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Robust Satisfaction of Nonlinear Requirements in Control Problems

Maxime Pouilly-Cathelain1, Philippe Feyel2, Gilles Duc3 and Guillaume Sandou3

Abstract— Industrial framework needs methods to take into
account complex and non-differentiable requirements given by
customers directly in control design for disturbed systems.
The aim of this paper is to take into account any evaluable
requirements in the design of control laws for systems subject
to additive disturbances. To achieve this goal, Barrier Model
Predictive Control and invariant set theory are used. It allows
considering state and input constraints and also to improve
robustness with regard to disturbances.

I. INTRODUCTION

In numerous control problems, considering both hard
constraints and requirements on state and input is of great
interest, especially in an industrial context where requirements
are given by the customers. Two kinds of constraints have
to be considered: those that are essential for the system
to operate and those that ensure satisfactory performances,
respectively named hard constraints and requirements in this
paper. Moreover, the system is often subject to additive
disturbances and measurements errors. Finally as the number
of sensors is restricted, the whole state cannot be measured,
and an observer must therefore be used.

Model Predictive Control (MPC) is generally the preferred
method to take into account constraints because they are
considered online, [1]. As a reminder, a sequence of future
control inputs is determined at each sampling instant by
online optimization over a finite horizon, while only the first
one is actually applied to the system. Constraints are directly
considered by the optimizer along the prediction horizon. In
order to take into account disturbances, robust MPC has been
proposed in [2] and [3]. Usually, robust MPC is based on
tubes of robust positive invariant sets ([4], [5]) centered in
the system’s nominal trajectory. With this method, system’s
state is guaranteed to remain inside the tube, close to the
nominal desired trajectory regardless of disturbances.

In this paper, it is admitted that hard constraints are satisfied
thanks to a high level supervisor that generates admissible
trajectories, thus only requirements will be considered in the
MPC. To do so, different methods have been proposed. The
first one is to formulate them as hard constraints [1], but this
solution is quite restrictive as the system could operate even
if requirements would temporarily be unsatisfied. A different
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Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
maxime.pouilly-cathelain@{centralesupelec.fr,safrangroup.com}

2Philippe Feyel is with Safran Electronics & Defense, Massy, France
philippe.feyel@safrangroup.com

3Gilles Duc and Guillaume Sandou are with L2S, CentraleSupélec,
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method based on barrier functions has been proposed in
[6]: it permits to give the system the opportunity to violate
requirements.

Barrier MPC stability and practical implementation have
been studied in [7] and [8]. Recently, [9] proposed a barrier
MPC that improves robustness with respect to unstructured
model uncertainty. Nevertheless, to the best of our knowledge,
there is no literature about the use of barrier function in a
MPC that is robust with respect to additive disturbances.

This paper provides a method to achieve robust satisfaction
of nonlinear requirements for linear systems subject to
additive disturbances by using tube-based MPC with barrier
functions. To do so, properties of barrier functions are
presented in section II, a new formulation of the cost function
is proposed in section III while section IV provides a
proof of stability in the nominal case. Robust satisfaction of
requirements is studied in section V. Finally, section VI gives
an example where the use of an Unmanned Aerial Vehicle
(UAV) for reading QR codes in a storage space with hard
constraints to avoid collision and requirements to remain at
the right distance of the QR code are considered. Conclusions
and future works are given in section VII.

Notation. In the following, R and N are respectively the
set of the real numbers and the set of positive integers. N˚ “
Nzt0u. U denotes the input constraint set. If A is a matrix,
ρpAq denotes its spectral radius. The norm ||x||2Q“ xTQx with
Q a strictly positive definite matrix is considered. ||x||8 “
max

i
|xi| denotes the infinity norm. The Minkowski sum of

two sets A and B is the set A‘B“ ta`b|a P A,b P Bu. The
Pontryagin difference of two sets A and B is the set Aa
B“ ta P A|a`b P A,@b P Bu. dpx,Aq “ inft||x´a||,a P Au
denotes the distance between vector x and set A.

II. REQUIREMENTS CONSIDERATION

Invariant sets are of great interest for stability of MPC.
Some important definitions used in the sequel are recalled
below.

Definition 1 (Admissible set, [4]): A set is an admissible
set if for all elements of this set, it is possible to find an input
sequence that enforces the system to reach the origin, which
is the target point, without violating any hard constraint.

Definition 2 (Control Positive Invariant (CPI) set, [4]):
A set S is said to be a Control Positive Invariant set for the
system xk`1 “ Axk`Buk and the feedback law uk “Kxk if
@xk P S, pA`BKqxk P S.
With these two definitions, assumption 1 is done. This
assumption is satisfied thanks to a high-level supervisor. As
a consequence, hard constraints are not considered in this
paper except for the input hard constraint u P U.



Assumption 1: The state of the system always remains in
an admissible set that is CPI. This set is denoted by X.

In an ideal case, we would like to consider requirements
on an infinite prediction horizon. Since it is not realistic,
requirements will be considered only on predicted states and
inputs, as it is usually done in MPC when constraints are
introduced.

In order to prove stability, requirements have to be classified
before using them as barrier functions and the set where all
requirements are considered should be determined. As a
first step, no disturbances are considered. They will be later
introduced in section V.

A. REQUIREMENT CLASSIFICATION

In this paper, only inequality requirements r defined by (1)
are considered because equality requirements can be converted
into two inequalities using (2). In (1) and (2), X denotes a
set of any predicted states and U a set of any elements of
the input sequence.

r pX ,U q ď 0 (1)

r pX ,U q “ 0 Ñ
"

r pX ,U q ď 0
r pX ,U q ě 0 (2)

The Nr requirements can be classified into two categories:
1) Requirements that are applied to each predicted state

independently. N˚r denotes the number of requirements
that belong to this category.

2) Requirements that are applied to a set of predicted
states. The number of requirements that belong to this
category is Nr´N˚r .

B. DEFINITION OF THE REQUIREMENT ADMISSIBLE
SET

The maximal requirement admissible set is introduced by
definition 3.

Definition 3 (Maximal Requirement Admissible set):
A set M is said to be Maximal Requirement Admissible
(MRA) if all sets A where the requirements are satisfied are
such that: AĎM.

The construction of a MRA set M is now described. If
for each requirement r P J1;NrK, the corresponding MRA set
is Xr, M is defined by (3). Xr can be determined exactly if
the requirement is simple but, in some cases, conservative
approximations have to be used.

M“

Nr
č

r“1

Xr (3)

Assumption 2: All requirements are satisfied at the origin:
@r P J1;NrK,0 P Xr.

In order to prove stability, the MRA set M needs to be
CPI. For this purpose, a set MCPI ĎM will be considered as
a CPI approximation of M. A convex CPI approximation can
be defined, taking into account the constraint: @k PN, uk PU,
by using algorithm defined in [10].

Definition 4 is also needed for the sequel.

Definition 4 (m-backward reachable set, [11]): For all
m P N˚, the m-backward reachable set PrepS,mq, also
named m-preimage set, is defined as the set from where it is
possible to reach S in m steps.

The maximal backward reachable set included in a given
set can be defined using the algorithm presented in [12].

In the following, it is admitted that MCPI is known.

C. BARRIER FUNCTION DEFINITION

In order to prove stability, for barrier function definition,
we only consider requirements that belong to the first category
presented in II-A which are requirements independently
applied to each predicted state. The barrier lr corresponding to
requirement r and its properties are defined by (4). In (4), x̄k is
the predicted state for time index k P J0;NK with N denoting
the prediction horizon and u “ ru0, . . . ,uN´1s is the input
sequence determined by the MPC optimizer. Consequently,
the global barrier function lb can be defined by (5). One can
remark that properties defined for lr still hold for lb.

@pu,kq P UNˆ J0;NK,
"

lrpx̄k,uq “ 0 if x̄k P Xr
lrpx̄k,uq ě 0 if x̄k R Xr

(4)

@pu,kq P UNˆ J0;NK, lbpx̄k,uq “
N˚

r
ÿ

r“1

lrpx̄k,uq (5)

Since lb is a barrier function that may be applied to all
predicted states x̄“ rx̄0, . . . , x̄Ns, the notation lb px̄,uq will be
used in the sequel.

III. COST FUNCTION DEFINITION

As it is often the case in MPC, the design of the cost
function has to be done in order to ensure stability, [13]. In
classical MPC formulation where the cost function is used as
a Lyapunov function, the cost function is needed to decrease
from one sampling instant to the next one. Because this paper
deals with nonlinear requirements, it cannot be ensured that
the barrier function decreases in XzMCPI from one sampling
instant to the next one. Nevertheless, it will be shown in
section IV that thanks to the CPI property of MCPI , it exists a
sequence of inputs that permits, when x̄0 P PrepMCPI ,Nq, the
decrease of a cost function which includes barrier functions.
As a consequence, the proposed method aims to enforce the
system to reach PrepMCPI ,Nq and then applies a barrier MPC.
The method is thus based on two cases which correspond to
the two following cost functions:

1) If the current state x “ x̄0 is not in MCPI thus the
considered cost function J1 is defined by (6). This cost
function corresponds to a terminal constraint.

J1px̄,uq “ dpx̄N ,MCPIq (6)

2) If the current state x “ x̄0 is in PrepMCPI ,Nq, the
considered cost function J2 is defined by (7) where
l denotes the MPC nominal cost: lpx̄k,ukq “ ||x̄k||

2
Q`

||uk||
2
R and lN a terminal cost.

J2px̄,uq “
N´1
ÿ

k“0

lpx̄k,ukq` lNpx̄Nq` lbpx̄,uq (7)



We want to consider one single optimization problem thus a
cost function J that takes into account both cases is presented
in (8).

Jpx̄,uq“

$

&

%

J1px̄,uq if x̄0 R PrepMCPI ,Nq
´1{J2px̄,uq if x̄0 P PrepMCPI ,Nq and J2px̄,uq ‰ 0
´8 if x̄0 P PrepMCPI ,Nq and J2px̄,uq “ 0

(8)
Remark 1: From an implementation point of view, the

problem is solved by using a gradient-free optimization
algorithm. By using this kind of algorithm there is no need
of reformulation or linearisation of requirements because
non-differentiable barrier functions can be tackled and hard
constraint u P U is considered as the search space.

Remark 2: It is not necessary to explicitly define
PrepMCPI ,Nq because conditions x̄0 R PrepMCPI ,Nq and
x̄0 P PrepMCPI ,Nq are respectively equivalent to x̄N RMCPI
and x̄N PMCPI . Moreover, MCPI has already been defined
(section II).

IV. PROOF OF STABILITY IN THE NOMINAL CASE

In this section, a proof of stability for the proposed MPC
using the cost function presented in section III is provided.
To begin with, it will be shown that the system will reach
PrepMCPI ,Nq. Then a proof based on a Lyapunov function
will be given when x̄0 P PrepMCPI ,Nq. Assumption 3 is done
for clarity of the proof but in practice this assumption can
be relaxed as it will be discussed in sections IV-C and V.

Assumption 3: The optimization algorithm always finds
the global minimum.

A. CONVERGENCE FOR xk “ x̄0 R PrepMCPI ,Nq

The cost function has been formulated in order to firstly
determine a trajectory such that dpx̄N ,MCPIq “ 0, but in the
case where xK “ x̄0 R PrepMCPI ,Nq such a trajectory does not
exist. In practice, it corresponds to a positive cost at the end
of the optimization. In this case, a LQ control law is applied
to the system to ensure that the system’s state converges to
PrepMCPI ,Nq.

Remark 3: The idea that consists of applying the input
sequence determined by the MPC algorithm that decreases the
distance from MCPI is not sufficient to ensure convergence
thus, it is not a viable solution.

B. CONVERGENCE FOR xk “ x̄0 P PrepMCPI ,Nq

As it is usually done in MPC, a Lyapunov function based
on the cost function will be used in this section. The following
function V will be considered, taking into account that
x̄0 P PrepMCPI ,Nq:

@px̄,uq P pPrepMCPI ,Nqq
N`1

ˆUN , V px̄,uq “
´1

Jpx̄,uq
“ J2px̄,uq

(9)
Because l and lN are positive functions, V is a positive

function. Moreover, V p0,0q “ 0.
The ` notation denotes quantities at the next sampling

instant, for instance the next input sequence is denoted by
u`. Similarly to the warm start method presented in [14], it
can be chosen: u` “ ru1, . . . ,uN´1,u`s where u` P U such

that x̄`N PMCPI . The existence of such u` is directly derived
from the property of positive invariance of MCPI .

The difference V px̄`,u`q´V px̄,uq has to be evaluated.

V px̄`,u`q´V px̄,uq

“
N´1
ř

k“0
lpx̄`k ,u`k q` lNpx̄`N q` lbpx̄`,u`q

´

„

N´1
ř

k“0
lpx̄k,ukq` lNpx̄Nq` lbpx̄,uq



“
N´1
ř

k“0

“

lpx̄`k ,u`k q´ lpx̄k,ukq
‰

` lNpx̄`N q´ lNpx̄Nq

` lbpx̄`,u`q´ lbpx̄,uq

(10)

As a reminder from section II-C, only barrier functions
derived from requirements applied independently to each
predicted state are taken into account. Because no disturbances
are considered, x̄` “

“

x̄1, . . . , x̄N , x̄`N
‰

thus lbpx̄`,u`q ´
lbpx̄,uq can be simplified by looking only at the influence
of the first component: x̄0, and the last one: x̄`N . In order to
make it appears explicitly, the notation lbpx̄`,u`q´ lbpx̄,uq “
lbpx̄`N ,u`q´ lbpx̄0,uq is used in the following. Equation (10)
is therefore simplified as:

V px̄`,u`q´V px̄,uq “ lpx̄`N´1,u
`
N´1q´ lpx̄0,u0q

` lNpx̄`N q´ lNpx̄Nq

` lbpx̄`N ,u`q´ lbpx̄0,uq
(11)

By definition of MCPI , x̄`N P MCPI ñ lbpx̄`N ,u`q “ 0 thus
finally:

V px̄`,u`q´V px̄,uq “ lpx̄`N´1,u
`
N´1q´ lpx̄0,u0q

` lNpx̄`N q´ lNpx̄Nq

´ lbpx̄0,uq
(12)

lb is a positive function then:

V px̄`,u`q´V px̄,uq
ď lNpx̄`N q´ lNpx̄Nq` lpx̄`N´1,u

`
N´1q´ lpx̄0,u0q

(13)

The right part of inequality (13) corresponds to the classical
equation that is found in the proof of stability of the original
Model Predictive Control. According to [14], if we choose
for instance lNpx̄Nq “ x̄T

NPx̄N where P is the positive definite
solution of the Ricatti equation:

P“Q`ATPA´ATPBpBTPB`Rq´1BTPA, (14)

it has been proven that:

lNpx̄`N q´ lNpx̄Nq` lpx̄`N´1,u
`
N´1q´ lpx̄0,u0q ă 0 (15)

From (13), we finally have V px̄`,u`q ´V px̄,uq ă 0. As
a conclusion, V is a positive decreasing function with
V p0,0q “ 0 thus it is a Lyapunov function and Lyapunov
stability is proven for xk P PrepMCPI ,Nq.

C. STABILITY IN CASE OF SUBOPTIMAL SOLUTION

Stabilizing conditions for MPC usually rely on assump-
tion 3. Nevertheless, this assumption is generally impossible
to satisfy in a practical use, especially in this paper where the
cost function is possibly non-convex and non-differentiable



and where a gradient-free optimization algorithm is used.
Some works have been done in order to prove stability of MPC
in case of suboptimal solution given by the optimizer, [15],
[16]. Proposed solutions are essentially based on the warm-
start method that consists of using a well-chosen initial guess
obtained by the optimization result at the previous sampling
instant. Cited papers propose methods to relax assumption 3
and prove stability in case of suboptimal solution. The goal
of this paper is not to demonstrate the practical use of the
method but the ability of the method to robustly satisfy
requirements thus this section only gives an overview of how
the suboptimal method could be implemented in practice, but
does not provide all details.

For the first case: xk “ x̄0 R PrepMCPI ,Nq (section IV-A),
it is still possible to apply a linear feedback law. This law
ensures that the state converges to PrepMCPI ,Nq.

For the second case: xk “ x̄0 P PrepMCPI ,Nq (section IV-
B), method proposed by [15] can be extended to the barrier
function proposed in this paper to relax assumption 3. The cost
function J2 is modified as: J2px̄,uq “

řN´1
k“0 lpx̄k,ukq` lbpx̄,uq

and the stability is guaranteed using the terminal constraint:
x̄N “ 0, [1]. Because t0u ĎM implies that the N-backward
reachable set of t0u is included or equal to PrepMCPI ,Nq,
then we have to consider prediction horizon of length M ą N
in order to be able to find a solution such that: x̄M “ 0.
Following algorithm of [15], this recursive method is used:
‚ Choose µ P p0,1s
‚ At time k“ 0, find a control sequence u“ ru0, . . . ,uM´1s

such that x̄M “ 0.
‚ For time k ą 0, find a control sequence u`

such that x̄M “ 0 and J
`

x̄`,u`
˘

ď J px̄,uq ´
µ rlpx̄k´1,uk´1q` lbpx̄k´1,uk´1qs. The optimization algo-
rithm should be initialized with u` “ ru1, . . . ,uM´1,0s.

The optimization problem becomes easier by choosing a
value of µ close to 0. As the author of [15] says, in some
cases this algorithm may fail to find a solution that respects
J
`

x̄`,u`
˘

ď J px̄,uq ´ µ rlpx̄k´1,uk´1q` lbpx̄k´1,uk´1qs. In
this case there is no guarantee of stability.

V. ROBUST SATISFACTION OF REQUIREMENTS
USING TUBE-BASED MPC

In this section, the MPC with the cost function proposed
above is extended to output tube-based MPC. The system
considered is subject to additive disturbances as shown in (16).

"

xk`1 “ Axk`Buk`wk
yk “ Cxk` vk

(16)

where, for all k P N, xk P X Ď Rn, uk P U Ď Rp, yk P Rm,
wk PW and vk P V. W and V are two compact sets with 0
in their interior. Assumption 4 is done. As said before, the
whole state cannot be measured thus an observer has to be
designed in order to initialize the prediction. This observer is
a discrete-time Luenberger observer defined by (17) where
L P Rnˆm.

"

x̂k`1 “ Ax̂k`Buk`Lpyk´ ŷkq

ŷk “ Cx̂k
(17)

Assumption 4: A is non-singular, pA,Bq is controllable
and pA,Cq is observable.

The tube-based MPC strategy presented in [2] consists of
applying the MPC method on a nominal predictor defined
by (18) that gives the nominal input sequence ū. The nominal
input ūk is summed with a feedback law according to (19)
where K P Rpˆn.

@k P J0;N´1K,
"

x̄k`1 “ Ax̄k`Būk
ȳk “ Cx̄k

(18)

uk “ ūk`Kek where ek “ x̂k´ x̄k (19)

(19) guarantees that the system’s state remains in a tube
centered on the nominal trajectory. In order to define this
tube we introduce the estimation error: x̃k “ xk´ x̂k and define
Robust Positive Invariant set (definition 5).

Definition 5 (Robustly Positive Invariant (RPI) set, [11]):
For the autonomous discrete time system xk`1 “ Axk`wk,
a set S is said to be Robustly Positive Invariant if for all
xk P S and wk PW, xk`1 P S. This condition is equivalent to
AS‘WĎ S.

ek and x̃k respectively follow the difference equations (20)
and (21).

ek`1 “ pA`BKqek` δ̄k where δ̄k “ LCx̃k`Lvk (20)

x̃k`1 “ pA´LCqx̃k` δ̃k where δ̃k “ wk´Lvk (21)

According to [5], if ρpA`BKq ă 1 and ρpA´LCq ă 1
then RPI sets S̄ and S̃ exist and are finite time computable
respectively for (20) and (21). Thanks to assumption 4, it
is possible to find K and L such that ρpA`BKq ă 1 and
ρpA´LCq ă 1. For instance, K and L can be determined by
using LQG design or pole placement method.

It has been proven in [2], that if x̃k “ xk ´ x̂k P S̃,
ek “ x̂k´ x̄k P S̄ and the control law is given by (19) then,
using the fact that the system’s state follows x “ x̄` x̃` e,
for all i P N and all admissible disturbance wk`i PW and
vk`i P V, xk`i P tx̂k`iu‘ S̃Ď tx̄k`iu‘ S̃‘ S̄. Finally, the state
xk follows:

xk P tx̂ku‘ S̃Ď tx̄ku‘S where S“ S̃‘ S̄ (22)

Because the input follows (19), a tighter constraint has to
be applied to the nominal input ū to ensure that: u P U. This
tighter constraint is defined by (23). In order to ensure that
requirements are also robustly satisfied, the set M defined
by (3) has to be restricted to M´ “MaS. M´

CPI ĎMCPI
denotes the CPI set included in M´ by considering Ū rather
than U.

ū P Ū where Ū“ UaKS̄ (23)

Tighter requirements also have to be considered for barrier
function definition. For each requirement r, the set Xr
considered in (4) must be replaced by XraS.

Remark 4: As a reminder from [2], robust control by using
tube-based MPC can only be achieved if W and V are
sufficiently small because the set S becomes larger when
W or V grow.



Remark 5: The suboptimal MPC method briefly intro-
duced in section IV-C is not necessary when tube-based
MPC is used because small optimization error could be seen
as disturbances. For instance if the optimal input is u˚k but the
algorithm finds u˚k `ue

k, then xk`1“Axk`B
`

u˚k `ue
k

˘

and by
choosing wk “ Bue

k, the equation corresponds to the one used
in tube-based MPC framework (16). The only assumption is
that ue is bounded. Thanks to the warm start method, this is
in practice often true.

VI. APPLICATION

As said in the introduction, this methodology could be
applied to UAVs used to read QR codes in a storage space.
Because only altitude control is considered in this application,
the system is simply modelled by (24) where all values
have been normalized. Position and velocity are respectively
denoted by z and vz thus in (24), xk “

“

zk,vz
k

‰T. The system
is subject to uniform additive disturbances wk PW and vk P

V where W “ tw P R2, ||w||8 ď 0.1u and V “ tv P R, |v| ď
0.05u. w and v model external disturbances such as airstreams,
measurement errors and suboptimality of the optimizer (see
remark 5).

$

’

’

&

’

’

%

xk`1 “

„

1 1
0 1



xk`

„

1
1



uk`wk

yk “
“

1 0
‰

xk` vk

(24)

Hard constraints such as collision avoidance are considered
to be satisfied thanks to a high-level supervisor. The only
exception is the input constraint: u PU“ tu PR, |u| ď 3u that
is used as the search space of the optimization algorithm that
will be differential evolution, [17]. Nevertheless, in order to
be able to read the QR code, the following requirements have
to be considered regardless of the disturbances:
‚ The UAV must stay with an absolute position less than 6

(normalized unit). The target point corresponds to z“ 0.
‚ The UAV speed must have a variance less than 12

(normalized unit) in order to avoid blurred picture.
The first requirement leads exactly to the set Xz “ trz,vzsT P

R2, |z| ď 6u and for the second requirement the conservative
set Xvz “ trz,vzsT PR2, |vz| ď 6u could be considered. Remind
that only the first requirement acts for the definition of
a barrier function whereas both requirements are used to
define the requirement admissible set M “ XzXXvz “ tx P
R2, ||x||8 ď 6u which is not maximal requirement admissible.

Only the position can be measured thus a Luenberger
observer (17) tuned by pole placement is used with the gain
L“

“

1.3 0.42
‰T. The gain K, of the feedback law defined

in (19), is tuned using linear quadratic method, the solution
is K“

“

´0.61 ´0.99
‰

. One can check that ρpA`BKq ă 1
and ρpA´LCq ă 1.

The method presented above is now applied to the system.
First of all, after defining S̃, S̄ and S using the method
presented in [5], the set M´ is defined. The maximal positive
invariant set M´

CPI Ď M´ is computed using algorithm
presented in [10]. Figures 1 and 2 represent all these
sets. Figures 1 also presents Pre

`

M´
CPI ,N

˘

, the N-backward

reachable set included in M´. By using (23), the tighter
input constrained set defined for the MPC applied to the
nominal system is Ū “ r´1.85;1.85s. The barrier function
corresponding to the absolute position error is tightened by
using S projections onto the z direction, denoted by ppS,zq, in
order to use tighter requirement (see Fig. 2) on the nominal
system. The barrier function lb is defined by (25) where
limz “ 6´maxpppS,zqq and α“ 105 is a tuning parameter.

lbpx̄q “
N
ÿ

k“1

"

0 if |z̄k| ď limz
α||z̄k|´ limz| if |z̄k| ą limz

(25)
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Figure 3 presents a trajectory of the system (24) using
a tube-based MPC without requirements. In comparison,
Fig. 4 presents a trajectory using the tube-based MPC
proposed in this paper that takes into account requirements
as barrier functions. The initial point has been chosen
in Pre

`

M´
CPI ,N

˘

zM´
CPI . It can be seen that the use of

barrier functions permits to find a trajectory that respects
requirements, which is not the case without barrier functions.
In order to be fairly compared, both simulations have been
done with the exact same sequence of disturbances. In order
to evaluate the influence of the disturbances, Fig. 5 shows
results of 75 runs from the same initial point. On the left
part, results are given using a tube-based approach without
requirements while the right part corresponds to the proposed
method. We can see that in every runs, the proposed barrier
tube-based MPC permits to respect requirements while in
some cases requirements are not satisfied without using barrier
functions. Of course, requirements are generally satisfied at
the expense of the input.
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VII. CONCLUSIONS AND FUTURE WORKS

A solution to robustly satisfy nonlinear requirements with
regard to additive disturbances and the corresponding proof
of stability have been proposed. This method is based on the
use of a particular cost function and a positive invariant set
where requirements are satisfied. Moreover this approach has
been successfully applied to an industrial context.

In future works, extension of this paper to nonlinear
systems will be studied. Another possibility could be the
use of barrier functions in a stochastic MPC that is generally
less conservative than the tube-based approach.
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Applied input u

Fig. 5. Comparison of 75 runs without requirements (left) and with
requirements (right)

[5] S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne,
“Invariant approximations of the minimal robust positively invariant set.”
IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 406–410,
2005.

[6] A. G. Wills and W. P. Heath, “Barrier function based model predictive
control.” Automatica, vol. 40, no. 8, pp. 1415–1422, 2004.

[7] C. Feller and C. Ebenbauer, “Weight recentered barrier functions and
smooth polytopic terminal set formulations for linear model predictive
control,” in 2015 American Control Conference (ACC). IEEE, 2015,
pp. 1647–1652.

[8] ——, “A stabilizing iteration scheme for model predictive control based
on relaxed barrier functions,” Automatica, vol. 80, pp. 328–339, 2017.

[9] P. Petsagkourakis, W. P. Heath, J. Carrasco, and C. Theodoropoulos,
“Input-output stability of barrier-based model predictive control,” 2019.

[10] E. G. Gilbert and K. T. Tan, “Linear systems with state and control
constraints: The theory and application of maximal output admissible
sets.” IEEE Transactions on Automatic Control, vol. 36, no. 9, pp.
1008–1020, 1991.

[11] F. Blanchini and S. Miani, Set-theoretic methods in control. Springer,
2008.

[12] C. E. T. Dorea and J. Hennet, “(A,B)-invariant polyhedral sets of
linear discrete-time systems,” Journal of Optimization Theory and
Applications, vol. 103, no. 3, pp. 521–542, 1999.

[13] J. B. Rawlings and K. R. Muske, “The stability of constrained receding
horizon control,” IEEE Transactions on Automatic Control, vol. 38,
no. 10, pp. 1512–1516, 1993.

[14] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017.

[15] P. O. Scokaert, D. Q. Mayne, and J. B. Rawlings, “Suboptimal model
predictive control (feasibility implies stability),” IEEE Transactions on
Automatic Control, vol. 44, no. 3, pp. 648–654, 1999.

[16] D. A. Allan, C. N. Bates, M. J. Risbeck, and J. B. Rawlings, “On
the inherent robustness of optimal and suboptimal nonlinear MPC,”
Systems & Control Letters, vol. 106, pp. 68 – 78, 2017.

[17] K. Price, R. M. Storn, and J. A. Lampinen, Differential evolution:
a practical approach to global optimization. Springer Science &
Business Media, 2006.


