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© Numerical experiments
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Motivation

@ Simulator for the multi-year electricity distribution network planning.

o Costly-to-evaluate black-box stochastic simulator (Dutrieux, 2015).

@ Primary substation
O Secondary substation
O MV consumer

3]
A MV producer @ 0 Upgraded transformer
== Upgraded MV line P MV producer number
== New MV line Y Year of implementation

@ Goal: optimize planning strategy parameters to minimize technical
and economic outputs (e.g., total costs, quality of service).
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Problem definition

@ Input: planning strategy parameters X; € X.
@ Outputs: noisy observations of latent functions f1,...,f; : X — R.

@ Noise is additive, normally distributed and homoscedastic.

Z,'71, .. '7Z"7q .

Xi ——{ Stochastic simulator Zig = fq(Xi) + €iq,
with € 4 ~ N(0,03)

Optimization problem:

x* = argmin fi(x), ..., fg(x)
xeX
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Multi-objective optimization

Goal: identify best trade-offs among f(x)
conflicting objectives.

Pareto domination: y < y’, when
Yq < Yq,¥q, with at least one strict
inequality.

Pareto set P: the set of all
non-dominated points.

1

Y6
ya
y3 :
Y5

Y2.

P={xeX: I eX f(xX)<f(x)}

Pareto front F: the image of P.
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fi(x)

Figure: Pareto front F = {y1, y2,y3} in
a bi-objective example.
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Overview

© Pareto Active Learning for Stochastic Simulators
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Optimization using Gaussian processes

==~ Function N\
Prediction Jo
Interval

®  Observations

@ Goal: select sequence of inputs to evaluate
Xp,n=1...,N.

@ At iteration n, previous observations
Zi,q...,2Znq used to model f; as a sample
of a GP model G ~» mean p, 4 and
variance a%’q (prediction of f; and an o o5 1 15z 25
uncertainty, respectively).

@ GP model used to guide the optimization. Figure: GP constructed from

observations (dots). Latent

function (dashed), with
prediction (line) and
uncertainty interval (gray).

See Frazier (2018) for a tutorial.
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PALS: Pareto Active Learning for Stochastic Simulators

/ Initial design /
)

| Generate GP models |<—

@ Modification of the PAL ‘ Modelling ‘
algorithm (Zuluaga et al., 2013) 1
to stochastic simulators. [ Classification |
o Strategy: classify each x € X }
based on a region R,(x) € RY. | Selection |

/ Evaluate new point /

) Yes no
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is
classified according to R,(x), built f2(x)
from GP prediction quantiles:

R ()

R (x)

PALS for Stochastic Simulators
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is f(x)
classified according to R,(x), built

from GP prediction quantiles:
@ R of x is not dominated by ' _
another RI"": classify x as |:f - RMax(x)
RI"(x)
fi(x)
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is
classified according to R,(x), built f2(x) RMe(x)
from GP prediction quantiles: o
@ R7® of x is not dominated by
another RI™": classify x as

R (x) -

@ R™n of x is dominated by
another R classify x as

fl(X)
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is
classified according to R,(x), built f2(x)
from GP prediction quantiles:
@ R of x is not dominated by
another RI™": classify x as

@ R™n of x is dominated by
another R classify x as

© Otherwise: x remains f(x)
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PALS: Pareto Active Learning for Stochastic Simulators

At each iteration n, each x is
classified according to R,(x), built f2(x)
from GP prediction quantiles:
Q@ R of x is not dominated by
another RI™": classify x as

: [
@ RM™" of x is dominated by [

another R classify x as

© Otherwise: x remains f(x)

Select Xp+1: .
Xps1 = argmax [|RI™ (x) — R (x)|
xe(P,ull,)
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Overview

© Numerical experiments
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Numerical experiments

@ Comparison with three approaches:
e Random.
o “Concentrated” Random Sampling (CoRS).
o ParEGO (Knowles, 2006) with Elp,.
9 test problems:
e bi-objective.
e bi-dimensional and finite input space of size 21 x 21.
e homoscedastic Gaussian white noise.

@ performance metrics:

o Volume of the symmetric difference (V) of the Pareto front.
o Classification error (M) of the Pareto set.
o Averaged over 500 runs of the algorithm.

@ Batches of 200 evaluations, and a total budget of 50,000 evaluations.
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Results

Volume of the symmetric difference (Vd) of the Pareto front (ga) Classification error (M) of the Pareto set (93)

-1
10 0.18
0.16

Random
CoRS

Random
CoRs

2
E ParEGO El | _ ParEGOEl
g5 e - - =PALS
Es 5
w o S
2g 53
=< g8
o o =
o 2 28
Es £
ER >
EES © 006
> <
>
<<
0.04
0 1 2 3 4 5 0 1 2 3 4 5
Evaluations x10% Evaluations x10*

Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, a “Concentrated” Random Sampling
approach, a scalarization ParEGO adapted with El,;,, and PALS, for problem gs.
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Table: Average metrics comparison (value in percentage), at final iteration, for a
Random approach, a “Concentrated” Random Sampling approach, a scalarization
ParEGO adapted with El,,, and PALS. The best metric values highlighted in bold
with a green background. Metrics at 10% of the best metric are highlighted with
a blue background.

Random CoRS El, PALS
g Vi M Va M Vy4 M

g 0774  7.240 6.867 0.781 11.050
g 1005 1.235 1.363

gs 1.055

g 1212 2.278
g 1.102 0.003  7.864
g 1411 0.695 PoE7m 1513
gr  0.944 0.511  4.677
gs 0.862 0732  6.332
g 1075 1.393 1.106 0.633 2614
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@ Conclusions
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Conclusions and future work

@ PALS shows interesting performances for the multi-objective
optimization of Stochastic Simulators:
o Better performance than random approach.
e Always good performance for Pareto set estimation.

@ Future work includes:

e Compare performance with other more complex algorithms.

o Study performance impact when facing non-Gaussian and/or
heteroscedastic simulators.

o Assess performance when dealing with increased input space size or
number objectives.
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The End

Thank you for your attention!
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Modeling!

At iteration n, GP models &, used to

generate predictions p,(x) and 5
prediction uncertainty a;",(x). f(x) pn(x) + \/ Bo(x)
Global uncertainty represented by a Rn(x)
region R,(x): .

Hen(x)
Ra(x) = {y ER: pa(x) — \/@< y < pn(x) + M}

fl(X)

"Vector notation is used for simplification, e.g., tta(x) = (n1(x), - - -, tnq(x))
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Modeling!

At iteration n, GP models &, used to
generate predictions p,(x) and

prediction uncertainty o2 (x). h(x) Ry#(x)

Global uncertainty represented by a
region Rp(x):

Ra(x) = {y € R : pin(x) — /BoB(x) <y < pa(x) + \/ﬁai(X)}

For each x define:

@ an optimistic outcome R™M"(x); £ (x)

@ a pessimistic outcome R"®*(x).

"Vector notation is used for simplification, e.g., tta(x) = (n1(x), - - -, tnq(x))
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Problem gy

Volume of the symmetric difference (V) of the Pareto front (g,) Classification error (M) of the Pareto set (91)
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Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, an alternative random approach based on
probability of non-domination, a scalarization ParEGO adapted with El,, and
PALS, for problem gy.
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Problem g,

Volume of the symmetric difference (V) of the Pareto front (g,) Classification error (M) of the Pareto set (92)
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Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, an alternative random approach based on
probability of non-domination, a scalarization ParEGO adapted with El,, and
PALS, for problem g».
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Problem g3

Volume of the symmetric difference (V) of the Pareto front (g,) Classification error (M) of the Pareto set (93)
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Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, an alternative random approach based on
probability of non-domination, a scalarization ParEGO adapted with El,, and
PALS, for problem gs.
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Problem g4

Volume of the symmetric difference (V) of the Pareto front (g,) Classification error (M) of the Pareto set (94)
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Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, an alternative random approach based on
probability of non-domination, a scalarization ParEGO adapted with El,, and
PALS, for problem gy.
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Problem gs

Volume of the symmetric difference (V) of the Pareto front (g;) Classification error (M) of the Pareto set (95)
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Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, an alternative random approach based on
probability of non-domination, a scalarization ParEGO adapted with El,, and
PALS, for problem gs.
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Problem gg

Volume of the symmetric difference (V) of the Pareto front (g;) Classification error (M) of the Pareto set (gs)
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Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, an alternative random approach based on
probability of non-domination, a scalarization ParEGO adapted with El,, and
PALS, for problem gg.
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Problem g7

Volume of the symmetric difference (V) of the Pareto front (g,) Classification error (M) of the Pareto set (97)
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Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, an alternative random approach based on
probability of non-domination, a scalarization ParEGO adapted with El,, and
PALS, for problem g7.
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Problem gg

Volume of the symmetric difference (V ,) of the Pareto front (g,)

Classification error (M) of the Pareto set (93)
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Figure: Average metrics volume of symmetric difference (left) and classification

error (right), for a Random approach, an alternativ

e random approach based on

probability of non-domination, a scalarization ParEGO adapted with El,, and

PALS, for problem gg.
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Problem gq

Volume of the symmetric difference (V) of the Pareto front (g,) Classification error (M) of the Pareto set (99)
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Figure: Average metrics volume of symmetric difference (left) and classification
error (right), for a Random approach, an alternative random approach based on
probability of non-domination, a scalarization ParEGO adapted with El,, and
PALS, for problem gy.
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Table: Average metrics comparison (value in percentage), at final iteration, for a
Random approach, a “Concentrated” Random Sampling approach, a scalarization
ParEGO adapted with El,;,, and PALS. The best metric values highlighted in bold
with a green background. Metrics at 5% of the best metric are highlighted with a
blue background.

Random CoRS Elm PALS

g Vd M Vd M Vd M Vd M
g 0774  7.240 0.630" 6.867 0.781 11.050  [JNOWG3IN 5.604
g 1.005 1.235 0.660 [0.983 0.628 1363 0.955  1.050
gs 1.055 3.580 1.017 13826 | 0.710 3512 0.913 [3.255
g 1212 2121 1.045° 2113 11073 2278 1.132 | 1.934
gs 1102 3.858 0.662 = 3332 0.003 7.864  [JNOW694N 3.254
g 1411  0.695 0.443  0.433 0.471 1513 0.469 | 0.387
g 0.944 [2¥6250 0.463 | 2.531 0511  4.677 0.398

gs 0.862  4.392 0.745  4.182 0.732  6.332 0.620  3.809
g 1075 1.393 0.680  1.106 0.633 2614 0.562  0.957
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