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Computer models, discretization & UQ

mesh size

h > 0

QoI

z ∈ R

Consider a PDE-based computer model

mesh size h > 0

quantity of interest (QoI) z = f(h)

h and z assumed scalar for simplicity

Ideally, we would like to know f(0)

(assuming a convergent numerical scheme)
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Computer models, discretization & UQ

mesh size

h > 0

QoI

z ∈ R

Consider a PDE-based computer model

mesh size h > 0

quantity of interest (QoI) z = f(h)

h and z assumed scalar for simplicity

Ideally, we would like to know f(0)

(assuming a convergent numerical scheme)

Since f(0) cannot be computed, we have:

Problem

What is our uncertainty about f(0) given a set

of computation results f(h1), . . . , f(hn) ?
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Example: lid-driven cavity problem

A classical CFD test case: incompressible fluid in a rectangular cavity (L×H)

w/ horizontal velocity ux = 1 imposed at the top (lid).
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Example: lid-driven cavity problem

A classical CFD test case: incompressible fluid in a rectangular cavity (L×H)

w/ horizontal velocity ux = 1 imposed at the top (lid).

Regular triangular grid with mesh size h > 0. Solved w/ Fenics (Alnæs et al., 2015).
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Example: lid-driven cavity problem

A classical CFD test case: incompressible fluid in a rectangular cavity (L×H)

w/ horizontal velocity ux = 1 imposed at the top (lid).

Regular triangular grid with mesh size h > 0. Solved w/ Fenics (Alnæs et al., 2015).

QoI: velocity (ux, uy) at the center & minimum ψ of the stream function.
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Example: Timoshenko’s beam

Another classical case: quasistatic deformation of a rectangular cantilever beam

w/ prescribed pressure field at the free end.
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Another classical case: quasistatic deformation of a rectangular cantilever beam

w/ prescribed pressure field at the free end.

Again: regular triangular grid with mesh size h > 0. Solved w/ Fenics.
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Example: Timoshenko’s beam

Another classical case: quasistatic deformation of a rectangular cantilever beam

w/ prescribed pressure field at the free end.

Again: regular triangular grid with mesh size h > 0. Solved w/ Fenics.

QoI: vertical displacement at x1 = 10, x2 = 20, x3 = 30 and x4 = L = 48.
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Example: Timoshenko’s beam

Another classical case: quasistatic deformation of a rectangular cantilever beam

w/ prescribed pressure field at the free end.

Again: regular triangular grid with mesh size h > 0. Solved w/ Fenics.

QoI: vertical displacement at x1 = 10, x2 = 20, x3 = 30 and x4 = L = 48.

Remark: analytical solution available for some particular boundary conditions
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From Richardon’s extrapolation to the GCI

✏ Assume that the QoI satisfies, for some f0, A ∈ R and p > 0,

f(h) = f0 +Ahp + o(hp) when h → 0.

1If p is known (“formal order of convergence”), a pair of solutions is enough in principle
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✏ Assume that the QoI satisfies, for some f0, A ∈ R and p > 0,

f(h) = f0 +Ahp + o(hp) when h → 0.

✏ Given a triplet1 of solutions at mesh sizes h1 < h2 < h3, solve

f(hk) = f0 +Ah
p
k, 1 ≤ k ≤ 3,

for f0, A and p.

1If p is known (“formal order of convergence”), a pair of solutions is enough in principle
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From Richardon’s extrapolation to the GCI

✏ Assume that the QoI satisfies, for some f0, A ∈ R and p > 0,

f(h) = f0 +Ahp + o(hp) when h → 0.

✏ Given a triplet1 of solutions at mesh sizes h1 < h2 < h3, solve

f(hk) = f0 +Ah
p
k, 1 ≤ k ≤ 3,

for f0, A and p. Denoting by f̂0, Â and p̂ the solution:

f(h) ≈ f̂(h) = f̂0 + Â hp̂.

☞ Richardson extrapolation (Richardson and Gaunt, 1927): f(0) ≈ f̂0.

1If p is known (“formal order of convergence”), a pair of solutions is enough in principle
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From Richardon’s extrapolation to the GCI (cont’d)

☞ The (fine grid) GCI “uncertainty band” (Roache, 1994, 1997, 1998) is:

UBGCI = [f(h1) − ∆; f(h1) + ∆]
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From Richardon’s extrapolation to the GCI (cont’d)

☞ The (fine grid) GCI “uncertainty band” (Roache, 1994, 1997, 1998) is:

UBGCI = [f(h1) − ∆; f(h1) + ∆]

where ∆ is derived from Richardson’s extrapolated value:

∆ = Fs ·

∣

∣

∣
f̂0 − f(h1)

∣

∣

∣

with Fs ≥ 1 a safety factor.
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From Richardon’s extrapolation to the GCI (cont’d)

☞ The (fine grid) GCI “uncertainty band” (Roache, 1994, 1997, 1998) is:

UBGCI = [f(h1) − ∆; f(h1) + ∆]

where ∆ is derived from Richardson’s extrapolated value:

∆ = Fs ·

∣

∣

∣
f̂0 − f(h1)

∣

∣

∣

with Fs ≥ 1 a safety factor.

☞ Roache recommends

Fs = 3 in general (p unknown, or only two solutions used),

Fs = 1.25 when p is known and p̂ ≈ p.
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An illustration of the GCI method
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☞ Data from the Timoshenko beam problem

QoI: vertical displacement of the beam, measured at x = 10m.

Mesh sizes: h1 = 1/20, h2 = 1/10, and h3 = 1/5.

The GCI interval is represented for Fs = 1.25 (top) and Fs = 3 (bottom).
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Some remarks on the GCI method

☞ Now a standard tool in VVUQ

See, e.g., Oberkampf and Roy (2010), chapter 8.

Lots of variants in the literature: choice of Fs, of p̂, etc.
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Some remarks on the GCI method

☞ Now a standard tool in VVUQ

See, e.g., Oberkampf and Roy (2010), chapter 8.

Lots of variants in the literature: choice of Fs, of p̂, etc.

✖ Does not stem from a well-founded theory of UQ

in particular, it is not associated with a “well-founded probability

statement on the error” (Roache, 1994)
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Gaussian process emulators for computer models

Statistical inference for deterministic computer models?

☞ Bayesian approach (Sacks et al., 1989; Currin et al., 1991, . . . )

prior information about f ; stochastic process (prior) model

data + Bayes theorem ; posterior distribution
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Gaussian process emulators for computer models

Statistical inference for deterministic computer models?

☞ Bayesian approach (Sacks et al., 1989; Currin et al., 1991, . . . )

prior information about f ; stochastic process (prior) model

data + Bayes theorem ; posterior distribution

☞ Gaussian process (GP) priors

Commonly used for tractability, since

GP prior ⇒ GP posterior (a.k.a. GP “emulator”)

Applicable to the quantif. of discretization uncertainty (Tuo et al., 2014)
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Illustration of Gaussian process modelling

An example with the same data as previously (from the “beam” case):

fine

medium

coarse

0 0.05 0.1 0.15 0.2
-5.745

-5.7445

-5.744

-5.7435

-5.743

-5.7425

-5.742

-5.7415

-5.741
Exact solution at h=0

Observations

Posterior mean

95%/99%/99.9% CIs

Model: TWY2 covariance function (see next slide) w/ Matérn 3/2 stationary part

Parameters set manually (for illustration): L = 2, σ2
= 0.01

2 and range ρ = 0.8.
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Which covariance function for the discretization error?

GP model for f ? General form: ξ(h) = ξ0 + ε(h)

ξ0 ∼ UR (improper uniform distrib.), independent of ε

ε ∼ GP(0, k) with k continuous and s.t. var(ε(0)) = k(0, 0) = 0.
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Which covariance function for the discretization error?

GP model for f ? General form: ξ(h) = ξ0 + ε(h)

ξ0 ∼ UR (improper uniform distrib.), independent of ε

ε ∼ GP(0, k) with k continuous and s.t. var(ε(0)) = k(0, 0) = 0.

☞ We investigate several possible choices for k:

TWY1 k(h, h′) = σ2 min(h, h′)L

TWY2 k(h, h′) = σ2 (hh′)L/2 c(h− h′)

STZ k(h, h′) = σ2 [1 + c(h− h′) − c(h) − c(h′)]

where σ2 > 0, L > 0 and c a stationary correlation function

(TWY stands for Tuo, Wu, and Yu (2014), STZ for “STationary + conditioned at Zero”)
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Experimental methodology

☞ Test case: 54 instances of Timoshenko’s beam problem.

54 = 6 values of the height D × 9 values of Poisson’s ratio ν.
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Experimental methodology

☞ Test case: 54 instances of Timoshenko’s beam problem.

54 = 6 values of the height D × 9 values of Poisson’s ratio ν.

3-point DoE for the GCI method: hGCI
j = 2j−3 · 2

9
m, 1 ≤ j ≤ 3,

n-point DoE for the GP method: hGP
j = 1

n+1−j
· 2m, 1 ≤ j ≤ n,

n = 16 chosen in order to get similar computation times.
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Experimental methodology

☞ Test case: 54 instances of Timoshenko’s beam problem.

54 = 6 values of the height D × 9 values of Poisson’s ratio ν.

3-point DoE for the GCI method: hGCI
j = 2j−3 · 2

9
m, 1 ≤ j ≤ 3,

n-point DoE for the GP method: hGP
j = 1

n+1−j
· 2m, 1 ≤ j ≤ n,

n = 16 chosen in order to get similar computation times.

☞ Comparison of “conservative” uncertainty bands:

GCI with Fs = 3,

GP credibility intervals with posterior probability 99.9%.
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Experimental methodology

☞ Test case: 54 instances of Timoshenko’s beam problem.

54 = 6 values of the height D × 9 values of Poisson’s ratio ν.

3-point DoE for the GCI method: hGCI
j = 2j−3 · 2

9
m, 1 ≤ j ≤ 3,

n-point DoE for the GP method: hGP
j = 1

n+1−j
· 2m, 1 ≤ j ≤ n,

n = 16 chosen in order to get similar computation times.

☞ Comparison of “conservative” uncertainty bands:

GCI with Fs = 3,

GP credibility intervals with posterior probability 99.9%.

☞ GP models: 23 different covariance models

Type: TWY1, TWY2 or STZ.

Decay parameter L (TWY1, TWY2): set to L = 2, L = 4, or estimated.

Correlation c (TWY2, STZ): Matérn (regularity 1

2
, 3

2
, 5

2
or estim.), Gaussian.

Hyper-parameters (σ2, L, etc.) ; restricted maximum likehood (ReML).
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Coverage versus interval (normalized) half-width

Average results over 6 × 9 = 54 instances. Interval half-widths normalized by QoI range.
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Red disk: GCI with Fs = 3. Blue disks: GP CIs at 99.9% STK 2.6.0 (Bect et al., 2019).
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Which covariance functions lead to “good” posteriors ?

Covariance functions s.t. coverage ≥ 90% and ∆ ≤ 2 ∆GCI:

covariance QoI 1 QoI 2 QoI 3 QoI 4

TWY2 (M1/2, L = L̂) 1.000, 0.716 1.000, 0.287 1.000, 0.239 1.000, 0.228

TWY2 (M1/2, L = 4) 1.000, 0.619 1.000, 0.289 1.000, 0.243 1.000, 0.232

TWY2 (M3/2, L = L̂) 0.963, 0.980 0.944, 0.008

TWY2 (M3/2, L = 4) 0.981, 1.989 0.963, 0.739 0.963, 0.284 0.981, 0.008

TWY2 (M3/2, L = 2) 1.000, 1.543 1.000, 0.637

STZ (M5/2) 0.963, 0.614

all the others

(left: coverage, right: ∆/∆
GCI; Mν : Matérn corr. w/ regularity ν)
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Covariance functions s.t. coverage ≥ 90% and ∆ ≤ 2 ∆GCI:

covariance QoI 1 QoI 2 QoI 3 QoI 4

TWY2 (M1/2, L = L̂) 1.000, 0.716 1.000, 0.287 1.000, 0.239 1.000, 0.228

TWY2 (M1/2, L = 4) 1.000, 0.619 1.000, 0.289 1.000, 0.243 1.000, 0.232

TWY2 (M3/2, L = L̂) 0.963, 0.980 0.944, 0.008

TWY2 (M3/2, L = 4) 0.981, 1.989 0.963, 0.739 0.963, 0.284 0.981, 0.008

TWY2 (M3/2, L = 2) 1.000, 1.543 1.000, 0.637

STZ (M5/2) 0.963, 0.614

all the others

(left: coverage, right: ∆/∆
GCI; Mν : Matérn corr. w/ regularity ν)

☞ What works wells: TWY2 with c not “too regular”

L = 4 makes sense (quadratic convergence observed); L̂ works well too

Similar observations on another DoE (coarser grids)

Similar observations on the cavity case as well (w/ L = 2 instead of L = 4)
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Conclusions and perspectives

☞ Two approaches for the quantification of discretization uncertainty:

Roache’s GCI approach, based on Richardson extrapolation,

the statistical (Bayesian) approach, using Gaussian processes.

2
To make them really well-founded, a fully Bayesian treatment of the hyper-parameters would be required.
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the statistical (Bayesian) approach, using Gaussian processes.

☞ Some strengths of the (younger) Bayesian approach

Prior knowledge about f can be encoded in the prior.

“well-founded2 probability statement on the error” (Roache, 1994)

Tighter uncertainty bands if a suitable prior is used !

(which, however, do not always contain the fine-grid solution)
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Conclusions and perspectives

☞ Two approaches for the quantification of discretization uncertainty:

Roache’s GCI approach, based on Richardson extrapolation,

the statistical (Bayesian) approach, using Gaussian processes.

☞ Some strengths of the (younger) Bayesian approach

Prior knowledge about f can be encoded in the prior.

“well-founded2 probability statement on the error” (Roache, 1994)

Tighter uncertainty bands if a suitable prior is used !

(which, however, do not always contain the fine-grid solution)

☞ Future work

Understand better how to choose a suitable prior.

Benchmark the method on a larger variety of problems.

Consider additional input parameters (as, e.g., Tuo et al., 2014).
2

To make them really well-founded, a fully Bayesian treatment of the hyper-parameters would be required.

Bect et al Discretization uncertainty: GCI / GPs WCCM-ECCOMAS 2020 14 / 17



Thank you

Everything is in the title
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