

32400 

(simu)  

10800 

(simu)  
• G 

• TA 

• IMPP (modu) 

• PMPP (modu) 

• vWIND 

• Healthy 

• PS 

NC, 

PV array 

(3.7kWp) 

• PS 86% (average) • k-Folds technique  

is adopted for the 

data partitioning 
5760 

(exp)  

1441 

(exp)  

100% (average) 
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2017 

[104] 

SNN, 

MLP 

(4-12-7) 

Np=155 

Particle swarm 

optimization (PSO) 

[105] 

(improve the global 

search ability) 

150 

(simu)  

60 

(simu)  
• ISC (array) 

• VOC (array) 

• PMPP (array) 

• VMPP (array) 

 

• Healthy 

• 6 faults 

NC, 

34 PV 

array 

(252Wp) 

• PS 

• Aging 

• Temperature 

anomaly 

93.3% (average) • Compared with no 

PSO MLP (accu: 

86.7%) 

• Impact of hidden 

layer neuron 

number discussed 

2018 

[106] 

SNN, 

MLP 

(6-8-7) 

Np=125 

Ada-boost classifier 

[107] 

(boost MLP 

performance) 

1800 

(exp)  

784 

(exp)  
• G 

• TA 

• VMPP (array) 

• IMPP (string 

1-3) 

 

• Healthy 

• 6 faults 

sc-Si, 

GL-100 

36  

PV array 

(1.8kWp) 

 

• PS (2 types) 

• OC string (2 

types) 

• SC module (2 

types) 

 

97.7% (average) • Compared with no 

ada-boost MLP 

(accu: 96.6%) 

 

Optimize 

parameter  

2015 

[108] 

SNN, 

MLP 

(2-24-24-8) 

Np=874 

Genetic algorithm 

(GA) [109] 

(determine the 

number of neurons) 

NC 

(simu)  

NC 

(simu)  
• V (modu) 

• I (modu) 

• Healthy 

• 7 faults 

NC, 

PV module 
• PS 

• SC module 

• OC module 

• Aging 

• Charger fault 

• Battery fault 

97.7% (average) 

98.6% (Healthy) 

96.6% (SC) 

97.5% (OC) 

97.6% (PS) 

98.2% (Aging) 

98.9% (Charger) 

96.6% (Battery) 

• Results under 

condition TA=33 °C, 

G=380 W/m2 

2017 

[110] 

SNN, 

KELM 

(7-NC-5) 

Np NC 

Nelder-Mead 

Simplex (NMS) 

[111] 

(optimize kernel 

parameters) 

3600 

(simu)  

1200 

(simu)  
• ISC (array) 

• VOC (array) 

• IMPP (array) 

• VMPP (array) 

• n 

• RS 

• Ep 

• Healthy 

• 4 faults 

sc-Si, 

GL-100, 

36 PV 

array 

(1.8kWp) 

• PS 

• Aging 

• SC module 

• OC string 

100% (average) • Input data 

normalized by STC 

value 

• n: ideality factor 

• RS: series resistor 

• Ep: RMSE of 

parameter 

identification 

1875 

(exp)  

625 

(exp)  

98.98% (average) 

4800   

(simu 

+exp) 

2500  

(simu 

+exp) 

98.90% (average) 

2017 

[112] 

SNN, 

KELM 

(4-NC-4) 

Np NC 

Simulated 

Annealing (SA) 

[113] 

(optimize model 

parameters) 

 

600 

(simu)  

400 

(simu)  
• n 

• CR 

• Iph 

• fval 

• Healthy 

• 3 faults 

sc-Si, 

SM55, 

36 PV 

array 

(990Wp) 

• PS 

• Aging 

• SC module 

93.55% (Average) 

99.73% (Healthy) 

91.55% (PS) 

90.91% (Aging) 

93.64% (SC)  

 

• CR: resistor 

coefficient 

• Iph: photocurrent 

• fval: optimal 

fitness value 

 

Pre- 

process or 

extract 

features 

2018 

[114] 

SNN, 

MLP 

(4-12-4) 

Np=116 

Discrete wavelet 

transform (DWT) 

[115]  

(extract features 

from VMPP, IMPP) 

+ Principal 

component analysis 

(PCA) 

(pre-process) 

459 

(simu)  

197 

(simu)  
• 4 extracted 

principle 

components 

• Healthy 

• 3 faults 

NC, 

PV array 

(3.5kWp) 

• Module, 

inverter, 

converter fault 

(type not 

detailed) 

98.2% (average) • Compared with 

RBF NN (accu: 

93.6%) 

 

2018 

[116] 

SNN, 

MLP 

(11-18- 

14) 

Np=493 

DWT based Multi-

resolution analysis 

(MRA) [117] 

(extract features 

from converter 

noise signal) 

7000  

(simu)  

1750 

(simu)  
• 11 signal 

features 

14 fault 

locations 

NC, 

PV array 

(9617) 

(500kWp) 

 

• Cable GF 

• Cable LLF 

99.2% (Average) 

99.9% (Cable GF) 

97.3% (Cable 

LLF) 

• tanh as activation 

function for hidden 

layer and sigmoid 

for output layer 

• Trained by LM BP 

algorithm SNN, 

MLP 

(9-18-8) 

Np=341 

4500 

(simu)  

1125  

(simu)  
• 9 signal 

features 

8 fault 

locations 

NC, 

4817 PV 

array 

(250Wp) 

• AF 

• LL 

• Module GF  

97.4% (Average) 

96.5% (AF) 

97.4% (LLF)  

98.4% (Module 

GF)  

2018 

[118] 

SNN, 

MLP 

30-23-6 

Np=887 

Multistate data 

processing  

(extract features 

from inverter 

current) 

240  

(exp) 

105 

(exp)  
• Extracted 

features from 

inverter 

current 

• Healthy 

• 6 faults 

 

NC, 

626  

PV array 

(43.7kWp) 

• Inverter switch 

OC (6 locations) 

100%  

2018 

[119] 

SNN, 

PNN 

(4-NC-12 

-1) 

Gaussian kernel 

function-based 

fuzzy C-means 

(GK-FCM) [120] 

(label faulty data) 

492 

(exp)  

984 

(exp)  
• VOC (array) 

• ISC (array) 

• VMPP (array) 

• IMPP (array) 

• Healthy 

• 11 faults  

mc-Si, 

JKM245p, 

313PV 

array 

(9.6kWp) 

• 2,4 or 6 SC 

modules in 1 

string 

• 1 or 2 OC 

string 

• Aging (Rs=2, 4 

or 6 Ω) 

• 2,4 or 6 PS 

module in 1 

string  

92.5% (Average) 

84.6% (SC) 

100% (OC) 

98.0% (Aging) 

87.4% (PS) 

• Input data 

normalized by STC 

value and G, TM 

2019 

[121] 

SNN, 

MLP 

(5-12-8) 

Np=181 

Grey level co-

occurrence matrix 

(GLCM) [122]  

(extract texture 

features from IR 

images) 

NC 

(orig)  

NC 

(orig)  
• 5 texture 

features from 

module image 

subregion 

(2035 

pixels)  

• Healthy 

• 7 cases of 

temperature 

anomaly 

NC, 

PV array 

(169.9kWp) 

• Temperature 

anomaly (Hot 

spot and other 

types) 

92.8% (average) • sigmoid as 

activation function 

for output layer 

• Subregion divided 

from 1568 PV 

module IR images 

2019 

[123] 

SNN, 

PNN 

(48-48-1-1) 

Np=2451 

GLCM 

(extract features 

from microscope-

captured cell 

images 12801024 

pixels) 

132 

(orig)  

240 

(orig)  
• 48 features  • Healthy 

• Defective 

Organic PV 

cell 
• Damaged cell 

(particles, 

bubbles, and 

cracks) 

95.4% (average) • Singular value 

decomposition 

(SVD) [124] is 

adopted to ease the 

dimensional greedy 

effect 
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2019 

[125] 

SNN, 

MLP 

(40-100-50-

30-6) 

Np=7270 

GLCM 

(extract texture 

features from 

module Vis. 

images) 

5551 images  

in total 

(orig) 

• 40 texture 

and statistical 

features  

• Healthy 

• 5 faults 

mc-Si, 

PV module 

(230Wp) 

• Soiling (5 

levels) 

96.3% (average) • Compared and 

outperforms kNN 

(accu: 93.2%), RF 

(94.6%), but 

underperforms 

SVM (97.5%)  

2019 

[74] 

DNN, 

GoogLeNet 

(21 layers) 

Np=6M 
 

 

 

PCA 

(extract data from 

image sequences) 

720 

(orig)  

720 

(orig)  
• Extracted 

cell IR image 

(224224 

pixels) 

• 6 faults c-Si, 

PV cell 
• Crack 

• Hot spot 

• Scratch 

• Broken edge 

• Surface 

impurity 

• Large area 

damage 

99.7% (average) • Compared and 

outperforms VGG-

16 (accu:99.1%), 

LeNet-5 (98.9%), 

SVM (98%) and 

MLP (97.3%) 

• Pre-process 

techniques 

compared 

2019 
[126] 

DNN, 

Proposed  

CNN, 

(9 layers) 

Np=0.37M 

 

Sliding window 

scan 

(extract regions 

from cell EL image 

943923 pixels) 

NC 

(aug), 

(orig= 

499) 

 

NC  

(aug) 

(orig= 

43) 

  

• Regions 

(128128 

pixels)  

• Defect 

probability of 

regions 

NC, 

PV cell 
• Defective cell 88.4% 

(average) 
• 4 types of CNN 

structure tested 

2019 

[127] 

DNN, 

ResNet 

(50 layers) 

Denoising CNN 

(DnCNN) [128] 

(extract soiling 

features) 

3520 

(aug)  

880 

(aug)  
• Extracted 

dust layers 

from visible 

module 

images 

(244244 

pixels) 

 

• Soiling rate mc-Si, 

CSUN260-

60P,  

PV module 

(260Wp) 

• Soiling F1: 90% 

RMSE: 0.69 
• Images augmented 

by rotation and flip 

• Original image 

amount: 550 

• Compared and 

outperforms other 

depth of ResNet 

Post- 

process 

2018 

[129] 

DNN, 

VGG-16 

(21 layers) 

 

SVM 

(classify the 

features extracted 

from pretrained 

model) 

2400  

(aug) 

 

600  

(aug)  
• Visible cell 

images 

(224224 

pixels) 

• Feature 

vector of 4096 

dimension 

NC, 

PV array 
• Delamination 

• Discoloration 

• Glass breakage 

• Soiling 

• Snail tracks 

90.2% (Binary 

classification) 

78.9% 

(Delamination) 

77.3% 

(Discoloration) 

76.9% (Breakage) 

84.4% (Soiling) 

77.8% (Snail 

tracks) 

• Best results 

obtained on the 

model pre-trained 

by ImageNet 

• Images captured 

by UAV drone 

2019 
[130] 

DNN, 

Proposed  
CNN, 
9 layers, 
Np=25.7M 
 

SVM 

(classify the 

features extracted 

from pretrained 

model) 

NC 

(aug)  

NC 

(aug)  
• Visible 

module 

images 
(224224 

pixels) 

• Feature 

vector of 512 

dimension 

NC, 

PV module 
• Glass breakage 

• Delamination 

• Soiling 

• Corrosion 

• Snail trail 

• Discoloration 

98.1% (average) 

100% (healthy) 

96% (glass) 

98% 

(delamination) 

96% (soiling) 

97% (corrosion) 

98% (snail trail) 

100% (discolor) 

 

• Transfer learning 

based on [71] 

• Setting of transfer 

discussed 

• Compared with 

AlexNet (accu: 

85.9%), VGG16 

(68%) and 

outperforms 

2020 

[131] 

DNN, 

VGG-16 

(21 layers) 

Np=134.2M 

 

Low rank matrix 

recovery (LRMR) 

[132] 

(decompose output 

features for 

classification) 

1372 

(orig) 

1372 

(orig) 
• Vis.+EL cell 

images 

(224224 

pixels) 

• Healthy 

• Cell crack 

mc-Si, 

sc-Si, 

PV cell 

• Cracks 

 

F1 :46.8% • VGG pre-trained 

on ImageNet 

• Same EL dataset 

used in [72]  

• Compared and 

outperform non 

LRMR (F1: 42.6%)  

(‘NC’ in all columns represents non-communicated information; ‘N1-…Ni-…NL’ in ‘ANN type & structure’ column denotes the structure of model, 

i.e., Ni neurons in ith layer; ‘(simu) ’ and ‘(exp) ’ in ‘Amount of data’ column denotes the data obtained from simulation or experimental test, 
respectively, ‘orig’ and ‘aug’ denotes the used images or the images where the input features are extracted are original or augmented, respectively; 

‘modu’ and ‘array’ in ‘I/O setting’ column represents the electrical data measured in module level or array level, respectively; ‘ab’ in ‘PV techno 

& scale’ column denotes a parallel strings with b modules connected in series.) 

 

As it has been done for the other techniques, hybridized ANNs are analyzed in light of the questions raised in the 

introduction: 

1) Integration of hybridized ANN in PV FDD 

⚫ Integrated technology & usage: Among the studied hybridization applications, extraction and pre-processing 

of input features are the most common objectives, covering both SNN and DNN models. Using DWT for 

electrical signals, and GLCM to extract features from images are the typical schemes. These techniques serve 

to eliminate useless information and improve the quality of input, which is essential to the performance of 

one ANN model. Besides, some post-processing techniques are also applied, generally in DNNs, to classify 

high-dimension output features. In other cases, the techniques assist in mitigating the inherent limits of the 

ANN technique, like the tricky procedure of parameter optimization, the time-consuming labelling work, and 

the imperfect learning algorithm.  
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⚫ ANN model: Both SNNs (13 cases) and DNNs (6 cases) have been practiced for hybridization. Among SNNs, 

MLP is still the most popular. Among DNNs, CNNs with various structures are more considered. The favored 

model type and other aspects of the model configuration are similar to the aforementioned observations in 

the single applications of SNNs or DNNs. 

2) Detectable faults: 

When based on 1D features (i.e., before pre-processing), the typical target faults include PS, OC, SC and LLF. For 

those dealing with 2D features, defects at cell level and soiling fault are more investigated. 

3) Performance: 

Overall, the majority of applications (17 out of 19) achieve accuracy better than 90%. In some cases, the 

comparison showed that hybridization improves classification performance.  

4) Limitations and prospects: 

In some cases, the hybridization could increase the complexity of the FDD scheme. However, it is worthy to accept 

this cost if a significant amelioration is achieved. Therefore, the performance comparison is necessary to validate 

the combined techniques. However, this is not always reported. Nevertheless, globally, hybridization is promising, 

not only to improve the accuracy, but also to make possible the transformation of features from 2D to1D. Like in 

[115], 1D features extracted from 2D images are used as input. On one side, this transformation reduces the input 

features dimension, and, on the other side, allows the use of simple SNN for the diagnosis instead of DNN. This 

approach can significantly simplify the tuning and training process of the NN. 

3. Discussion 

For a better understanding of the previously described applications (73 cases), a discussion from a statistical 

perspective is presented in this section to provide an answer to each of the four questions raised in the introduction.  

3.1. Which are the PV faults detectable by ANN? 

All the common faults [8] are firstly presented in the form of ‘PV DC-side fault tree’ as in Fig. 4. It is based on 4 

structural levels, i.e., PV cell, module, array and DC side level. The faults detected by the ANN technique are then 

summarized and marked as ‘leaves’ of the ‘tree’, where the number of studies using SNN or DNN is presented 

after the fault name, and the total number is expressed by the nuance of the block edge color (darker represents 

more studies). 
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Array level faults

Shading faults (22+12)

Structure failure (6+1)

Glass 
breakage (0+1)

Back sheet 
adhesion loss (0)

SC (21+1)

OC (14+3)

Inverse (2+0)

Shunted (1+0)

PID (0)

GF module (1+0)

LL cable (1+0)

MPPT failure (1+0)

Battery failure (1+1)

0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Edge colorbar

XXX (a+b)

Example: There are totally (a+b) studies on XXX
fault,where a studies using SNN, b studies
using DNN, and the edge color corresponds to
the number (a+b).

Electrical faults (41+4)

Diode failure (6+0) LL fault (5+3)

Arc fault (1+2)

Connection faults (6+5)

DC-DC converter failure (1+0)

Conditioning unit faults 
(7+1)

Module level faults

PV system DC side faults

Cell level faults

GF cable (1+0)

Cable faults (2+0)

Number of case studies

Delamination (0+3)

Discoloration (0+3)

Cell crack (2+18)

Snail trail (0+3)

Abnormal Aging (11+2)

Gridline failure (0+6)

Hot spot (1+4)
PS (19+5)

Soiling (3+7) OC diode (1+0)

Inversed diode 
(2+0)

Shunted diode 
(2+0)

Connection resistance 
fault (2+0)

DC-AC inverter failure (4+0)

 
Fig. 4.  Statistical chart of PV faults detection using ANN techniques 

Overall, the presented ANN techniques with different configurations can detect almost all the common faults on 

the PV system DC side. However, some faults like PID (almost eliminated thanks to technological improvement) 

and back-sheet adhesion loss are uncovered. This may be due to the detection’s difficulty (limited input data, weak 

fault signature) or current little research interest in this context. From a quantitative aspect, short circuit module, 

partial shading, open circuit module and abnormal aging are the most studied ones because of their stronger 

signature and easy reproducibility in simulation or field tests.  

Regarding the applied ANN methodology, almost all the permanently visible faults (cell crack, delamination, 

discoloration) are usually detected with DNN models. The other ones, like shading, structure failure and electrical 

faults, are detected with SNN models. This difference may mainly come from the characteristics of the fault. 

Indeed, permanently visible faults generally introduce a more significant impact on PV images data rather than on 

1D data. Thus, DNN models that can conduct efficient image processing (using 2D data) are preferred while SNN 

models seem more suitable for the other faults (using 1D data).  

3.2. What are the performance? 

As we have seen previously, it is difficult to give a clear answer with regard to the various applications developed 

on different platforms. Nevertheless, on the basis of the results summarized in Tables 1, 2, 4, 5 and 6, some partial 

conclusions can be drawn:  

• Most of the proposed ANNs can achieve classification accuracy higher than 90%, while in other cases, 

the relatively less satisfying performance is supposed mainly due to the low separability of the adopted 

input features or the improper type or structure of the developed models. 

• Hybrid models generally perform better than the original ones with the average reported improvement of 

accuracy as 3.9% relying on the integrated techniques.  

• In some applications, using the same benchmark, the proposed ANN outperforms other MLTs (like DT, 

RF, SVM, etc.) with the average reported improvement of accuracy as 3.8%. However, it should be noted 

that this shows only a general trend and does not necessarily mean that the ANN always outperforms 

other MLTs. These results are valid in the cases presented and depend on how these candidate techniques 

are developed and parameterized. 



 

 

18 

 

 

3.3. How is ANN integrated in PV FDD?  

3.3.1. Source of dataset 

The input 1D data is obtained at 57.6% from simulation and 42.4% from field measures among the reported 

training, validation and test dataset. The popularity of simulation data may be owing to its good controllability of 

test conditions (e.g., independent control of G and T) and low acquisition cost. However, the approximation to 

real PV conditions is restricted. On the opposite, despite field data reflects the operational condition, its wide 

application is still limited because of weak condition controllability (weather conditions, season, etc.) and 

measurement issues (accessibility, sensors). Therefore, the selection of data sources is a trade-off among all the 

aforementioned factors. Whereas, it is still recommended to use at least the field data as the test dataset to evaluate 

model performance under real conditions. 

2D data includes PV image, generated graph or matrix. With regard to image dataset, except very few cases that 

employ generated PV faulty images, the majority of the adopted dataset is captured in the field. In recent years, 

taking benefit from the rapid development of drone technology, UAV with an embedded camera has been widely 

used for remote inspection of PV power plants. Abundant EL or IR images have been gathered. Nevertheless, the 

quantity of the original dataset is always inadequate to fulfill a fine-tuning and may consequently introduce the 

underfitting problem (i.e., a model cannot capture any trend [133]). A common solution is to perform rotation, flip, 

adding blurry, adjusting illumination or other operations to enrich the original dataset. These transformations are 

found convenient and efficient to enhance the generalization ability of the DNNs. As for the generated graph or 

matrix that are based on 1D features, the first results are promising but still require further validation of the 

necessity of the 1D-to-2D FDD scheme. 

3.3.2. Data pre-processing  

Since 1D values lie usually in different ranges, e.g. irradiations range from 0 to 1300 W/m2 while the temperature 

varies from -10 to 80 °C (in the reviewed applications), they are usually normalized before being introduced into 

the ANN. The results show a significant decrease in the iteration process, especially when the features are centered 

and standardized.  

For 2D data, the unification of image size and digital pre-processing (like graying operation, RGB separation) are 

also necessary.  

3.3.3. Type of data 

1D data is presented in Fig. 5 (a) with 4 categories (environmental, electrical, model-calculated, and compared 

data (ratio between 2 parameters)) and 2D data is presented in Fig. 5 (b).  
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Fig. 5. ANN input data for PV FDD, (a) 1D data, (b) 2D data 

For 1D data, environmental and electrical measures are the most frequent. Among single data type, VMPP and IMPP 

are the most selected ones, as they reflect the MPP changes due to various faults. G (specifically, plane-of-array 

irradiance) and TM (backplane module temperature), which are almost always measured have gained similar 

acceptance because of their impact on PV performance. VOC and ISC are also employed but to a lesser extent 

probably due to the measurement difficulty when the PV system is operating. The model-calculated and compared 
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data are up to now less used probably due to PV model accuracy and calculation complexity for parameter 

extraction. 

For 2D data, EL and visual images are preferred to IR and other data types as input features to DNN models. For 

IR technology, the cost and complexity of the equipment is still an issue, and moreover the operating point and 

the environmental conditions (outside temperature, wind velocity, …) make it difficult to interpret and process the 

images. The other 2D data types are just beginning to be used, and their application will grow with new 1D-to-2D 

transformation techniques. 

3.3.4. Applied ANN models 

All the reported model types with their cumulative number of publications are presented in Fig. 6. It is observed 

that, among the various ANN types, MLP and CNN are the most popular ones. This, to a certain degree, shows 

their efficiency and adaptability. In the meantime, other models like RBF and PNN have also been exploited for a 

limited number of applications. However, it should be noted that research interest in CNN models has grown 

rapidly since 2017, making it possible to envisage its development in the coming years. 
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Fig. 6.  Cumulative publications number of PV FDD using different ANN models (until July 2020) 

On the other hand, it is also necessary, for each model, to keep an eye on the time gap between the theoretical 

development and its first application as presented in Fig. 63.  

 
Fig. 7.  Theory-to-application time gaps of models in PV FDD (a) for SNN models, (b) for DNN models 

Regarding the SNN models in Fig. 7 (a), ample time gaps are observed for almost all the models. This is 

 
3 The MLP model discussed here refers to the MLP integrated with BP learning algorithm, which was firstly reported 
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particularly evident for RBF, PNN and MLP with more than 20 years. However, ENN is an exception with only a 

7-year time gap probably because its creator has conducted the application. This phenomenon of large theory-to-

application time gap may be due to three reasons: firstly, based on the literature [134–136], it has been observed 

that research on PV FDD started in the 1980s with conventional methods (power loss or I-V curve analysis); 

secondly, the increasing availability of data collected from PV power plant; finally the growing concern of 

operators to improve the energy efficiency of their plants. 

As for the DNN models shown in Fig. 7 (b), large time-gaps are also identified for the LeNet and DBN models. 

Nevertheless, the time-gap displays a decreasing trend for the newly developed models, especially for VGG, 

GoogLeNet and ResNet whose applications have started in 2018. This evolution may be owing to the gradual 

maturity and dissemination of image processing and pattern recognition. 

3.3.5. Parameter configuration 

For each ANN model, there are several key configurations, the number of hidden layers, the activation function, 

the loss function, the learning rate, the combination of convolutional and pooling layers (for CNN), all of which 

are troublesome to be directly determined. Therefore, comparative studies with different settings are crucial to 

finding an optimal configuration, like the reported cases in [38,47,71].  

Besides, since CNN models are commonly more complicated than SNN ones, there are some open-access models 

pre-trained with standard image datasets (like ImageNet [137]). These models could be adopted and get further 

trained by PV image dataset, which may save the training time and promote the PV FDD performance, as the 

application in [129]. However, these models, generally with complex and deep structures, may introduce 

unnecessary redundancy for the application to PV FDD. Consequently, under the circumstances with limited 

computing capability or using a large number of samples, the structure of these models should also be thoroughly 

re-examined.  

3.3.6. Summary of applications 

The three reviewed application scenarios using SNN, DNN or hybrid methods, differ in various aspects, all of 

which have been investigated and discussed before. Now, the key features of these scenarios are summarized and 

compared. The pros and cons are also presented. 

Table 7  Comparison of key features of 3 scenarios of ANN for PV FDD 
Application 

scenarios 

Common 

types 

Common input 

data  

Distribution of 

input data 

Common pre-

processing 

operations 

Common 

target  

PV faults 

Advantages Disadvantages 

Application of 

SNN models 
• MLP 

• RBF  

• PNN  

• ENN 

• ELM 

• Electrical data  

• Environmental 

data  

• 57.6% cases use 

simulation data, 

42.4% use 

experimental data 

• 92.6% electrical 

data are at string or 

array level, 7.4% are 

at module level 

 

• Normalization  

• Scaling by STC 

value or 

environmental data  

• Electrical 

faults (like SC, 

OC, LLF) 

• PS 

• Aging 

• Simple structure 

• Easy access of a large 

number of data (simulation 

type) 

 

• Weak in processing 

2D data 

Application of 

DNN models  
• CNN 

• ResNet 

• DBN 

• PV image data  

• Generated graph 

• Synthetic matrix 

• 55.6% case use 

augmented data, 

44.4% original data 

• 55.6% input images 

at cell level, 33.3% at 

module level, 11.1% 

at array level 

• Image resizing 

and segmentation 

• Data 

augmentation 

• Permanent 

visible faults 
(like cell crack, 

snail trails) 

• Efficient in image 

processing 

• Dataset for pre-training 

available on the Internet 

• Mature models available 

on the Internet for reference 

• Shared weights (for CNN 

and ResNet)  

• Require a large 

number of labeled 2-D 

data 

• High computational 

complexity 

• Prone to gradient 

vanishing 

Hybrid 

application 
• For 

parameter 

optimization 

• For pre-

processing 

• For post 

processing 

 

Depend on SNN or DNN 

• Mitigate the inherent limits 

of ANN technique 

• Provide input features with 

richer information 

• Ameliorate the FDD 

performance 

• Effort needed to 

realize efficient 

integration 

 

3.4. What are the challenges and prospects of ANN for PV FDD? 

For SNNs, DNNs, and hybrid applications, their corresponding limitations and prospects have been detailed. Here, 

some common points will be discussed as follows: 



 

 

21 

 

3.4.1. Challenges 

• Model configuration 

Generally, the model configuration is a tough and tedious task. Various aspects like model structure (layer number, 

order and size), learning algorithm, loss function, activation function, need to be determined. Regarding the 

application in PV FDD, when using certain types of PV features and targeting specific types of faults, there should 

be a commonality in the best-performing models. Under these cases, instructional strategies for the model 

configuration are expected to be given, however, this is not available yet and thus requires further exploration. 

• Public PV fault database 

In the reviewed literature, the majority of the research relies on their own-developed dataset that makes the 

comparison of different proposed models and performance nearly impossible. A public database, containing 1D 

or 2D features for common PV faults and technologies, is in desperate need. This lack is particularly real for 2D 

image data, since it is time-consuming and expensive to collect large amounts of PV images and do the 

corresponding labeling work. Up to now, in the reviewed work, some shared datasets (both 1D and 2D type) are 

presented in Table 8. However, the amount and covered fault types still require further enrichment and integration. 

Table 8  Public PV fault datasets  
Ref. Data type Amount of data Fault type Lien 

[83] EL images (PV cell, 300300 

pixels)  

2426 • Defective cell https://github.com/zaebayern/elpv-dataset 

[73] EL images (PV cell, 250250 

pixels) 

1031 • Cracks 

• Corrosion 

https://osf.io/v6pwe/ 

[85] Vis. Images (PV module, 192192 

pixels) 

45754 • Soiling https://deep-solar-eye.github.io/ 

[52] 1D data (environmental and 

electrical parameters of PV array) 

3000 sets • LLF 

• OC string 

https://github.com/benjamin2044/PV_fault_Python/t

ree/master 

 

3.4.2. Prospects 

• Other candidate models to be evaluated 

Considering PV FDD is an interdisciplinary issue between PV technology and health monitoring, it is essential 

for researchers to pay additional attention to the development of related FDD techniques. For SNNs, some classical 

models are still not fully explored, like various autoencoder [138] (sparse, denoising and contractive type), 

modular neural network [139] and many variants of recurrent neural network [140] (e.g., fully recurrent, Hopfield, 

bidirectional type). For DNNs, driven by the great research interest in pattern recognition and deep learning, 

models with new structures spring up, like EfficientNet [141], DenseNet [142], SqueezeNet [143], ShuffleNet 

[144], etc., all of which could be evaluated for PV FDD. 

• Different types of input data 

Since CNN appears as an efficient tool for image classification, it can be applied to PV images captured by other 

techniques (e.g., pulse thermography, lock-in thermography and UV fluorescence [142]). This method may permit 

the identification of more PV fault types (like PID) not covered by traditional ANN models. Besides, with feature-

extraction or transformation implemented, various novel 2D-to-1D or 1D-to-2D features could be adopted. 

• Hybrid methods 

Although ANN techniques hold some inherent limits, hybrid methods with feature-extraction approaches, 

parameter-optimization methods or MLTs are likely to mitigate the problems. In addition, there are various other 

proved-efficient data-driven methods, e.g., T-test [145], Linear Discriminant Analysis (LDA) [146], clustering 

[147], which can also be combined with ANN. Hence, hybridized ANN for PV FDD would become a promising 

research topic. 

• Real-time health monitoring 

Another merit of ANN is its rapid decision making. With a well-trained model, high-precision real-time health 

monitoring for PV arrays is made possible. Besides, based on the monitoring results, protection functions could 

be enabled, like the ANN-integrated relay operation of PV microgrid in [96,101]. 
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• Experiences from other fields  

ANN technique is commonly applied, not just in PV FDD, but also in the health monitoring of other systems, like 

for wind turbines [148], gas turbines [149], rolling bearing [150], etc. Consequently, the practice of ANN technique 

in these related fields, like the configuration of the model, pre- or post-processing methods, and hybridization, 

may provide useful experiences for the application in PV FDD. 

4. Conclusion 

In this paper, a literature overview for the application of Artificial neural networks for PV fault detection and 

diagnosis is performed. Artificial neural networks have been proved efficient in the detection and diagnosis task 

for nearly all the common PV faults, including both the electrical faults (reflected in 1-dimension features, 

commonly dealt with shallow neural networks) and permanent visible faults (reflected in 2-dimension features, 

commonly dealt with deep neural networks). The reported classification success rate is higher than 90%. Besides, 

in some cases, performance comparisons with other machine learning techniques have shown the superiority of 

the proposed model. As for the model type, Multi-layer perception neural network and Convolutional neural 

network are identified as the most commonly adopted shallow and deep neural network, respectively. They can be 

adopted as starting models for future research. 

Based on the detailed analyses of use cases, some challenges were identified. The most common ones are the 

difficulty in configuring the model, and the low availability of an open database on PV system failures. The latter 

is particularly challenging for deep neural network, as the number of faulty PV images is important for learning. 

It is therefore recommended that research groups or operators share as much as possible their databases with 1 

and 2-dimension characteristics for healthy and different fault conditions. This database cannot only improve the 

generalizability of the proposed models, but will also facilitate comparisons.  

Also, some prospects have been highlighted. On one side, with the rapid development of deep learning and PV 

technologies, more types of models and potential input features (including transformed features between 1 and 2 

dimension) deserve to be explored. On the other side, the hybridization with other techniques and the application 

in online health monitoring are worth developing. This review is expected to be useful both for first users and 

experts in the hot topic of PV plant health monitoring.  
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