ECCOMAS Congress 2020 & 14th WCCM Virtual congress, 11–15 January, 2020

On the quantification of discretization uncertainty: comparison of two paradigms

> Julien Bect^{1,*}, Souleymane Zio¹, Guillaume Perrin², Claire Cannamela² and Emmanuel Vazquez¹

> ¹ Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France.

² Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CEA/DAM/DIF, 91297, Arpajon, France.

* Corresponding/presenting author. E-mail: julien.bect@centralesupelec.fr

This work is licensed under a Creative Commons BY-NC-ND 4.0 license.

©()\$=

https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Introduction: discretization uncertainty

- 2 The GCI (Grid Convergence Index) approach
- The Gaussian process approach
 - 4 Numerical results
- **5** Conclusions and perspectives

Introduction: discretization uncertainty

2 The GCI (Grid Convergence Index) approach

3 The Gaussian process approach

4 Numerical results

5 Conclusions and perspectives

Computer models, discretization & UQ

- Consider a PDE-based computer model
 - mesh size h > 0
 - quantity of interest (Qol) z = f(h)
 - h and z assumed scalar for simplicity
- Ideally, we would like to know f(0) (assuming a convergent numerical scheme)

1/17

Computer models, discretization & UQ

- Consider a PDE-based computer model
 - mesh size h > 0
 - quantity of interest (Qol) z = f(h)
 - h and z assumed scalar for simplicity
- Ideally, we would like to know f(0) (assuming a convergent numerical scheme)
- \bullet Since f(0) cannot be computed, we have:

Problem

What is our **uncertainty** about f(0) given a set of computation results $f(h_1), \ldots, f(h_n)$?

Example: lid-driven cavity problem

A classical CFD test case: incompressible fluid in a rectangular cavity $(L \times H)$ w/ horizontal velocity $u_x = 1$ imposed at the top (lid).

Example: lid-driven cavity problem

A classical CFD test case: incompressible fluid in a rectangular cavity $(L \times H)$ w/ horizontal velocity $u_x = 1$ imposed at the top (lid).

Regular triangular grid with mesh size h > 0. Solved w/ Fenics (Alnæs et al., 2015).

Example: lid-driven cavity problem

A classical CFD test case: incompressible fluid in a rectangular cavity $(L \times H)$ w/ horizontal velocity $u_x = 1$ imposed at the top (lid).

Regular triangular grid with mesh size h > 0. Solved w/ Fenics (Alnæs et al., 2015).

Qol: velocity (u_x, u_y) at the center & minimum ψ of the stream function.

Another classical case: quasistatic deformation of a rectangular cantilever beam w/ prescribed pressure field at the free end.

Another classical case: quasistatic deformation of a rectangular cantilever beam \$w/\$ prescribed pressure field at the free end.

Again: regular triangular grid with mesh size h > 0. Solved w/ Fenics.

Another classical case: quasistatic deformation of a rectangular cantilever beam $$w/$\ensuremath{\,prescribed}$$ pressure field at the free end.

Again: regular triangular grid with mesh size h > 0. Solved w/ Fenics.

Qol: vertical displacement at $x_1 = 10$, $x_2 = 20$, $x_3 = 30$ and $x_4 = L = 48$.

Another classical case: quasistatic deformation of a rectangular cantilever beam \$w/\$ prescribed pressure field at the free end.

Again: regular triangular grid with mesh size h > 0. Solved w/ Fenics. Qol: vertical displacement at $x_1 = 10$, $x_2 = 20$, $x_3 = 30$ and $x_4 = L = 48$. Remark: analytical solution available for some particular boundary conditions

Introduction: discretization uncertainty

- 2 The GCI (Grid Convergence Index) approach
- The Gaussian process approach
 - 4 Numerical results
- **5** Conclusions and perspectives

2 The GCI (Grid Convergence Index) approach

3) The Gaussian process approach

4 Numerical results

5 Conclusions and perspectives

From Richardon's extrapolation to the GCI

rightarrow Assume that the QoI satisfies, for some $f_0, A \in \mathbb{R}$ and p > 0,

 $f(h) = f_0 + Ah^p + o(h^p) \qquad \text{when } h \to 0.$

 $^{1}\mathrm{lf}\ p$ is known ("formal order of convergence"), a pair of solutions is enough in principle

 ${\hfill}$ Assume that the QoI satisfies, for some $f_0,A\in{\ensuremath{\mathbb R}}$ and p>0,

$$f(h) = f_0 + Ah^p + o(h^p) \qquad \text{when } h \to 0.$$

$$f(h_k) = f_0 + Ah_k^p, \qquad 1 \le k \le 3,$$

for f_0 , A and p.

¹If p is known ("formal order of convergence"), a pair of solutions is enough in principle

 ${\ensuremath{\textcircled{}}}$ Assume that the QoI satisfies, for some $f_0,A\in\mathbb{R}$ and p>0,

$$f(h) = f_0 + Ah^p + o(h^p) \qquad \text{when } h \to 0.$$

 \square Given a triplet¹ of solutions at mesh sizes $h_1 < h_2 < h_3$, solve

$$f(h_k) = f_0 + Ah_k^p, \qquad 1 \le k \le 3,$$

for f_0 , A and p. Denoting by \hat{f}_0 , \hat{A} and \hat{p} the solution:

$$f(h) \approx \hat{f}(h) = \hat{f}_0 + \hat{A} h^{\hat{p}}.$$

 \mathbb{R} Richardson extrapolation (Richardson and Gaunt, 1927): $f(0)pprox \hat{f}_0.$

¹If p is known ("formal order of convergence"), a pair of solutions is enough in principle

From Richardon's extrapolation to the GCI (cont'd)

The (fine grid) GCI "uncertainty band" (Roache, 1994, 1997, 1998) is:

$$UB_{GCI} = [f(h_1) - \Delta; f(h_1) + \Delta]$$

From Richardon's extrapolation to the GCI (cont'd)

re (fine grid) GCI "uncertainty band" (Roache, 1994, 1997, 1998) is:

$$UB_{\mathsf{GCI}} = [f(h_1) - \Delta; f(h_1) + \Delta]$$

where Δ is derived from Richardson's extrapolated value:

$$\Delta = \mathbf{F_s} \cdot \left| \hat{f}_0 - f(h_1) \right|$$

with $F_{\rm s} \ge 1$ a safety factor.

5/17

☞ The (fine grid) GCI "uncertainty band" (Roache, 1994, 1997, 1998) is:

$$UB_{\mathsf{GCI}} = [f(h_1) - \Delta; f(h_1) + \Delta]$$

where Δ is derived from Richardson's extrapolated value:

$$\Delta = F_{\rm s} \cdot \left| \hat{f}_0 - f(h_1) \right|$$

with $F_{\rm s} \ge 1$ a safety factor.

Roache recommends

• $F_{\rm s} = 3$ in general (p unknown, or only two solutions used),

•
$$F_{\rm s} = 1.25$$
 when p is known and $\hat{p} \approx p$.

An illustration of the GCI method

Data from the Timoshenko beam problem

- QoI: vertical displacement of the beam, measured at x = 10m.
- Mesh sizes: $h_1 = 1/20$, $h_2 = 1/10$, and $h_3 = 1/5$.
- The GCI interval is represented for $F_s = 1.25$ (top) and $F_s = 3$ (bottom).

I Now a standard tool in VVUQ

- See, e.g., Oberkampf and Roy (2010), chapter 8.
- Lots of variants in the literature: choice of $F_{\rm s}$, of \hat{p} , etc.

Now a standard tool in VVUQ

- See, e.g., Oberkampf and Roy (2010), chapter 8.
- Lots of variants in the literature: choice of $F_{\rm s}$, of \hat{p} , etc.

- \bigstar Does not stem from a well-founded theory of UQ
 - in particular, it is not associated with a "well-founded probability statement on the error" (Roache, 1994)

WCCM-ECCOMAS 2020 7 / 17

Introduction: discretization uncertainty

- 2 The GCI (Grid Convergence Index) approach
- The Gaussian process approach
 - 4 Numerical results
- **5** Conclusions and perspectives

2 The GCI (Grid Convergence Index) approach

The Gaussian process approach

4 Numerical results

Statistical inference for deterministic computer models?

- Bayesian approach (Sacks et al., 1989; Currin et al., 1991, ...)
 - $\bullet\,$ prior information about $f\,\,\leadsto\,$ stochastic process (prior) model
 - data + Bayes theorem \rightsquigarrow posterior distribution

Statistical inference for deterministic computer models?

- Bayesian approach (Sacks et al., 1989; Currin et al., 1991, ...)
 - ullet prior information about $f\,\,\leadsto\,\,$ stochastic process (prior) model
 - \bullet data + Bayes theorem $\, \rightsquigarrow \,$ posterior distribution

IST Gaussian process (GP) priors

- Commonly used for tractability, since GP prior \Rightarrow GP posterior (a.k.a. GP "emulator")
- Applicable to the quantif. of discretization uncertainty (Tuo et al., 2014)

Illustration of Gaussian process modelling

An example with the same data as previously (from the "beam" case):

Model: TWY2 covariance function (see next slide) w/ Matérn 3/2 stationary part Parameters set manually (for illustration): L = 2, $\sigma^2 = 0.01^2$ and range $\rho = 0.8$.

Bect et al

Which covariance function for the discretization error?

GP model for f ? General form: $\xi(h) = \xi_0 + \varepsilon(h)$

- $\xi_0 \sim \mathcal{U}_{\mathbb{R}}$ (improper uniform distrib.), independent of ε
- $\varepsilon \sim \operatorname{GP}(0,k)$ with k continuous and s.t. $\operatorname{var}(\varepsilon(0)) = k(0,0) = 0$.

GP model for f ? General form: $\xi(h) = \xi_0 + \varepsilon(h)$

- $\xi_0 \sim \mathcal{U}_{\mathbb{R}}$ (improper uniform distrib.), independent of ε
- $\varepsilon \sim \operatorname{GP}(0,k)$ with k continuous and s.t. $\operatorname{var}(\varepsilon(0)) = k(0,0) = 0$.

 \square We investigate several possible choices for k:

$$\begin{array}{ll} & \hline \mathsf{TWY1} & k(h,h') = \sigma^2 \min(h,h')^L \\ & & \hline \mathsf{TWY2} & k(h,h') = \sigma^2 \ (hh')^{L/2} \ c(h-h') \\ & & \hline \mathsf{STZ} & k(h,h') = \sigma^2 \ [1 + c(h-h') - c(h) - c(h')] \end{array}$$

where $\sigma^2>0,\,L>0$ and c a stationary correlation function

(TWY stands for Tuo, Wu, and Yu (2014), STZ for "STationary + conditioned at Zero")

Introduction: discretization uncertainty

- 2 The GCI (Grid Convergence Index) approach
- The Gaussian process approach
 - 4 Numerical results
- **5** Conclusions and perspectives

1 Introduction: discretization uncertainty

2 The GCI (Grid Convergence Index) approach

3 The Gaussian process approach

4 Numerical results

5 Conclusions and perspectives

☞ Test case: 54 instances of Timoshenko's beam problem.

• 54 = 6 values of the height $D \, \times \, 9$ values of Poisson's ratio ν .

11 / 17

☞ Test case: 54 instances of Timoshenko's beam problem.

- 54 = 6 values of the height $D \times 9$ values of Poisson's ratio ν .
- 3-point DoE for the GCI method: $h_j^{\text{GCI}} = 2^{j-3} \cdot \frac{2}{9} \text{ m}, \ 1 \le j \le 3$,
- *n*-point DoE for the GP method: $h_j^{\text{GP}} = \frac{1}{n+1-i} \cdot 2m$, $1 \le j \le n$,
- n = 16 chosen in order to get similar computation times.

☞ Test case: 54 instances of Timoshenko's beam problem.

- 54 = 6 values of the height $D \times 9$ values of Poisson's ratio ν .
- 3-point DoE for the GCI method: $h_j^{\text{GCI}} = 2^{j-3} \cdot \frac{2}{9} \text{ m}, \ 1 \le j \le 3$,
- *n*-point DoE for the GP method: $h_j^{\text{GP}} = \frac{1}{n+1-i} \cdot 2m$, $1 \le j \le n$,
- n = 16 chosen in order to get similar computation times.
- Second and the second
 - GCI with $F_{\rm s} = 3$,
 - GP credibility intervals with posterior probability 99.9%.

☞ Test case: 54 instances of Timoshenko's beam problem.

- 54 = 6 values of the height $D \times 9$ values of Poisson's ratio ν .
- 3-point DoE for the GCI method: $h_i^{\text{GCI}} = 2^{j-3} \cdot \frac{2}{9} \text{ m}, \ 1 \le j \le 3$,
- *n*-point DoE for the GP method: $h_j^{\text{GP}} = \frac{1}{n+1-j} \cdot 2m$, $1 \le j \le n$,
- n = 16 chosen in order to get similar computation times.

Some of "conservative" uncertainty bands:

- GCI with $F_{\rm s}=3$,
- GP credibility intervals with posterior probability 99.9%.

GP models: 23 different covariance models

- Type: TWY1, TWY2 or STZ.
- Decay parameter L (TWY1, TWY2): set to L = 2, L = 4, or estimated.
- Correlation c (TWY2, STZ): Matérn (regularity $\frac{1}{2}$, $\frac{3}{2}$, $\frac{5}{2}$ or estim.), Gaussian.
- Hyper-parameters (σ^2 , L, etc.) \sim restricted maximum likehood (ReML).

Coverage versus interval (normalized) half-width

Average results over $6 \times 9 = 54$ instances. Interval half-widths normalized by QoI range.

Red disk: GCI with $F_s = 3$. Blue disks: GP CIs at 99.9% — $\xrightarrow{22}$ STK 2.6.0 (Bect et al., 2019).

Which covariance functions lead to "good" posteriors ?

(Covariance functions s.t. coverage $\geq 90\%$ and $\Delta \leq 2\Delta^{\text{GCI}}$:

covariance	Qol 1	Qol 2	Qol 3	Qol 4
TWY2 ($\mathcal{M}_{1/2}$, $L=\hat{L}$)	1.000, 0.716	1.000, 0.287	1.000, 0.239	1.000, 0.228
TWY2 ($\mathcal{M}_{1/2}$, $L=4$)	1.000, 0.619	1.000, <mark>0.289</mark>	1.000, <mark>0.243</mark>	1.000, <mark>0.232</mark>
TWY2 ($\mathcal{M}_{3/2}$, $L=\hat{L}$)	\odot	\odot	0.963, <mark>0.980</mark>	0.944, 0.008
TWY2 ($\mathcal{M}_{3/2}$, $L=4$)	0.981, 1.989	0.963, <mark>0.739</mark>	0.963, <mark>0.284</mark>	0.981, 0.008
TWY2 ($\mathcal{M}_{3/2}$, $L=2$)	\odot	÷	1.000, 1. <mark>543</mark>	1.000, 0.637
STZ ($\mathcal{M}_{5/2}$)		٢	٢	0.963, 0.614
all the others	\odot	÷	÷	☺

(left: coverage, right: Δ/Δ^{GCI} ; M_{ν} : Matérn corr. w/ regularity ν)

Which covariance functions lead to "good" posteriors ?

(Covariance functions s.t. coverage $\geq 90\%$ and $\Delta \leq 2\Delta^{GCI}$:

covariance	Qol 1	Qol 2	Qol 3	Qol 4
TWY2 ($\mathcal{M}_{1/2}$, $L=\hat{L}$)	1.000, 0.716	1.000, 0.287	1.000, 0.239	1.000, 0.228
TWY2 ($\mathcal{M}_{1/2}$, $L=4$)	1.000, <mark>0.619</mark>	1.000, 0.289	1.000, <mark>0.243</mark>	1.000, 0.232
TWY2 ($\mathcal{M}_{3/2}$, $L=\hat{L}$)			0.963, <mark>0.980</mark>	0.944, 0.008
TWY2 ($\mathcal{M}_{3/2}$, $L=4$)	0.981, <mark>1.989</mark>	0.963, <mark>0.739</mark>	0.963, <mark>0.284</mark>	0.981, 0.008
TWY2 ($\mathcal{M}_{3/2}$, $L=2$)			1.000, 1. <mark>543</mark>	1.000, 0.637
STZ ($\mathcal{M}_{5/2}$)	٢		٢	0.963, 0.614
all the others	÷		÷	☺

(left: coverage, right: Δ/Δ^{GCI} ; M_{ν} : Matérn corr. w/ regularity ν)

 \blacksquare What works wells: TWY2 with c not "too regular"

- L = 4 makes sense (quadratic convergence observed); \hat{L} works well too
- Similar observations on another DoE (coarser grids)
- Similar observations on the cavity case as well (w/ L=2 instead of L=4)

Introduction: discretization uncertainty

- 2 The GCI (Grid Convergence Index) approach
- The Gaussian process approach
 - 4 Numerical results
- **5** Conclusions and perspectives

1 Introduction: discretization uncertainty

2 The GCI (Grid Convergence Index) approach

3 The Gaussian process approach

4 Numerical results

Conclusions and perspectives

Two approaches for the quantification of discretization uncertainty:

- Roache's GCI approach, based on Richardson extrapolation,
- the statistical (Bayesian) approach, using Gaussian processes.

²To make them *really* well-founded, a fully Bayesian treatment of the hyper-parameters would be required.

Conclusions and perspectives

Two approaches for the quantification of discretization uncertainty:

- Roache's GCI approach, based on Richardson extrapolation,
- the statistical (Bayesian) approach, using Gaussian processes.
- Some strengths of the (younger) Bayesian approach
 - Prior knowledge about f can be encoded in the prior.
 - "well-founded² probability statement on the error" (Roache, 1994)
 - Tighter uncertainty bands if a suitable prior is used ! (which, however, do not always contain the fine-grid solution)

²To make them *really* well-founded, a fully Bayesian treatment of the hyper-parameters would be required.

Conclusions and perspectives

Two approaches for the quantification of discretization uncertainty:

- Roache's GCI approach, based on Richardson extrapolation,
- the statistical (Bayesian) approach, using Gaussian processes.
- \mathbb{R} Some strengths of the (younger) Bayesian approach
 - \bullet Prior knowledge about f can be encoded in the prior.
 - "well-founded² probability statement on the error" (Roache, 1994)
 - Tighter uncertainty bands *if a suitable prior is used* ! (which, however, do not always contain the fine-grid solution)
- 🖙 Future work
 - Understand better how to choose a suitable prior.
 - Benchmark the method on a larger variety of problems.
 - Consider additional input parameters (as, e.g., Tuo et al., 2014).

²To make them *really* well-founded, a fully Bayesian treatment of the hyper-parameters would be required.

Thank you

Everything is in the title

References I

- M. S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells. The FEniCS project version 1.5. Archive of Numerical Software, 3(100), 2015.
- J. Bect, E. Vazquez, et al. STK: a Small (Matlab/Octave) Toolbox for Kriging. Release 2.6. http://kriging.sourceforge.net, 2019.
- C. Currin, T. J. Mitchell, M. Morris, and D. Ylvisaker. Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. *J. Amer. Statist. Assoc.*, 86(416):953–963, 1991.
- W. L. Oberkampf and C. J Roy. Verification and validation in scientific computing. Cambridge University Press, 2010.
- L. F. Richardson and J. A. Gaunt. The deferred approach to the limit. *Philosophical Transactions of the Royal Society of London. Series A, containing papers of a mathematical or physical character*, 226(636–646):299–361, 1927.
- P. J. Roache. Perspective: a method for uniform reporting of grid refinement studies. *Journal of Fluids Engineering*, 116(3):405–413, 1994.
- P. J. Roache. Quantification of uncertainty in computational fluid dynamics. *Annual Review of Fluid Mechanics*, 29(1):123–160, 1997.

16/17

- P. J. Roache. Verification of codes and calculations. AIAA Journal, 36(5):696-702, 1998.
- J. Sacks, W. J. Welch, Mitchell T. J., and H. P. Wynn. Design and analysis of computer experiments. *Statistical Science*, 4(4):409–435, 1989.
- R. Tuo, C. F. Jeff Wu, and D. Yu. Surrogate modeling of computer experiments with different mesh densities. *Technometrics*, 56(3):372–380, 2014.