
HAL Id: hal-03096722
https://centralesupelec.hal.science/hal-03096722v1

Submitted on 24 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

On the quantification of discretization uncertainty:
comparison of two paradigms

Julien Bect, Souleymane Zio, Guillaume Perrin, Claire Cannamela, Emmanuel
Vazquez

To cite this version:
Julien Bect, Souleymane Zio, Guillaume Perrin, Claire Cannamela, Emmanuel Vazquez. On the
quantification of discretization uncertainty: comparison of two paradigms. 14th World Congress in
Computational Mechanics and ECCOMAS Congress 2020 (WCCM-ECCOMAS), Jan 2021, Virtual
conference, originally scheduled in Paris, France. �10.23967/wccm-eccomas.2020.260�. �hal-03096722�

https://centralesupelec.hal.science/hal-03096722v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


14th World Congress on Computational Mechanics (WCCM)
ECCOMAS Congress 2020)

Virtual Congress: 11-–15 January 2021
F. Chinesta, R. Abgrall, O. Allix and M. Kaliske (Eds)

ON THE QUANTIFICATION OF DISCRETIZATION
UNCERTAINTY: COMPARISON OF TWO PARADIGMS

JULIEN BECT1, SOULEYMANE ZIO1, GUILLAUME PERRIN2, CLAIRE
CANNAMELA2 AND EMMANUEL VAZQUEZ1
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Abstract. The use of simulation has spread to all areas of engineering and science, and the
use of numerical models based on partial differential equations has thus multiplied. The resolu-
tion of these models is generally based on the discretization of the space in which the solutions
to the equations under consideration are sought. The finite differences method or the finite
elements method are two examples of such a discretization. This discretization simplifies the
solving but implies a form of uncertainty on the value of any quantity of interest. To quan-
tify this discretization uncertainty, the grid convergence index (GCI), based on the Richardson
extrapolation technique, is now standard in the Verification and Validation (V&V) literature.
But alternative approaches were also proposed in the statistical literature, such as Bayesian ap-
proaches with Gaussian process models. The objective of this work is to compare on a standard
test case from the literature (Timoshenko’s beam) the well-established GCI-based approach to
the—younger—Bayesian approach for the quantification of discretization uncertainty.

1 INTRODUCTION

Numerical models based on partial differential equations (PDE), or integro-differential equa-
tions, are ubiquitous in engineering and science, making it possible to understand or design
systems for which physical experiments would be expensive—sometimes impossible—to carry
out. Such models usually construct an approximate solution of the underlying continuous equa-
tions, using discretization methods such as finite differences or the finite elements method. The
resulting discretization error introduces a form of uncertainty on the exact but unknown value
of any quantity of interest (QoI), which affects the predictions of the numerical model alongside
other sources of uncertainty such as parametric uncertainty or model inadequacy (see, e.g., the
typology proposed by [6]). The present article deals with the quantification of this discretization
uncertainty, which is an instance of the more general concept of numerical uncertainty (see, e.g.,
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Figure 1: Timoshenko’s beam. The isotropic rectangular beam is fixed at its left end, and a vertical
pressure field is applied at the other end (see Section 4.1 for details). Top: discretization mesh with
L = 48m, D = 6m and h = 1m. Bottom: displacement field for ν = 0.1 and P = 800.

chapters 7 and 8 of [7] and references therein).

As an example, consider the “Timoshenko beam” problem (see Figure 1), and assume that the
QoI is the vertical displacement of the beam, measured at a given location. The equations
of linear elasticity describing this problem are discretized in space using triangular mesh, the
finesse of which is controlled by parameter h . For a given value of the physical parameters of the
problem (beam dimensions, load, elasticity modulus, etc.), one run of the PDE solver returns an
approximate value f(h) of the QoI, where h denotes the particular value of the mesh parameter
used for this run. For convergent discretization schemes, the value f0 , f(0) corresponds to the
value of the QoI for the exact solution of the equations, which will never be perfectly known;
it is usually possible, however, to run the PDE solver for several values h1 > h2 > . . . > hn
of the mesh parameter, in order to extrapolate f0 from f(h1), f(h2), . . . , f(hn). The problem
addressed in this article is the quantification of the uncertainty on f0 given the results of such
a grid refinement study.

A first approach to this problem, now standard in the V&V (Verification and Validation) liter-
ature [7], uses the grid convergence index (GCI) originally proposed by Roache [11] in the field
of computational fluid dynamics (CFD). It is based on a simple but clever reinterpretation of
the Richardson extrapolation technique, which has a long history in numerical analysis, going
back to the original work of Richardson [9, 10]. The key underlying assumption is that the
discretization error behaves as

f(h)− f0 = Ahp + o(hp), (1)

where A and p are two parameters that are usually considered unknown (although a theoretical
value of p, known as the “formal order” of convergence, is available in some situations). Roache
proposed a method that uses (1), not to produce an extrapolated value f̂0 as is usually done
in numerical analysis, but to construct an “error band [. . . ] in which the reader/user can have
some practical level of confidence” [11, p. 407]. The word “confidence”, however, must be taken
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here—and later in this article when referring to the GCI approach—in its casual, non-statistical
acceptation, and not as an indication of a “well-founded probability statement” [11, p. 407
again].

Another approach was more recently introduced in the statistical literature [19], in the context
of a general trend of research on the design and analysis of computer experiments using Gaussian
process (GP) models, initiated at the end of the 80’s by Sacks and co-authors [5, 14, 15, 21],
and first applied to the analysis of computer experiments with multiple levels of fidelity—also
known as “multi-fidelity” computer experiments—by Kennedy and O’Hagan [6]. This approach
relies on the Bayesian machinery: prior knowledge on the function f : h 7→ f(h) is encoded
by a probability distribution—a GP model for the sake of tractability—, which gives birth,
when combined with simulation results, to a posterior distribution that quantifies the resulting
uncertainty on f . In particular, this posterior distribution can be used to make “well-founded
probability statements” (in a Bayesian sense) on the unknown QoI f0.

The objective of this article is to present and compare these two paradigms for the quantification
of discretization uncertainty, which have been developed in different scientific communities, and
to assess the potential of the Bayesian approach to provide a replacement for the well-established
GCI-based approach, with better probabilistic foundations. The article is organized as follows.
Section 2 provides a short introduction to both paradigms. Section 3 provides theoretical results
about several classes of covariance functions that can be considered for the Bayesian approach.
Section 4 presents the result of our numerical results on a standard test case from the literature—
namely, Timoshenko’s beam. Finally, Section 5 provides our conclusions and a discussion of
possible directions for future work.

2 DISCRETIZATION UNCERTAINTY: TWO PARADIGMS

This section summarizes the two main paradigms for the quantification of discretization uncer-
tainty. Other sources of numerical uncertainty (related, e.g., to the use of iterative schemes
to solve nonlinear equations) are assumed negligible and will not be discussed in this article.
In both cases, the numerical model under consideration will be assumed to be deterministic.
(The second approach can also deal with stochastic simulators; see, e.g., the work of Stroh and
co-authors [17, 18].)

2.1 Numerical analysis approach

In the scientific computing literature, the most commonly used method for the quantification
of discretization uncertainty is the GCI (Grid Convergence Index) method, proposed by Roache
[11–13] and reviewed, e.g., in Chapter 8 of Roy and Oberkampf’s book [7]. It is based on
a re-interpretation of Richardson’s extrapolation procedure [9, 10], a well-established idea in
numerical analysis. More precisely, assume that the QoI satisfies Equation (1) for some A ∈ R
and p > 0. The values f0, A and p which appear in Equation (1) can be estimated by evaluating f
at the different mesh sizes h1 < h2 < h3 (often called fine, medium and coarse) and then solving
the system of nonlinear equations obtained by neglecting higher order terms:

f(hk) = f0 +Ahpk, 1 ≤ k ≤ 3. (2)
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The solution can be written explicitly if the mesh sizes satisfy h2/h1 = h3/h2 = r for some r > 1:

p̂ = ln

(
f(h3)− f(h2)

f(h2)− f(h1)

)
/ ln(r),

Â =
f(h2)− f(h1)

hp̂1
(
rp̂ − 1

) ,

f̂0 = f(h1) +
f(h1)− f(h2)

rp̂ − 1
,

yielding the approximation
f(h) ≈ f̂(h) = f̂0 + Â hp̂. (3)

Until now what we have described is nothing more than Richardson’s extrapolation method.
The GCI method takes the idea one step further, by considering a confidence interval centered
around the value of highest fidelity (a.k.a. fine grid solution):

CIGCI = [f(h1)− U ; f(h1) + U ] (4)

for some U > 0. Assuming that Equation (3) actually provides an exact representation of f—in
other words, that there are no higher-order terms—, it is then easy to see that the exact solution
belongs to the interval if, and only if,

U = UGCI = Fs

∣∣∣εGCI

∣∣∣ for some Fs ≥ 1, (5)

where εGCI denotes the error made by using the fine grid solution f(h1) when (3) is exact:

εGCI =
|f(h1)− f(h2)|

rp̂ − 1
. (6)

The constant Fs in Equation (5) is called the “safety factor”. Roache [11] recommends the use
of Fs = 3 in general, except when the value of p is known beforehand from numerical analysis
(in which case it is called the “formal order of convergence”) and it has been checked carefully
that the solutions have been computed in the “asymptotic range” where the approximation (3)
(with p̂ = p known) is accurate; in which case the value Fs = 1.25 is recommended.

Figure 2 illustrates the GCI method with an example taken from the Timoshenko beam problem
(see Section 4.1 for a full description). Observe in particular the interval is indeed centered
around the fine grid solution (and not around the extrapolated solution): it is important to
keep in mind that the GCI approach uses Richardson’s extrapolation technique to define a
confidence interval, but not to actually extrapolate to a more accurate solution.

2.2 Probabilistic (Bayesian) approach

In 2014, Tuo and co-authors [19] introduced an approach to deal with1 discretization uncertainty
using a concept of Bayesian multifidelity [6, 8]. Under this approach, the QoI f0 is assumed to be

1To be precise, [19] considers a QoI that depends on a vector x ranging in a set X corresponding to the input
space of a numerical simulator. For a given x ∈ X, the objective is to infer f(x, 0) given simulation results
f(x1, h1), . . . , f(xn, hn). Here, we focus on a more specific problem, that is, grid refinement studies, where x is
fixed and h varies.
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Figure 2: Illustration of the GCI method on the Timoshenko beam problem, with Fs = 3. The QoI is
the vertical displacement at x = 10m. Three grid sizes are used: h1 = 1/20, h2 = 1/10, and h3 = 1/5.

a sample value of a random variable ξ0, which models uncertainty about the unknown value f0.
The prior distribution of this random variable—i.e., its distribution before any actual evaluation
of the numerical model is made—encodes prior beliefs about the plausible values of f0.

In the domain of design and analysis of computer experiments, it is customary to use Gaus-
sian prior distributions for the outputs of (deterministic) numerical simulators, since Gaussian
distributions are conjugate priors, which conveniently lead to Gaussian posterior distributions.
Following [19], we model the QoI f(h) at mesh size h > 0 using a random process ξ, such that,

∀h ∈ R+, ξ(h) = ξ0 + ε(h), (7)

where ξ0 ∼ N (m0, σ
2
0) for some hyper-parameters m0 ∈ R and σ2 > 0, and ε denotes a zero-

mean GP, independent of ξ0, which is assumed to converge to zero in the mean-square sense
when h goes to zero:

var (ε(h)) −−−→
h→0

0. (8)

The GP ε corresponds to the error of discretization—in other words, ε models the loss of
fidelity as h increases. The distribution of ε will be denoted by GP(0, kε), where kε stands
for the covariance function of ε, which is such that limh,h′→0 kε(h, h

′) = 0, due to (8). Note
that, conditional on ξ0, ξ is a non-stationary GP with mean function ξ01R+ and covariance
function kε.

In practice, it is convenient to assume an improper uniform distribution UR for ξ0, which may
be thought as taking the limit σ20 → ∞ (for any fixed m0 ∈ R). In this case, the posterior
distribution of ξ is given by the equations of ordinary kriging, which are recalled in the following.

Proposition 1 (Ordinary kriging). Let X denote a set and k a covariance function on X. Let
ξ denote an (improper) GP on X, such that ξ | m ∼ GP (m, k) and m ∼ UR. Let n ≥ 1 and
h1, . . . , hn ∈ X. Then, for all h ∈ X,

ξ(h) | ξ(h1), . . . , ξ(hn) ∼ N
(
ξ̂n(h), s2n(h)

)
,

with
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ξ̂n(h) = m̂n + kn(h)TK−1n (ξ
n
− m̂n1n) , (9)

s2n(h) = k(h, h) − kn(h)TK−1n kn(h) +
(1− kn(h)TK−1n 1n)2

1TnK
−1
n 1n

, (10)

where ξ
n

= (ξ(h1), . . . , ξ(hn))T is the vector of observations, kn(h) the correlation vector between

ξ(h) and ξ
n

, Kn the covariance matrix of ξ
n

, 1n = (1, . . . , 1)T, and m̂n = 1TnK
−1
n ξ

n
/1TnK

−1
n 1n

the weighted least squares estimate of m.

Proposition 1 provides us with a method to build confidence interval about f0 from simulations
at mesh sizes h1, . . . , hn. The procedure to compute confidence (the term credibility would be
preferred under a Bayesian terminology) intervals consists of the following steps:

1. Given simulation results f(h1), . . . , f(hn), and the choice of a parameterized covariance
function k, which will be discussed in Section 3, estimate the parameters of k using a
maximum likelihood approach (see Section 4).2

2. Using the covariance function k estimated at the previous step and the corresponding GP
model ξ for f , compute the Gaussian posterior distribution of the QoI ξ0 = ξ(0). This
gives a posterior mean value ξ̂n(0), which corresponds to m̂n since k goes to zero at the
origin, and a posterior variance s2n(0). (Of course, the user can in fact obtain the posterior
mean and the posterior variance at any h.)

3. Using ξ̂n(0) and s2n(0), derive a credibility interval at level α ∈ (0, 1) under the form

CIMF =

[
ξ̂n(0) + sn(0)Φ−1

(1− α
2

)
; ξ̂n(0) + sn(0)Φ−1

(1 + α

2

)]
,

where Φ−1 stands for the quantile function of the normal distribution.

The procedure is illustrated on Figure 3. Observe that, in contrast with the GCI approach,
the confidence (or credibility) intervals produced by the Bayesian approach are not, in general,
centered around the highest-fidelity value. They are centered instead around the extrapolated
value, that is, the posterior mean at h = 0. In the special case of the Brownian-like covariance
function of [19] (see below), however, the extrapolated value coincides with the observation of
highest fidelity.

3 COVARIANCE FUNCTIONS

In this section, we tackle from a theoretical point of view the question of choosing a suitable
covariance function for the GP model in the Bayesian approach of Section 2.2, when prior
evidence indicates that the unknown function f obeys (1) as in the GCI approach. More precisely,
assuming that ε is a zero-mean GP with continuous sample paths3 on [0,+∞), we will provide

2The proposed procedure does not take into account the uncertainty resulting from the estimation of the
parameters of the covariance. This could be investigated in future work.

3Let us recall a classical sufficient condition for the sample path continuity of a zero-mean GP on X ⊂ Rd

[see, e.g., 1, Theorem 3.4.1]: if there exist C > 0 and η > 0 such that k(x, x) + k(y, y)− 2k(x, y) ≤ C
|log‖x−y‖|1+η

for all x, y ∈ X, then there exists a version of ξ with continuous sample paths.

6



Julien Bect, Souleymane Zio, Guillaume Perrin, Claire Cannamela and Emmanuel Vazquez

0 0.5 1 1.5 2

h

-0.07

-0.065

-0.06

-0.055
Exact value

Observations

Posterior mean

95%/99%/99.9% CIs

0 0.1 0.2 0.3

h

-0.0684

-0.068

-0.0676

-0.0672

Q
o

I

Figure 3: Illustration of the Bayesian approach. Left: global view. Right: zoom at h = 0. Four
observations, at h = 2, 1, 0.5, 0.25. GP model: TWY2 covariance function (see Section 3) with σ = 5 10−3,
L = 4 and a Matérn-1/2 (exponential) stationary covariance function with range parameter ρ = 200.

conditions on the covariance function k under which the property

(R) : ∃A 6= 0, ∃p > 0, ε(h) = Ahp + o(hp),

holds almost surely (where A and p are allowed to depend on the particular sample path that
is considered). Proofs are omitted for the sake of brevity, and will be provided in a forthcoming
publication. Our first result deals with the “Brownian-like” model that is recommended in [19],
and shows that this model is not, in fact, a suitable prior for this type of problem.

Proposition 2. Assume that k is of the form

k(h, h′) = σ2 min(h, h′)L, (TWY1)

with σ2 and L some positive parameters. Then, almost surely, (R) does not hold.

Our second result deals with the second model that is considered—but not advocated—in [19].

Proposition 3. Assume that k is of the form

k(h, h′) = σ2 (hh′)L/2 c(h− h′), (TWY2)

where σ2 and L are positive parameters, and c is the stationary correlation function of a GP
with continuous sample paths. Then (R) holds almost surely with p = L

2 .

This model is thus suitable for the problem under consideration, for any value of p. Note that, for
a given value of p, significant modeling flexibility remains, through the choice of the stationary
correlation c. For instance, the squared exponential (a.k.a. Gaussian) correlation can be used as
in [19], but rougher correlation functions, such as the Matérn family of correlation functions [16],
can be considered as well.

Our last result deals with covariance functions of the form

k(h, h′) = σ2
[
1 + c(h− h′)− c(h)− c(h′)

]
, (11)

7



Julien Bect, Souleymane Zio, Guillaume Perrin, Claire Cannamela and Emmanuel Vazquez

where c is a stationary correlation function. This is the covariance function of ξ̃ − ξ̃(0), where
ξ̃ is a stationary GP with covariance function kstat(h, h

′) = σ2 c(h− h′).
Proposition 4. Assume that k is of the form (11), where σ2 is a positive parameter and c is
the stationary correlation function of a GP with continuous sample paths.

i) If property (R) holds almost surely, then p ≤ 1 almost surely.

ii) If c is the covariance function of a GP with differentiable sample paths, then there exists a
version of ε such that property (R) holds almost surely with p = 1.

Such covariance functions are thus, in principle, only suitable for p ≤ 1. (We even conjecture
that 4.i actually holds with “p = 1” instead of “p ≤ 1”).

4 NUMERICAL EXPERIMENTS

4.1 Test case

We consider the quasi-static deformation of an isotropic rectangular beam. Ω = [0, L] ×
[−D/2, D/2] is the domain characterizing the initial position of the beam, Γleft and Γright are
the left and right sides of the beam, and Γother is the union of the two other sides of the beam.
The beam is supposed to be fixed at one end, and a specific vertical pressure field, denoted by
p, is applied at the other end. Under linear elasticity, and neglecting the gravity forces and the
atmospheric pressure, it can be shown [20] that the displacement field in each point of the beam,
written u = (u1, u2), can be modeled by the solution of the following system of equations:

∇ ·σ(u) = 0

u = 0

σ(u) · e2 = 0

σ(u) · e1 = (0,−p)

in Ω,

on Γleft,

on Γother,

on Γright,

(12)

where σ(u) = λTrace(ε(u))I + 2µε(u), ε(u) = 1
2

(
∇u + ∇u>

)
, and λ, µ are two parameters

characterizing the material properties of the beam. If the pressure field p applied at the free end
of the beam (x1 = L) is given by p = P

2I

(
D2

4 − x
2
2

)
with I = 1

12 D
3 the moment of inertia of the

beam, there exists an explicit solution for u:

u1(x1, x2) =
P x2

6E∗ I

[
(6L− 3x1)x1 + (2 + ν∗)x22 −

3D2

2
(1 + ν∗)

]
, (13)

u2(x1, x2) =
P

6E∗ I

[
3 ν∗ x22(L− x1) + (4 + 5ν∗)

D2x1
4

+ (3L− x1)x21
]
, (14)

with λ = Eν
(1+ν)(1−2ν) , µ = E

2(1+ν) , E
∗ = E

1−ν and ν∗ = ν
1−ν . In the numerical experiments, the

values of E, L and P will be fixed to 3 × 107 N/m2, 48m and 1000N respectively, whereas the
values of D and ν will vary. Finally, we will consider as QoIs the vertical displacement at four
different positions:

fj = u2
(
xpj , 0

)
, 1 ≤ j ≤ 4,

with xp1 = 10m, xp2 = 20m, xp3 = 30m and xp4 = 48m.

8
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Figure 4: Timoshenko Beam

Remark 1. Augarde and Deeks [3] discuss alternative formulations of the beam problem with
more realistic boundary conditions (but no analytical solutions).

4.2 Experimental setup

We consider six possible values for the height: D ∈ {2m, 4m, . . . , 12m} and nine values for the
Poisson ratio: ν ∈ {0, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45}, thereby creating 54 instances
of the Timoshenko beam problem. The PDE is solved in FEniCS [2], using a finite element
method with a regular triangular mesh (see Figure 1).

Two methods for constructing confidence intervals about the exact value of QoIs are compared:
the GCI approach (see Section 2.1) with Fs = 3 on the one hand, and the Bayesian approach
(see Section 2.2) with α = 99.9% on the other hand. These large values of Fs and α have been
chosen in order to construct conservative intervals, which are thus expected to contain the true
value in most (if not all) instances. We use a 3-point DoE with r = 2 for the GCI method:
hGCI
j = 2j−3 · hGCI

3 , 1 ≤ j ≤ 3, with hGCI
3 = L

216 = 2
9m, and a 16-point DoE for the GP method:

hGP
j = hGP

n /(n + 1 − j), 1 ≤ j ≤ n, with n = 16 and hGP
16 = L

24 = 2m. These DoEs have been
chosen in order to have similar computation times for both methods.

For the Bayesian approach, three classes of covariance functions are considered: the two classes of
covariance functions proposed by [19] and described in Propositions 2–3, denoted as TWY1 and
TWY2 respectively (for “Tuo, Wu and Yu”), and the one described in Proposition 4, denoted
by STZ (for “STationary minus the value at Zero”). For the TWY1 and TWY2 classes, the
parameter L is either set to L = 1 or L = 2, or estimated along with the others by restricted
maximum likelihood. For the TWY2 and STZ classes, a stationary correlation function must be
specified: we consider as possible choices the Matérn covariance function with regularity ν = 1

2
(a.k.a. exponential covariance function), ν = 3

2 or ν = 5
2 , the Matérn covariance function with

estimated regularity, and the Gaussian (a.k.a. squared exponential) covariance function. All in
all, this gives us a total of 23 covariance models to be compared (3 for the TWY1 class, 15 for
the TWY2 class and 5 for the STZ class). GP modeling computations are carried out using the
STK toolbox [4].

4.3 Results

Figure 5 presents the average performance of all the 23+1=24 methods on the 54 instances of
the problem. Two performance metrics are considered: the coverage of the interval, which is
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Figure 5: Empirical coverage and average interval half-width for the 23+1=24 methods. Red disks:
GCI-based intervals. Pink stars: TWY1. Green diamonds: TWY2. Blue disks: STZ.

the proportion of instance where the interval contains the true value, and the average interval
half-width (IWH), denoted by ∆. As expected, the GCI interval is conservative—its empirical
coverage is actually equal to 100% in this experiment, for all four QoIs. The results are much
more contrasted for the Bayesian approach, however: depending on the covariance function, the
interval is either overconfident (small but with a low coverage), or over-conservative (vary large
interval), or—and this is the interesting case—simultaneously smaller than the GCI interval and
with a good coverage.

A closer look at the results allows to identify some promising classes of covariance functions for
the Bayesian approach. Table 1 provides a more detailed view of the performances of the 23
covariance models, focusing on the most promising ones—defined as those which obtained both
a reasonably high coverage (80% or more) and a reasonably low average IWH (∆ ≤ 3∆GCI). A
first, striking observation is that, in this study, only one class of covariance models manages to
deliver intervals that are simultaneously smaller than the GCI interval and with a good coverage:
the TWY2 class, and more precisely the TWY2 class with a weakly-regular stationary correlation
function (Matérn with ν = 1

2 or ν = 3
2).

Concerning the decay parameter L, the best performances are obtained when it is fixed a priori
to L = 4, or estimated. This is consistent with Proposition 3, since it corresponds to a quadratic
convergence (p = L

2 = 2), which is the actual convergence rate in this problem. Note that, with
the Matérn-3/2 covariance function, the results when L is estimated are not as good as when
it is fixed to the true value, which is not surprising per se, but suggests that there might be
room for improvement in the parameter selection procedure. The fact that covariance functions
from the TWY1 and STZ classes do not lead to satisfactory intervals is also consistent with
the theoretical results of Section 3. Indeed, from a sample path point of view, neither of these
classes provides a suitable prior for a quadratic convergence at h = 0 (see Propositions 2 and 4,
respectively).
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covariance QoI #1 QoI #2 QoI #3 QoI #4

TWY2 (M1/2, L = L̂) 1.000, 0.716 1.000, 0.287 1.000, 0.239 1.000, 0.228
TWY2 (M1/2, L = 4) 1.000, 0.619 1.000, 0.289 1.000, 0.243 1.000, 0.232

TWY2 (M3/2, L = L̂) 0.963, 2.931 0.963, 0.980 0.944, 0.008
TWY2 (M3/2, L = 4) 0.981, 1.989 0.963, 0.739 0.963, 0.284 0.981, 0.008
TWY2 (M3/2, L = 2) 1.000, 1.543 1.000, 0.637
STZ (M5/2) 0.963, 0.614
STZ (Mν̂) 0.889, 2.414
All the other cases

Table 1: Performance metrics for the GP-based variants. For each covariance function and each QoI:
the empirical coverage is given first, and then (in blue) the ratio ∆/∆GCI of the IHW of the GP-based
method by the IHW of the GCI-based method. Mν denotes the Matérn covariance with regularity ν.
The sad face indicates that either the coverage is below 80% or ∆ > 3∆GCI.

5 CONCLUSIONS

The Bayesian (GP-based) approach to the quantification of discretization uncertainty emerges
from this study as a promising alternative to the GCI approach, with the potential to provide
“well-founded probability statements” and, ultimately, better confidence intervals (i.e., shorter
intervals that still have a satisfactory coverage).

At the present time, however, the Bayesian approach lacks the maturity and robustness of the
GCI approach: which covariance model to use, and how to robustly select the hyper-parameters
(e.g, the decay parameter L in the TWY2 model), are important questions that deserve further
attention. In a different direction, the construction of (possibly sequential) DoEs, both for grid-
refinement studies as considered in this article, and for the more general case of parametric
studies, is also an interesting direction for future work.
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