
HAL Id: hal-03105531
https://centralesupelec.hal.science/hal-03105531

Submitted on 11 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Shrinking the eigenvalues of M-estimators of covariance
matrix

Esa Ollila, Daniel Palomar, Frédéric Pascal

To cite this version:
Esa Ollila, Daniel Palomar, Frédéric Pascal. Shrinking the eigenvalues of M-estimators of covariance
matrix. IEEE Transactions on Signal Processing, 2020, pp.256 - 269. �10.1109/TSP.2020.3043952�.
�hal-03105531�

https://centralesupelec.hal.science/hal-03105531
https://hal.archives-ouvertes.fr


IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XXX, NO. X, 2020 1

Shrinking the eigenvalues of M-estimators of
covariance matrix

Esa Ollila, Member, IEEE, Daniel P. Palomar, Fellow, IEEE and Frédéric Pascal, Senior Member, IEEE

Abstract—A highly popular regularized (shrinkage) covariance
matrix estimator is the shrinkage sample covariance matrix
(SCM) which shares the same set of eigenvectors as the SCM but
shrinks its eigenvalues toward the grand mean of the eigenvalues
of the SCM. In this paper, a more general approach is considered
in which the SCM is replaced by an M-estimator of scatter
matrix and a fully automatic data adaptive method to compute
the optimal shrinkage parameter with minimum mean squared
error is proposed. Our approach permits the use of any weight
function such as Gaussian, Huber’s, Tyler’s, or t weight functions,
all of which are commonly used in M-estimation framework. Our
simulation examples illustrate that shrinkage M-estimators based
on the proposed optimal tuning combined with robust weight
function do not loose in performance to shrinkage SCM estimator
when the data is Gaussian, but provide significantly improved
performance when the data is sampled from an unspecified
heavy-tailed elliptically symmetric distribution. Also, real-world
and synthetic stock market data validate the performance of the
proposed method in practical applications.

Index Terms—M-estimators, sample covariance matrix, shrink-
age, regularization, elliptically symmetric distributions

I. INTRODUCTION

Consider a sample of p-dimensional vectors {xi}ni=1 sam-
pled from a distribution of a random vector x with mean
vector equal to zero (i.e., E[x] = 0). One of the first task
in the analysis of high-dimensional data is to estimate the
covariance matrix. The most commonly used estimator is the
sample covariance matrix (SCM), S = 1

n

∑n
i=1 xix

>
i , but its

main drawbacks are its loss of efficiency when sampling from
distributions which have heavier tails than the multivariate
normal (MVN) distribution and its sensitivity to outliers.
Although being unbiased estimator of the covariance matrix
cov(x) = E[xx>] for any sample length n ≥ 1, it is well-
known that the eigenvalues are poorly estimated when n is
not orders of magnitude larger than p. In such cases, one
commonly uses a regularized SCM (RSCM) with a linear
shrinkage towards a scaled identity matrix, defined as

Sβ = βS + (1− β)
tr(S)

p
I, (1)

where β ∈ [0, 1] is the regularization parameter. The RSCM
Sβ shares the same set of eigenvectors as the SCM S, but
its eigenvalues are shrinked towards the grand mean of the
eigenvalues of the SCM S. That is, if d1, . . . , dp denote the
eigenvalues of S, then βdj + (1− β)d̄ are the eigenvalues of
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Sβ , where d̄ = p−1
∑p
j=1 dj . Optimal computation of β such

that Sβ has minimum mean squared error (MMSE) has been
developed for example in [1], [2] or in [3] for certain structured
target matrices. A Bayesian approach has been considered in
[4].

However, the estimator in (1) remains sensitive to outliers
and non-Gaussianity. M-estimators of scatter [5] are popular
robust alternatives to SCM. We consider the situation where
n > p and hence a conventional M-estimator of scatter Σ̂
exists under mild conditions on the data (see [6]) and can
thus be used in place of the SCM S in (1). We then propose a
fully automatic data adaptive method to compute the optimal
shrinkage parameter β. First, we derive an approximation for
the optimal parameter βo attaining the minimum MSE and
then propose a data adaptive method for its computation. The
benefit of our approach is that it can be easily applied to any
M-estimator using any weight function u(t). Our simulation
examples illustrate that a shrinkage M-estimator using the
proposed tuning and a robust weight function does not loose
in performance to optimal shrinkage SCM estimator when
the data is Gaussian, but is able to provide significantly
improved performance in the case of heavy-tailed data and
in the presence of outliers.

Earlier works, e.g., in [7], [8], [9], [10], [11], [12], [13],
[14], [15], proposed regularized M-estimators of scatter matrix
either by adding a penalty function to M-estimation objec-
tive function or a diagonal loading term to the respective
first-order solution (M-estimating equation). We consider a
simpler approach that uses a conventional M-estimator and
shrinks its eigenvalues to the grand mean of the eigenvalues.
Our approach permits computation of the optimal shrinkage
parameter for any M-estimation weight function. Preliminary
study of the proposed estimators has appeared in a conference
proceeding [16].

Finally, we note some related but different approaches to
what is pursed in this paper. For example, covariance matrix
estimation in the low sample size large dimensionality setting
commonly arises in radar signal processing, where often some
constrained, mismatched or structured estimation framework
of the covariance matrix is exploited. See e.g., [17], [18],
[19], [20], [21], [22]. On the other hand, there are also other
approaches for parameter tuning of regularized covariance ma-
trix estimators such as cross-validation or expected likelihood
approach [23], [24], [25].

The paper is structured as follows. Section II introduces the
proposed shrinkage M-estimator framework while Section III
discusses automatic computation of the optimal shrinkage
parameter under the assumption of sampling from unspecified
elliptical distribution. Extension to complex case is discussed
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in subsection III-A. Section IV addresses the most commonly
used M-estimators, namely, the Gaussian weight function,
Huber’s weight function, Tyler’s weight and t-distribution
weight function. We provide simulation studies in Section V
and experimental results in Section VI. In Section VI we
validate the promising performance of the proposed approach
both in the case of real-world and synthetic stock market data.
Finally, Section VII concludes, while proofs of theorems and
lemmas are kept in the Appendix.

II. SHRINKAGE M-ESTIMATORS OF SCATTER

In this paper, we assume that n > p (except for Gaussian
loss) and consider an M-estimator of scatter matrix [5] that
solves an estimating equation

Σ̂ =
1

n

n∑
i=1

u(x>i Σ̂
−1

xi)xix
>
i , (2)

where u : [0,∞) → [0,∞) is a non-increasing weight
function. An M-estimator is a sort of adaptively weighted
SCM with weights determined by function u(·). To guarantee
existence of the solution, it is required that the data verifies
the condition stated in [6]. An M-estimator of scatter which
shrinks the eigenvalues towards the grand mean of the eigen-
values is then defined as:

Σ̂β = βΣ̂ + (1− β)
tr(Σ̂)

p
I. (3)

Thus Σ̂β is indexed by the shrinkage parameter β ∈ [0, 1]. If
β = 1, then Σ̂β coincides with the conventional M-estimator
in (2) while if β = 0, then Σ̂β equals an identity matrix
scaled by mean of the eigenvalues of Σ̂. Next we discuss the
commonly used weight functions u.

The RSCM Sβ in (1) is obtained when one uses the Gaus-
sian weight function uG(t) = 1 ∀t. Terminology ‘Gaussian’
stems from the fact that Σ̂ = S is the maximum likelihood
estimate (MLE) of the covariance matrix of MVN distribution.
We return to this in Section III. Huber’s weight function is
defined as

uH(t; c) =

{
1/b, for t 6 c2

c2/(tb), for t > c2
(4)

where c > 0 is a user defined tuning constant that determines
the robustness and efficiency of the estimator and b is a scaling
factor; see subsection IV-B for more details. Another popular
choice is MVT-weight function [6]:

uT(t; ν) =
p+ ν

ν + t
(5)

in which case the corresponding M-estimator Σ̂ is also the
MLE of the scatter matrix parameter of the multivariate t
(MVT) distribution with ν > 0 degrees of freedom (d.o.f.).
We return to this estimator in subsection IV-D. Finally, another
classic choice, with nice robustness properties, is Tyler’s [26]
M-estimator, in which case the weight function is

uTyl(t) =
p

t
. (6)

Both Huber’s and MVT-weight function yield Tyler’s weight
function as special cases; namely, for ν = 0, one notices that
uT(t; ν = 0) = uTyl(t) and in the limit case as c→ 0 Huber’s
weight function tends to Tyler’s weight function.

We would like to stress that n > p is a necessary assumption
for all but Gaussian weight functions for a solution Σ̂ to (2)
to exist. We do not include the limit case n = p since any
affine equivariant M-estimator Σ̂ when n = p and data is in
general position is just a scalar multiple of the SCM S, that is,
Σ̂ = γS for some γ > 0 [27]. For example, M-estimator based
on Huber’s or t-weights are affine equivariant. Moreover, note
that Theorem 2 in [28] ensures similar results in the large
sample regime. Namely, the following convergence is proved

‖Σ̂− Ŝnp‖
a.s−−−−−→

n,p→∞
0

with n/p → c ∈ (0, 1) and Ŝnp is an appropriate weighted
SCM, and the norm denotes the spectral norm.

An M-estimator is a consistent estimator of the M-functional
of scatter matrix, defined as

Σ0 = E
[
u(x>Σ−10 x)xx>

]
. (7)

If the population M-functional Σ0 is known, then by defining
a 1-step estimator

C =
1

n

n∑
i=1

u(x>i Σ−10 xi)xix
>
i , (8)

we can compute

Cβ = βC + (1− β)[tr(C)/p]I, (9)

which serves as a proxy for Σ̂β . Naturally, such an estimator
is fictional, since the initial value Σ0 is unknown. The 1-step
estimator C is, by its construction, an unbiased estimator of
Σ0, i.e., E[C] = Σ0.

Ideally we would like to find the value of β ∈ [0, 1] for
which the corresponding estimator Σ̂β attains the minimum
MSE, that is,

βo = arg min
β

{
MSE(Σ̂β) = E

[∥∥Σ̂β −Σ0‖2F
]}
, (10)

where ‖ · ‖F denotes the Frobenius matrix norm (i.e.,
‖A‖2F = tr(A>A) and ‖A‖2F = tr(AHA) for real-valued and
complex-valued matrices, respectively, where (·)H denotes the
Hermitian transpose). Since solving (10) is not feasible due
to the implicit form of M-estimators, we instead solve the
following much simpler problem:

βapp
o = arg min

β

{
MSE(Cβ) = E

[∥∥Cβ −Σ0

∥∥2
F

]}
. (11)

Such approach was also used in [29] to derive an optimal
parameter for the shrinkage Tyler’s M-estimator of scatter
proposed by the authors,

Before stating the expression for βapp
o we introduce a

sphericity measure of scatter, defined as

γ =
p tr(Σ2

0)

tr(Σ0)2
. (12)
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Sphericity γ [30], [31] measures how close Σ0 is to a scaled
identity matrix: γ ∈ [1, p] where γ = 1 if and only if Σ0 ∝ I
and γ = p if Σ0 has rank equal to 1.

Theorem 1. Suppose x1, . . . ,xn is an i.i.d. random sample
from any p-variate distribution, and u is a weight function for
which the expectation E[tr(C2)] exists. The oracle parameter
βapp
o in (11) is

βapp
o =

‖Σ0 − ηoI‖2F
E
[∥∥C− (tr(C)/p)I

∥∥2
F

] (13)

=
p(γ − 1)η2o

E[tr(C2)]− p−1E[tr(C)2]
(14)

where ηo = tr(Σ0)/p and γ is defined in (12). Note that
βapp
o ∈ [0, 1) and the value of the MSE at the optimum is

MSE(Cβapp
o

) =
E[tr(C)2]− tr(Σ0)2

p
+(1−βapp

o )
∥∥Σ0−ηoI

∥∥2
F
.

(15)

Proof. The proof is postponed to Appendix A.

In the next section, we derive a more explicit form of βapp
o

by assuming that the data is generated from an unspecified
elliptically symmetric distribution.

III. SHRINKAGE PARAMETER FOR ELLIPTICAL SAMPLES

Maronna [5] developed M-estimators of scatter matrices
originally within the framework of elliptically symmetric dis-
tributions [32], [33]. The probability density function (p.d.f.)
of centered (zero mean) elliptically distributed random vector,
denoted by x ∼ Ep(0,Σ, g), is

f(x) = Cp,g|Σ|−1/2g
(
x>Σ−1x

)
, (16)

where Σ is a positive definite symmetric matrix parameter,
called the scatter matrix, g : [0,∞) → [0,∞) is the density
generator, which is a fixed function that is independent of
x and Σ, and Cp,g is a normalizing constant ensuring that
f(x) integrates to 1. The density generator g determines
the elliptical distribution. For example, the MVN distribution
Np(0,Σ) is obtained when g(t) = exp(−t/2) and the t-
distribution with ν d.o.f., denoted x ∼ tν(0,Σ), is obtained
when g(t) = (1 + t/ν)−(p+ν)/2. Then the weight function
for the MLE of scatter matrix corresponds to the case that
the weight function is of the form u(t) ∝ −g′(t)/g(t). This
yields (5) as the weight function for the MLE of scatter for
t-distribution. If the second moments of x exists, then g can
be defined so that Σ represents the covariance matrix of x,
i.e., Σ = cov(x); see [33] for details.

When x ∼ Ep(0,Σ, g), then the M-functional Σ0 in (7)
is related to underlying scatter matrix parameter Σ via the
relationship

Σ0 = σΣ, (17)

where σ > 0 is a solution to an equation

E
[
ψ

(
r2

σ

)]
= p, (18)

where ψ(t) = u(t)t and r = ‖Σ−1/2x‖. Often σ needs to be
solved numerically from (18) but in some cases an analytic

expression can be derived. If x ∼ Ep(0,Σ, g) and the used
weight function matches with the data distribution, so u(t) ∝
−g′(t)/g(t), then σ = 1.

Next we derive expressions for E[tr(C)2] and E[tr(C2)]
appearing in the denominator of βapp

o in (14). These depend
on a constant ψ1 (which depends on weight function u via
ψ(t) = u(t)t) as follows:

ψ1 =
1

p(p+ 2)
E
[
ψ
(r2
σ

)2]
, (19)

where the statistical expectation is again computed w.r.t.
distribution of the positive random variable r = ‖Σ−1/2x‖.

Lemma 1. Suppose x1, . . . ,xn is an i.i.d. random sample
from Ep(0,Σ, g). Then

E
[

tr
(
C2
)]

=

(
1 +

2ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)2

and

E[tr(C)2] =
2ψ1

n
tr(Σ2

0) +
(

1 +
ψ1 − 1

n

)
tr(Σ0)2

given that expectation (19) exists.

Proof. The proof is given in Appendix B.

This then yields the following main result.

Theorem 2. Let x1, . . . ,xn denote an i.i.d. random sample
from an elliptical distribution Ep(0,Σ, g). Then the oracle
parameter βapp

o that minimizes the MSE in Theorem 1 is

βapp
o =

n(γ − 1)

n(γ − 1)(1− 1/n) + ψ1(1− 1/p)(2γ + p)
(20)

where γ is defined in (12) and ψ1 in (19).

Proof. Follows from Theorem 1 after substituting the values
for E

[
tr
(
C2
)]

and E
[

tr(C)2
]

derived in Lemma 1 into the
denominator of βapp

o in (14).

A closely related result is derived in [34, Theorem 1].
Namely, [34] considers oracle estimator as in (9) but us-
ing a shrinkage target equal to identity matrix I instead of
[tr(C)/p]I as in this paper. This is due to the fact that [34]
assumes that tr(Σ) = p. Another difference is that [34]
assumes that Σ0 = Σ (so σ = 1), i.e., that the used M-
estimator is consistent to the scatter matrix of the underlying
elliptical population. This assumption implies knowledge of
the underlying elliptical distribution in which case it is natural
to use the ML-weight uML(t) = −2g(t)/g′(t) as was done
in [34]. Thus Theorem 2 compared to [34, Theorem 1] holds
in the more general case when the scale tr(Σ) is not known
apriori and no assumption on the knowledge of the elliptical
distribution is imposed. Furthermore, in the next subsesction,
we extend the result to the complex-valued case which was
not considered in [34].

Lemma 1 also allows to construct an unbiased estimate of
ϑ = tr(Σ2

0)/p as is shown next.



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XXX, NO. X, 2020 4

Theorem 3. Suppose x1, . . . ,xn is an i.i.d. random sample
from Ep(0,Σ, g). Then an unbiased estimate of ϑ = tr(Σ2

0)/p
for any finite n and any p is

ϑ̂ = bn

(
tr(C2)

p
− ψ1an

p

n

[
tr(C)

p

]2)
, (21)

where

an =
n

n+ ψ1 − 1
and bn =

n

n− 1

(
n− 1 + ψ1

n− 1 + 3ψ1

)
(22)

given that expectation (19), defining ψ1, exists.

Proof. First note that

E[ϑ̂] = bn(E[tr(C2)]/p− an(p/n)E[tr(C)2]/p2). (23)

Then substituting the values of E[tr(C)2] and E
[

tr
(
C2
)]

from Lemma 1 into (23) yields E[ϑ̂] = tr(Σ2
0)/p.

It is instructive to consider in more detail the case of
Gaussian loss. In this case, C equals the SCM, C = S,
and the statistic ϑ̂ no longer depends on the unknown Σ0.
Furthermore, if data is generated from a Gaussian distribution
Np(0,Σ), then ψ1 = 1, Σ0 = Σ and ϑ̂ in (21) reduces
to the estimator that is identical to one proposed by [31,
Lemma 2.1] in the case that location is known (µ = 0); see
also [3, Theorem 2]. Moreover, [2, Theorem 4] is obtained
in the general elliptical case, again assuming known location
parameter (µ = 0).

A. An extension to the complex-valued case

Consider the case that xi, i = 1, . . . , n are complex-
valued (i.e., xi ∈ Cp) and represent a random sample from
a (circular) complex elliptically symmetric (CES) distribution
[33]. The p.d.f. of a random vector x ∈ Cp with centered
(zero mean) CES distribution, denoted using same notation
x ∼ Ep(0,Σ, g), is

f(x) = Cp,g|Σ|−1g
(
xHΣ−1x

)
, x ∈ Cp,

where Σ is the positive definite hermitian (PDH) matrix
parameter, called the scatter matrix, g : [0,∞)→ [0,∞) is the
density generator, which is a fixed function that is independent
of x and Σ, and Cp,g is a normalizing constant ensuring that
f(x) integrates to 1.

An M-estimator of scatter matrix Σ̂ is a PDH matrix that
solves an estimating equation

Σ̂ =
1

n

n∑
i=1

u(xH
i Σ̂
−1

xi)xix
H
i , (24)

where u : [0,∞) → [0,∞) is a non-increasing weight
function. Again, u(t) = 1 gives the SCM S = 1

n

∑
i xix

H
i ,

Huber’s and Tyler’s weight functions are as earlier, stated in
(4) and (6), respectively, whereas uT(t; ν) = 2p+ν

ν+2t corresponds
to MLE of the scatter matrix parameter when sampling from
a p-variate complex t-distribution with ν d.o.f. We refer to
[33], [35] for more details. We may now define the shrinkage
M-estimator as in (3). Definitions (7)-(9) hold also in the
complex-valued case with obvious modifications (replacing
transpose by the Hermitian transpose).

Theorem 1 did not require an assumption that random
vectors are real-valued, i.e., it holds also when x1, . . . ,xn
are i.i.d. complex-valued random vectors. This means that we
only need to derive expectations in Lemma 1 in the case of
random sampling from a CES distribution. First, we define the
parameter ψ1 in the complex-valued case as

ψ1 =
1

p(p+ 1)
E
[
ψ

(
r2

σ

)2]
, (25)

where the expectation is w.r.t. r = ‖Σ−1/2x‖, where x ∼
Ep(0,Σ, g). The analog of Lemma 1 to complex case is given
next.

Lemma 2. Suppose x1, . . . ,xn is an i.i.d. random sample
from a (circular) complex elliptically symmetric distribution
Ep(0,Σ, g). Then

E
[

tr
(
C2
)]

=

(
1 +

ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)2

and

E[tr(C)2] =
ψ1

n
tr(Σ2

0) +
(

1 +
ψ1 − 1

n

)
tr(Σ0)2

given that expectation (25) exists.

Proof. The proof is given in Appendix C.

Plugging in the expectations above into βapp
o derived in

Theorem 1 yields the following result.

Theorem 4. Let x1, . . . ,xn denote an i.i.d. random sample
from a (circular) p-variate complex elliptically symmetric dis-
tribution Ep(0,Σ, g) and assume that expectation (25) exists.
Then the oracle parameter βapp

o that minimizes the MSE in
Theorem 1 is

βapp
o =

n(γ − 1)

n(γ − 1)(1− 1/n) + ψ1(1− 1/p)(γ + p)
, (26)

where γ is defined in (12) and ψ1 in (25).
Furthermore, ϑ̂ defined as in (21) with

an =
n

n+ ψ1 − 1
and bn =

n

n− 1

(
n− 1 + ψ1

n− 1 + 2ψ1

)
is an unbiased estimate of ϑ = tr(Σ2

0)/p for any finite n and
any p.

B. Computing the shrinkage parameter

In order to construct a data-adaptive estimate of βapp
o (either

in real- or complex-valued cases), all we need to estimate is
the sphericity γ and the constant ψ1. An estimate ψ̂1 of ψ1

is constructed separately for each weight function (Gaussian,
Huber’s, MVT- and Tyler’s weight function) in Section IV.
However, it is also possible to use an empirical (sample mean)
version of (19). Next we discuss computation of the sphericity
estimator γ̂.

As an estimator γ̂ we use the estimate derived in [14], which
was named as Ell1-estimator in [2], and defined as

γ̂Ell1* =
n

n− 1

(
p tr

(
1

n

n∑
i=1

xix
>
i

‖xi‖2

)
− p

n

)
(27)
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which for complex-valued case is defined analogously (trans-
pose replaced with the Hermitian transpose).

Next recall that ϑ̂ defined in (21) is an unbiased estimator
of tr(Σ2

0)/p. This statistics depends on C and ψ1 which are
unknown, but a plug-in estimate of ϑ̂ can be constructed by
replacing C and ψ1 with Σ̂ and ψ̂1, respectively. Dividing
this plug-in statistic further by (tr(Σ̂)/p)2, leads to another
estimator of sphericity, named as Ell2-estimator, and defined
as

γ̂Ell2* = b̂n

(
p tr(Σ̂

2
)

tr(Σ̂)2
− ψ̂1ân

p

n

)
, (28)

where the constants ân and b̂n are as defined in Theorem 3
(and Theorem 4 in complex case) but with ψ1 replaced by its
estimate ψ̂1. When one uses Gaussian weight function, then
Σ̂ = S and ψ̂1 = 1 + κ̂, where κ̂ is an estimate of elliptical
kurtosis (cf. subsection IV-A). In this case, γ̂Ell2* corresponds
to Ell2-estimator of sphericity proposed in [2, Sect. IV.B].

In order to guarantee that the estimators remain in the valid
interval, 1 ≤ γ ≤ p, we use

γ̂Ell1 = min(p,max(1, γ̂Ell1*)) (29)

as our final estimator (and similarly for Ell2-estimator). The
related shrinkage parameter can then computed as

β = βapp
o (γ̂Ell1, ψ̂1),

and again similarly for Ell2-estimator.

IV. IMPORTANT SPECIAL CASES

A. Regularized SCM (RSCM) estimator

If one uses Gaussian weight function uG(t) ≡ 1, then
a necessary assumption is that the underlying elliptical dis-
tribution possesses finite 4th-order moments. As discussed
earlier, one may then assume w.l.o.g. that the scatter matrix
parameter equals the covariance matrix, i.e., Σ = cov(x).
When uG(t) ≡ 1, one has that Σ̂ = S and Cβ = Sβ and hence
βo = βapp

o , meaning that the approximate MMSE solution is
exact in this case. Finally, we may relate ψ1 with an elliptical
kurtosis [36] parameter κ:

ψ1 = 1 + κ =


E[r4]

p(p+ 2)
, real case

E[r4]

p(p+ 1)
, complex case

(30)

where the expectation is over the distribution of the random
variable r = ‖Σ−1/2x‖. The elliptical kurtosis parameter is
defined as a generalization of the kurtosis parameter to the
vector case, and as such it vanishes (so κ = 0) when x has
MVN distribution (denoted x ∼ Np(0,Σ)). Since S exists for
any n ≥ 1, we can drop the assumption that n > p in this
case.

Corollary 1. Let x1, . . . ,xn denote an i.i.d. random sample
from an (real or complex) elliptical distribution Ep(0,Σ, g)
with finite 4th order moments and covariance matrix Σ =

cov(x). Then for the shrinkage SCM estimator Sβ in (1) one
has that

βo = arg min
β

E
[∥∥Sβ −Σ‖2F

]
=

n(γ − 1)

n(γ − 1) + p+ a
, (31)

where

a =

{
κ(2γ(1− 1/p) + p− 1) + γ(1− 2/p), real case
κ(γ(1− 1/p) + p− 1)− γ/p, complex case

Proof. The result follows from Theorem 2 and Theorem 4
since Cβ = Sβ and the M-functional for Gaussian loss is
Σ0 = cov(x) = Σ and σ = 1. Since for Gaussian loss,
ψ(t) = t, we notice from (19) and (25) hat

ψ1 = 1 + κ. (32)

Plugging ψ1 = 1 + κ into βapp
o in Theorem 2 and Theorem 4

yields the stated expressions, respectively.

The elliptical kurtosis parameter κ can be easily estimated
using the following relationship to kurtosis even in the cases
when p > n. First, recall that kurtosis of a random variable x
in the real and complex case is defined as

kurt(x) =
E[x4]

(E[x2])2
− 3 and kurt(x) =

E[|x|4]

(E[|x|2])2
− 2,

(33)
respectively. Kurtosis vanishes when the random variable has
real or complex Gaussian distribution with variance E[|x|2].
The following result establishes the relationship of elliptical
kurtosis parameter with marginal kurtosis.

Lemma 3. Assume that x is a random vector from real or
complex elliptically symmetric distribution with covariance
matrix Σ = cov(x) possessing finite 4th order moments. Then

κ =

{
1
3kurt(xj), real case
1
2kurt(xj), complex case

(34)

where xj is any jth component of x (j ∈ {1, . . . , p}).

Proof. The proof is given in Appendix D.

Since all marginal variables possess the same kurtosis, an
estimate κ̂ can be formed simply as the mean of marginal
sample kurtosis statistics. This is the same estimate of the el-
liptical kurtosis proposed in [2]. Note that [2] only considered
the real-valued case, and thus Corollary 1 allows us to extend
the RSCM estimator in [2] to complex-valued case.

In the sequel, we use acronym RSCM-Ell1 to refer to
estimator Sβ with β computed as β = βo(κ̂, γ̂

Ell1) with βo
given by (31) and γ̂Ell1 being the estimate of sphericity defined
in (29) and κ̂ an estimate of elliptical kurtosis described above.
An RSCM-Ell2 estimator is defined similarly but now using
Ell2-estimator of sphericity.

A natural competitor for RSCM-Ell1 or RSCM-Ell2 estima-
tors (at least in the real-valued case) is the estimator proposed
by Ledoit and Wolf [1], referred to as LWE. We note that
LWE also uses RSCM Sβ , but the parameter β is computed in
a different manner. An extra benefit of our approach is that an
estimator of the optimal shrinkage parameter can be computed
for real- or complex-valued observations while LWE assumes
real-valued observations.
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B. Regularized Huber’s M-estimator (RHub)

Next consider the Huber’s weight function uH(t; c) in (4).
Note that b > 0 is a scaling constant; if Σ̂ is Huber M-
estimator of scatter when b = 1, then the Huber M-estimator
of scatter when b = bo is simply boΣ̂. The scaling constant b is
usually chosen so that the resulting scatter estimator is Fisher
consistent for the covariance matrix at MVN distribution, i.e,
σ = 1 when x ∼ Np(0,Σ). In the real case, this holds when

b = Fχ2
p+2

(c2) + c2(1− Fχ2
p
(c2))/p,

where Fχ2
p
(·) denotes the cumulative distribution function

(c.d.f.) of chi-squared distribution with p d.o.f. Since r2 =
‖Σ−1/2x‖2 has a χ2

p-distribution when x ∼ Np(0,Σ), the
tuning constant c2 is chosen as qth upper quantile of χ2

p-
distribution:

q = Pr(r2 ≤ c2)⇔ F−1χ2
p

(q) = c2 (35)

for some q ∈ (0, 1]. Tuning constant c and scaling factor b can
be determined similarly in the complex-valued case; see [33],
[35] for details.

Let us define a winsorized observation w based on x ∼
Ep(0,Σ, g) as

w = wins(x; Σ, c) =
1√
b

x, ‖Σ−1/2x‖2 6 c2

c
x

‖Σ−1/2x‖
, ‖Σ−1/2x‖2 > c2

where c is the threshold c of Huber’s weight function and
b is the respective scaling factor. The winsorized r.v. w also
has an elliptically symmetric distribution since the contours
remain elliptical in shape (so the p.d.f. is still defined by (16)
but for a truncated density generator g) and thus it shares the
properties of elliptical random vectors.

If we take σ = 1 (which holds at least when x has MVN
distribution), then the constant ψ1 can be written as

ψ1 =
E[ψ2

H (‖Σ−1/2x‖2; c)]

p(p+ 2)
=

E
[
‖Σ−1/2w‖4

]
p(p+ 2)

= 1 + κw

where κw is the elliptical kurtosis parameter (cf. Lemma 3)
of an elliptical random vector w. An estimate ψ̂1 of ψ1 can
be then calculated similarly as ψ1 for RSCM-Ell1 or RSCM-
Ell2 estimators defined earlier (recall relation (32)). The only
difference is that κ is now computed for winsorized data
{wi}ni=1, where wi = wins(xi; Σ̂, c) and Σ̂ denotes the
Huber’s M-estimator.

In the sequel, we use acronym RHub-Ell1 or RHub-Ell2 to
refer to shrinkage M-estimator Σ̂β that uses Huber’s weight
u(·) = uH(·; c) with threshold c2 determined from (35) for
user specified q and shrinkage parameter β = βapp

o (γ̂Ell1, ψ̂1).
or β = βapp

o (γ̂Ell2, ψ̂1), respectively.

C. Regularized Tyler’s M-estimator (RTyl)

Let V denote a shape matrix (normalized scatter matrix),
defined as

V = pΣ/ tr(Σ),

where Σ denotes the scatter matrix parameter of the ES
distribution. Note that tr(V) = p. If one uses Tyler’s weight
function in (6), then (17) holds with σ = p/ tr(Σ), i.e.,
Σ0 = V, that is, Tyler’s M-estimator is an estimate of the
shape matrix. The following result hence follows at once from
Theorem 2 and Theorem 4.

Corollary 2. Let x1, . . . ,xn denote an i.i.d. random sample
from a (real or complex) elliptical distribution Ep(0,Σ, g).
When using Tyler’s weight (6), it holds that

βapp
o = arg min

β
E
[∥∥Cβ −V‖2F

]

=


n(γ − 1)

n(γ − 1)(1− 1
n ) + p−1

p+2 (2γ + p)
, real case

n(γ − 1)

n(γ − 1)(1− 1
n ) + p−1

p+1 (γ + p)
, complex case

Proof. The real-valued case follows by noting that ψ1 in
(19) is equal to ψ1 = p/(p + 2) for all random vectors
x ∼ Ep(0,Σ, g) regardless of g (i.e., the functional form of the
density generator) and that Σ0 = V. Plugging ψ1 = p/(p+2)
into (20) yields the stated expression. The complex-valued case
follows similarly.

Since Tyler’s M-estimator verifies tr(Σ̂) = p, the shrinkage
estimator in (3) simplifies to

Σ̂β = βΣ̂ + (1− β)I, (36)

where Σ̂ is Tyler’s M-estimator, i.e., an M-estimator based on
weight (6). By RTyl-Ell1 we refer to (36), where the shrinkage
parameter is computed as β = βapp

o (γ̂Ell1) with βapp
o given by

Corollary 2 and γ̂Ell1 by (29).
A related regularized Tyler’s estimator was proposed by [7]

as the limit of the algorithm

Σk+1 ← β
p

n

n∑
i=1

xix
>
i

x>i V−1k xi
+ (1− β)I

Vk+1 ← pΣk+1/ tr(Σk+1),

(37)

where β ∈ (0, 1) is a fixed shrinkage parameter. This al-
gorithm represents a diagonally loaded version of the fixed-
point algorithm given for Tyler’s M-estimator. Uniqueness and
convergence of the recursive algorithm has been later derived
in [29], [12]. By CWH estimator we now refer to estimator
obtained by iterating (37) using same value β = βapp

o (γ̂Ell1)
as for RTyl-Ell1. An interesting question then is how different
is RTyl-Ell1 in its performance from CWH. We explore this
by simulation studies later. This is interesting as the former
is simply shrinking the eigenvalues of Tyler’s M-estimator
towards its grand mean where as the latter does not have
an explicit connection to Tyler’s M-estimator Σ̂ for any
β ∈ (0, 1).

D. Regularized M-estimator for MVT distribution (RMVT)

We assume that the data is arising from a MVT distribution
tν(0,Σ) but the d.o.f. parameter ν is unknown and is adap-
tively estimated from the data using Algorithm 1 explained
below. Once ν̂ is found, we use function u(·) = uT(·; ν̂)
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to compute the underlying M-estimator Σ̂ for the postulated
MVT distribution.

Yet, we need to address the question of how the constant
ψ1 is computed. Due to data adaptive estimation of ν, we can
assume that σ ≈ 1 since the scaling factor σ equals unity
for an MLE of the scatter matrix parameter. We use the fact
that for MVT distribution (i.e., when x ∼ tν(0,Σ)), the ψ1

parameter is1

ψ1 =


p+ ν

2 + p+ ν
, real case

2p+ ν

2 + 2p+ ν
, complex case

.

Hence, a natural estimate is ψ̂1 = (p + ν̂)/(2 + p + ν̂) in
the real case. An estimate of ψ̂1 is constructed similarly in
the complex case. We use acronym RMVT-Ell1 to refer to
shrinkage M-estimator Σ̂β that uses u(·; ν̂) with shrinkage
parameter calculated by β = βapp

o (γ̂Ell1, ψ̂1). RMVT-Ell2
is constructed similarly, but now Ell2-estimator of sphericity
γ̂Ell2 is used.

Next we discuss our approach for estimating ν from the
data. Assume x ∼ tν(0,Σ, g) and denote η = tr(Σ)/p. Then,

R = cov(x) = (ν/(ν − 2))Σ

and hence tr(R)/p = (ν/(ν − 2)) tr(Σ)/p. This means that

ν

ν − 2
=

tr(R)

tr(Σ)
= ηratio

from which we obtain the relation

ν =
2ηratio

ηratio − 1
. (38)

The above relation holds true in both real and complex cases.
Then given an estimate Σ̂ of Σ, we may compute an estimate
η̂ratio = tr(S)/ tr(Σ̂) which in turn provides an estimate ν̂
via (38). This gives rise to an iterative algorithm to estimate
ν detailed in Algorithm 1. In the simulations, the algorithm
converged, but already 2 iterations are sufficient to yield
accuracy to first decimal; see Figure 1 for an illustration. The
initial estimate is νo = 2/(max(0, κ̂) + δ) + 4, where κ̂ is
an estimate of marginal kurtosis explained in subsection IV-A
(see also [2] for more details) and δ > 0 is a small number.
The initial start νo is based on the following relationship with
elliptical kurtosis parameter, κ = 2/(ν − 4), i.e., ν = 2/κ+ 4
which holds true both in real and complex cases. Again the
estimate ν̂ in the complex-valued case is constructed similarly.
Note that also other estimators of ν are proposed in the
literature, for example in [34].

V. SIMULATION STUDIES

In the simulation study, we generate samples from real
ES distributions with a scatter matrix Σ following an AR(1)
structure, (Σ)ij = τ%|i−j|, where % ∈ (0, 1) and scale
parameter τ = tr(Σ)/p = 10. When % ↓ 0, then Σ is close
to an identity matrix scaled by τ , and when % ↑ 1, Σ tends to
a singular matrix of rank 1. The results are reported for the

1Note that the t-weight in the complex case is [33]: uT(t; ν) =
2p+ν
ν+2t

.

100 150 200 250 300
5

6

7

8

n

ν

ν̂ (Tmax = 15)
ν̂ (Tmax = 2)
ν0

99 100 101
5.64

5.66

5.68

Fig. 1. Average ν̂ by running the Algorithm 1 with different choices of
Tmax. Also shown is the initial estimate ν0. The samples are generated from
a p-variate t-distribution with ν = 5 d.o.f., where Σ follows the same AR(1)
covariance matrix structure explained in the simulation set-up of Section V;
% = 0.6 and p = 40, As can be noted, ν̂ converge to ν = 5 as n increases,
albeit the convergence is a bit slow.

Algorithm 1: Automatic data-adaptive computation of
the d.o.f. parameter ν
Input : data matrix X of size n× p, maximum

number of iterations Tmax
Initialize: Compute ν0 = 2/max(0, κ̂) + 4, where κ̂

is an estimate of κ explained in the text.
for t = 0, 1, . . . , Tmax do

Set Σ̂t = Σ̂, where Σ̂ denotes the t-MLE based on
current estimate of d.o.f. parameter ν = νt, i.e.,
solving the M-estimating equation

Σ̂ =
1

n

n∑
i=1

u(x>i Σ̂
−1

xi)xix
>
i

with u(·) = uT(·; νt) is the MVT-weight function.

Update the ratio η̂t =
tr(S)

tr(Σ̂t)
.

Upate the d.o.f. parameter νt+1 =
2ηt
ηt − 1

.

if |νt+1 − νt|/νt < 0.01 then
break

Output : ν̂ = νt+1

proposed shrinkage M-estimators using shrinkage parameter
estimates based on Ell1-estimator of sphericity. However, for
notational convenience, we drop the suffix -Ell1 from the pro-
posed estimators. Thus the proposed estimators, described in
Section IV are referred to as RSCM, RMVT, RHub, and RTyl.
Furthermore, acronyms LW, CWH and RBLW are used to
refer to estimators proposed in [1] (see also subsection IV-A),
[29] (see also subsection IV-C and (37)) and [8], respectively.
RBLW is the Rao-Blackwellized LW estimator, but unlike LW
estimator, it assumes that the data distribution is Gaussian.

We also compare to RSCM estimator Sβ in (1), but now the
shrinkage parameter β is chosen via k-fold cross-validation
(CV), where as cross-validation fit we use ‖Sβ,tr − Sval‖F,
where Sval is the SCM based on the validation set (data fold
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Fig. 2. NMSE as a function of n when samples are drawn from a MVN
distribution Np(0,Σ) with an AR(1) structure; % = 0.6 and p = 40.
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Fig. 3. Shrinkage parameter β as a function of n when samples are drawn
from a MVN distribution (left panel) and a t-distribution with ν = 5 d.o.f.
(right panel), where Σ has an AR(1) structure; % = 0.6 and p = 40.

that was left out) and Sβ,tr is the RSCM computed on the
training set (data based on remaining folds) for a given β. As
a grid for β for the CV method we use a uniform grid in [0, 1]
with 0.05 increments and 5-fold cross-validation. We call this
method as RSCM-CV or simply CV. All simulation results in
this section are averaged over 2000 Monte-Carlo trials. Since
n > p is assumed for all estimators expect for RSCM, we
do not consider the case low sample regime, n ≤ p, in our
simulation studies. Furthermore, we adopt the MSE (squared
Frobenius norm) as our performance metric as it is used in
deriving the optimal shrinkage parameters in this paper. It is
important to keep in mind, however, that in the low sample
regime and for different performance metrics, the performance
differences between estimators can often be noticeable and
even quite different than in the n > p regime that is considered
here; See e.g., [8], [4], [2] for numerical illustrations and [37],
[38] for different distances between covariances that could be
used instead of the MSE metric.

A. Gaussian data

The data is generated from MVN distribution Np(0,Σ),
where Σ has an AR(1) covariance matrix structure with
% = 0.6. The dimension is p = 40 and n varies from 60 to
280. Value q = 0.7 determining the threshold c is used in (35)
for Huber’s weight. Since Huber’s M-estimator is scaled to be

consistent to the covariance matrix for Gaussian samples, the
underlying population parameter Σ0 coincides with the covari-
ance matrix Σ in this case. We also scaled the MVT-weight
uT(t; ν) so that it is consistent to Σ for Gaussian data. Figure 2
compares the normalized MSE (NMSE) ‖Σ̂β − Σ‖2F/‖Σ‖2F
of different estimators w.r.t. increasing sample length n. It
can be noted that all estimators provide essentially equally
good estimator of the covariance matrix Σ for Gaussian data;
RSCM and RMVT are performing equally well, largely due
to the effect of data-adaptive estimation of d.o.f. parameter ν.
It should be noted that their performance difference to LW
or RHub estimators are still marginal and differences can be
spotted only by zooming in as in the sub-plot of Figure 2.
As expected, RBLW estimator has a slight advantage over the
other estimators in this case. The left panel of Figure 3 shows
the (average) shrinkage parameter β as a function of n. As
can be noted, the average shrinkage parameter of the proposed
RSCM estimator can be seen to be roughly an average of CV
and LW shrinkage parameters.

B. Heavy-tailed data

Next we computed the NMSE curves when the data is
generated from a heavy-tailed t-distribution with ν = 5 and
ν = 3 d.o.f. Note that NMSE of each estimator is now
compared against the underlying population parameter Σ0 of
each M-estimator. Figure 4 displays the results. RBLW had a
very poor performance which is due to its strict assumption
of Gaussianity. It can be noted that CV method performs
similarly, but slightly worse, than RSCM or LW. This can
be partially attested to poor robustness properties of cross-
validation. In the case of ν = 3 d.o.f., also the non-robust
RSCM and LW provided large NMSE and thus all non-robust
estimators are not visible in the right panel of Figure 4.
This was expected since t-distribution with ν = 3 d.o.f. is
very heavy-tailed with non-finite kurtosis. As can be noted,
the proposed robust RHub and RMVT estimators provide
significantly improved performance. We can also notice that
RMVT estimator that adaptively estimates the d.o.f. ν from the
data is able to outperform the regularized Huber’s estimator
(RHub).

The right panel of Figure 3 depicts the (average) shrinkage
parameter β as a function of n in the case that samples are
drawn from a t-distribution with ν = 5 d.o.f. As can be noted
the robust shrinkage estimators (RHub and RMVT) use larger
shrinkage parameter value β than the non-robust RSCM and
LW estimators. Compared to RSCM and LW, the RBLW (resp.
CV) is seen to overestimate (resp. underestimate) the shrinkage
parameter as it obtains much larger (resp. smaller) values.

Next we investigate how the estimators are able to es-
timate the shape matrix, i.e., the covariance matrix up to
a scale. Figure 5 displays the NMSE, ‖V̂ − V‖2F/‖V‖2F,
of different shrinkage shape matrix estimators, defined as
V̂ = pΣ̂β/ tr(Σ̂β) when samples are generated from a t-
distribution with ν = 5 d.o.f. Note that such normalization is
not necessary for CWH or RTyl since they verify tr(Σ̂) = p
in the first place. Figure 5 illustrate both the case when
correlation parameter % of the AR(1) scatter matrix parameter
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Fig. 4. NMSE as a function of n when samples are drawn from a p-variate
t-distribution with ν = 5 (left panel) and ν = 3 (right panel) d.o.f. The
scatter matrix follows an AR(1) structure; % = 0.6 and p = 40.

Σ is fixed while n varies and the case that n is fixed while
% varies. As can be seen from the top panel of Figure 5, all
robust shape estimators are performing well and very similarly.
In fact, performance of RMVT and CWH is essentially the
same. We can also observe that the two different approaches
for shrinking Tyler’s M-estimator, so CWH and the proposed
RTyl are very similar. We can note from the bottom panels of
Figure 5 that when % ≈ 0 (so Σ is close to a scaled identity
matrix) all estimators perform similarly. This is because all
estimators are shrunk heavily towards the scaled identity ma-
trix (namely, β ≈ 0 for all estimators). Similarly, when % ≈ 1
(so Σ is close to a singular matrix of rank 1), all estimators
have a rather similar performance. This is because the true
scatter matrix Σ is poorly conditioned (cond(Σ) ≈ 7000)
and all estimators share similar difficulties of capturing the
subspace structure due to limited training data and no a priori
information about such structure. Indeed biggest differences
between estimators are observed when Σ has no particular
structure, i.e., % in the range [0.4, 0.7].

C. Complex-valued data

Finally, we note that an important property of our shrinkage
method is that it can be used for complex-valued data as
well. Some other methods in the previous study, such as
RBLW or LW assume real-valued data. In the supplementary
material, we provide the results of a simulation study in the
same set-up, but now the data being generated from circular
complex Gaussian and heavy-tailed t-distribution, respectively.
These are distributions in the class of CES distributions. In
our study we also include empirical Bayes diagonal loading
estimator (EBDL) [4] which was developed for complex
circular Gaussian data. Results obtained for complex-valued
data attest the validity of the findings in the real-valued case.

VI. APPLICATION TO FINANCIAL DATA AND PORTFOLIO
DESIGN

A. Financial data

We use the S&P 500 stock market index (see Figure 6),
which measures the stock performance of 500 large compa-
nies listed on stock exchanges in the United States, and its
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Fig. 5. NMSE of different shrinkage estimators of shape matrix V when
samples are drawn a p = 40 variate t-distribution with ν = 5 d.o.f. having an
AR(1) structure: (a) % = 0.6 and sample length n varies; (b) and (c) illustrate
the case when % varies while the sample length n is fixed.
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Fig. 6. Log-prices of the S&P 500 index.

constituent stocks during the period 2016-01-01 to 2020-01-
31.

We can easily observe from the returns shown in Figure 7
the effect of volatility clustering over time that is responsible
for heavy tails. More concretely, if we assume that the data
follows an MVT distribution, then we can compute the degrees
of freedom ν on a rolling-window basis and verify that indeed
the data has heavy tails with ν ≈ 5 (from mid-2017, ν varies
between 4.5 and 6) as shown in Figure 8.

Factor model. Let xi denote the returns of the p stocks at
time i. It turns out that the stock returns are largely driven by
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Fig. 8. Degrees of freedom ν of the S&P 500 index.

very few k � p financial factors fi as

xi = Bfi + εi, (39)

where B ∈ Rp×k is the factor loading matrix (which is
very tall since k � p) and εi is the residual idiosyncratic
component. As a consequence, the covariance matrix of these
data has the form (assuming normalized factors):

Σ = BB> + Ψ (40)

where Ψ is the (diagonal) covariance matrix of the residuals.
Typically, the term BB> is much stronger than Ψ and this
leads to the commonly used spike model in RMT (Random
Matrix Theory) [39] which contains a few large eigenvalues
and the rest small eigenvalues form the so-called bulk. Figure 9
shows the histogram of the empirical eigenvalues of the
covariance matrix estimated from p = 50 stocks from the
S&P 500 market data, where a very strong eigenvalue can be
observed corresponding to the market factor.

B. Results in terms of MSE

Since our shrinkage estimators are derived to minimize the
MSE in the estimation of the covariance matrix, we start by
showing the obtained MSE in the context of financial data.
We consider seven methods in our comparison:
• LWE is the Ledoit-Wolf estimator [1];
• RMVT-Ell1 described in subsection IV-D;
• MVT: equals RMVT-Ell1 with no shrinkage (β = 1);
• RSCM-Ell1 estimator described in subsection IV-A;
• SCM: equals RSCM-Ell1 with no shrinkage (β = 1);
• RHub-Ell1 described in subsection IV-B; and
• RSCM-Ell2, RMVT-Ell2, and RHub-Ell2 are as RSCM-

Ell1, RMVT-Ell1, and RHub-Ell1, respectively, but using
γ̂Ell2 estimator of sphericity γ (cf. subsection III-B).
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Fig. 9. Histogram of empirical eigenvalues obtained from the market data
(p = 50) showing a strong market factor.
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Fig. 10. Normalized MSE of covariance matrix vs number of observations
for Gaussian data (with p = 50).

To make sure that the robust estimators do not underperform
the benchmarks when the data is not heavy-tailed, we start
by generating synthetic MVN data following the empirical
covariance matrix previously obtained from market data (see
Figure 9). Figure 10 displays the normalized MSE of the
covariance matrix E

[
‖Σ̂ − Σ‖2F

]
via 200 Monte-Carlo sim-

ulations. We do not observe any significant difference among
the methods. Figure 11 shows the normalized MSE of the
precision matrix E

[
‖Σ̂
−1
− Σ−1‖2F

]
via 200 Monte-Carlo

simulations. The main observation is that the two methods
without shrinkage significantly underperform.

We now generate heavy-tailed synthetic data from a t-
distribution following the empirical covariance matrix pre-
viously obtained from market data (see Figure 9) and with
d.o.f. ν = 5. Figure 12 shows the normalized MSE of
the covariance matrix. We can clearly observe a striking
difference showing the superiority of robust estimators (i.e.,
MVT, RMVT, RHub) over non-robust estimators. Among the
robust estimators, the proposed shrinkage methods clearly
outperform the non-shrinkage MVT in the low-sample regime,
as expected. Figure 13 displays the normalized MSE of the
precision matrix, with similar observations.
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Fig. 11. Normalized MSE of precision matrix vs number of observations for
Gaussian data (with p = 50).
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C. Results in terms of portfolio Sharpe ratio

After having shown the superiority of our proposed estima-
tors, RMVT and RHub in terms of MSE in the estimation of
the covariance matrix under heavy-tailed data, we now turn
to assess the effects in terms of portfolio design. Note that an
improvement of MSE in the covariance matrix may or may not
translate into a significant improvement in terms of portfolio
design; this depends on exactly what portfolio design is used
and how it employs the estimated covariance matrix.

uniform

index
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RHub−Ell1
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RMVT−Ell1
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RSCM−Ell1

RSCM−LW

MVT

SCM
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Fig. 14. Boxplot of Sharpe ratio obtained by the mean-variance portfolio
according to different estimators for the covariance matrix.

For simplicity, we consider the most basic Markowitz port-
folio design [40]:

minimize
w

w>Σw

subject to w>µ ≥ α
1>w = 1,

where µ is the expected return of the returns and α is the
minimum return desired for the portfolio.

We perform our backtest during the market period 2016-01-
01 to 2020-01-31 on a rolling-window basis with a window
length of 378 days (1.5 years). To make sure that our results
are realistic, rather than performing a single backtest, we use
the R package portfolioBacktest [41] to randomly select a large
number of 200 datasets from the market data in the following
way: each dataset chooses randomly p = 200 stocks from the
universe of 500, as well as a random period of 504 days (2
years) among the available period from 2016-01-01 to 2020-
01-31.

Figure 14 shows a boxplot with the Sharpe ratio2 obtained
mean-variance portfolio according to different estimators for
the covariance matrix (along with two benchmarks: the index
and the 1/N or uniform portfolio). We can observe that the
two methods without shrinkage underperform the shrinkage
methods (in particular the SCM). Among the shrinkage meth-
ods, we can see that our robust estimators slightly outperform
the others, although the improvement is not extremely signi-
ficative.

D. Supplementary studies

Supplementary material to this paper also contain compar-
ison of the proposed methods in the set-up described in [2],
where the global mean variance portfolio (GMVP) is used as
portfolio optimization strategy and the net returns correspond
to p = 50 stocks that are currently included in the Hang
Seng Index (HSI). Compared methods include GMVP weight
vector based on LW estimator and an estimator proposed in
[42] that uses robust regularized Tyler’s M-estimator with a

2The Sharpe ratio is defined as the expected return normalized with the

volatility or standard deviation: SR =
w>µ−rf√

w>Σw
, where rf is the return of

the risk-free asset.
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tuning parameter selection optimized for GMVP strategy. We
observed that GMVP based on the proposed RHub and RSCM
are the best performing methods in terms of realized risk.
We note that method of [42] was excluded in the study in
subsection VI-C due to its high computational cost in the high-
dimensional setting.

VII. CONCLUSIONS AND PERSPECTIVES

This work proposed an original and fully automatic ap-
proach to compute an optimal shrinkage parameter in the
context of heavy-tailed distributions and/or in presence of
outliers. It has been shown that the performance of the
method is similar to optimal one when the data is Gaussian
while it outperforms shrinkage Gaussian-based methods when
the data distribution turns out to be non-Gaussian. One of
the benefits of the proposed adaptive shrinkage parameter
selection is that it permits using real-valued or complex-valued
data. Furthermore, a MATLAB toolbox called ShrinkM is
freely available at http://users.spa.aalto.fi/esollila/shrinkM/ that
includes functions to compute all of the proposed estimators
(RHub, RTyl, RSCM, RMVT, and CV) as well as a script of
one the simulation studies presented in the paper to reproduce
the results. Furthermore, this paper opens several ways, no-
tably considering the challenging cases where p > n which
is left for future work. Supplementary materials also provide
additional examples illustrating the benefits of the proposed
estimators.

APPENDIX

A. Proof of Theorem 1

Write L(β) = MSE(Cβ) = E[‖Cβ − Σ0‖2F]. Then note
that

L(β) = E
[∥∥βC + (1− β)p−1 tr(C)I−Σ0

∥∥2
F

]
= E

[∥∥β(C−Σ0) + (1− β)
(
p−1 tr(C)I−Σ0

)∥∥2
F

]
= β2a1 + (1− β)2a2 + 2β(1− β)a3 (41)

where a1 = E
[∥∥C−Σ0

∥∥2
F

] = E
[

tr(C2)
]
− tr(Σ2

0), and

a2 = E
[∥∥p−1 tr(C)I−Σ0

∥∥2
F

]
= a3 + tr(Σ2

0)− pη2o = a3 + p(γ − 1)η2o

a3 = p−1E
[

tr(C) tr(C−Σ0)
]

= p−1E
[

tr(C)2
]
− η2op

and ηo = tr(Σ0)/p. Note that L(β) is a convex quadratic
function in β with a unique minimum given by

βapp
o =

a2 − a3
(a1 − a3) + (a2 − a3)

. (42)

Substituting the expressions for constants a1, a2 and a3 into
βapp
o yields the stated result.
The expression for MSE of Cβapp

o
then follows by substi-

tuting βapp
o into expression for L(β) in (41) and using the

relation, (1−βapp
o )(a2− a3) = βapp

o (a1− a3), which follows
from (42). This yields the MSE expression

L(βapp
o ) = a2 − βapp

o (a2 − a3) = a3 + (1− βapp
o )(a2 − a3).

This gives the stated MSE expression after noting that a2 −
a3 = ‖Σ0 − η0I‖2F.

B. Proof of Lemma 1

First recall that Σ0 = σΣ, and hence

C =
1

n

n∑
i=1

u(x>i Σ−10 xi)xix
>
i

= Σ
1/2
0

{
1

n

n∑
i=1

u
(r2i
σ

)r2i
σ

viv
>
i

}
Σ

1/2
0 , (43)

where vi = Σ−1/2xi/‖Σ−1/2xi‖ and r2i = ‖Σ−1/2xi‖2.
Recall that stochastic representation theorem of elliptical
random vectors states that ri is independent of vi and vi-
s are i.i.d. on a uniform distribution on the unit sphere
Sp−1 = {v : v>v = 1}. Then note that

E
[

tr
(
C2
)]

=
1

n2
E
[

tr

{
Σ

1/2
0

n∑
i=1

u
(r2i
σ

)r2i
σ

viv
>
i Σ

1/2
0

·Σ1/2
0

n∑
j=1

u
(r2j
σ

)r2j
σ

vjv
>
j Σ

1/2
0

}]

=
1

n2

n∑
i=1

n∑
j=1

E
[
u
(r2i
σ

)r2i
σ
u
(r2j
σ

)r2j
σ

]
× E

[
tr

{
viv
>
i Σ0vjv

>
j Σ0

}
︸ ︷︷ ︸

=(v>
i Σ0vj)2

]

=
1

n2

n∑
i=1

E
[
u
(r2i
σ

)2 r4i
σ2

]
E
[
(v>i Σ0vi)

2
]

+
1

n2

∑
i6=j

E
[
u
(r2i
σ

)r2i
σ

]
E
[
u
(r2j
σ

)r2j
σ

]
E
[
(v>i Σ0vj)

2
]

=
1

n
E
[
u
(r21
σ

)2 r41
σ2

]
E
[
(v>1 Σ0v1)2

]
+
(

1− 1

n

)(
E
[
u
(r21
σ

) r21
σ

])2

E
[
(v>1 Σ0v2)2

]
. (44)

In the second identity, we used the fact that ri is independent
of vi and tr(AB) = tr(BA). In the 3rd identity we used that
ri is independent of rj and in the 4th identity, we used that
vi-s and ri-s are i.i.d.

Note that E
[
u(r21/σ)(r21/σ)

]
= p due to (18) and

E
[
u(r21/σ)2(r41/σ

2)
]

= ψ1p(p + 2). Using these facts and
the following results from [8]:

E
[
(v>1 Σ0v1)2

]
=

2 tr(Σ2
0) + tr(Σ0)2

p(p+ 2)
(45)

E
[
(v>1 Σ0v2)2

]
=

tr(Σ2
0)

p2
, (46)

we get

E
[

tr
(
C2
)]

=
ψ1

n

(
2 tr(Σ2

0) + tr(Σ0)2
)

+
(

1− 1

n

)
tr(Σ2

0)

=

(
1 +

2ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)2.

http://users.spa.aalto.fi/esollila/shrinkM/
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Next note that

tr(C)2 =

{
1

n

n∑
i=1

u
(r2i
σ

)r2i
σ

v>i Σ0vi

}2

=
1

n2

n∑
i=1

n∑
j=1

u
(r2i
σ

)r2i
σ
u
(r2j
σ

)r2j
σ

v>i Σ0viv
>
j Σ0vj

and hence

E[tr(C)2] =
1

n2

n∑
i=1

E
[
u
(r2i
σ

)2 r4i
σ2

]
E
[
(v>i Σ0vi)

2
]

+
1

n2

∑
i 6=j

E
[
u
(r2i
σ

)r2i
σ

]
E
[
u
(r2j
σ

)r2j
σ

]
tr(Σ0)2

p2

=
ψ1p(p+ 2)

n
E
[
(v>i Σ0vi)

2
]

+
(

1− 1

n

)
tr(Σ0)2.

In the first identity we used that

E[v>i Σ0vi] = tr{E[viv
>
i ]Σ0} = tr(Σ0)/p

as E[viv
>
i ] = (1/p)I and the fact that ri is indepen-

dent of vi. In the second identity we used that samples
are i.i.d. and E

[
u(r2i /σ)(r2i /σ)

]
= p due to (18) and

E
[
u(r2i /σ)2(r4i /σ

2)
]

= ψ1p(p + 2). The result then follows
by substituting (45) into the last equation.

C. Proof of Lemma 2

Using Σ0 = σΣ and (43) one obtains as in Lemma 1 the
following expression

E
[

tr
(
C2
)]

=
1

n
E
[
u
(r21
σ

)2 r41
σ2

]
E
[
(vH

1 Σ0v1)2
]

+
(

1− 1

n

)(
E
[
u
(r21
σ

) r21
σ

])2

E
[
|vH

1 Σ0v2|2
]
. (47)

Using the facts that E
[
u(r21/σ)(r2/σ)

]
= p due to (18) and

E
[
u(r2/σ)2(r4/σ2)

]
= ψ1p(p + 1) along with the facts that

[29, cf. eq. (66), (67)]

E
[
(vHΣv)2

]
= [p(p+ 1)]−1(tr(Σ2) + tr(Σ)2), (48)

E
[
(vH

1 Σv2)2
]

= p−2 tr(Σ2), (49)

we get

E
[

tr
(
C2
)]

=
ψ1

n

(
tr(Σ2

0) + tr(Σ0)2
)

+
(

1− 1

n

)
tr(Σ2

0)

=

(
1 +

ψ1 − 1

n

)
tr(Σ2

0) +
ψ1

n
tr(Σ0)2.

Using similar proof as in proof of Lemma 1, we obtain

E[tr(C)2] =
ψ1p(p+ 1)

n
E
[
(vH
i Σ0vi)

2
]

+
(

1− 1

n

)
tr(Σ0)2.

(50)

The result then follows by substituting the expression from
(49) into the last equation.

D. Proof of Lemma 3

We show the result in the real case only as the result follows
similarly for complex-valued case. Write z = Σ−1/2x and
note that z ∼ Ep(0, I, g). The result

κ =
E[‖z‖4]

p(p+ 2)
− 1 =

1

3

(
E[z41 ]− 3) (51)

follows by recalling the stochastic decomposition. Namely,
z =d rv, where r =d ‖z‖ is independent of v, and v possesses
a uniform distribution on the unit sphere Sp−1. Thus we have
that

E[z4i ] = E[‖z‖4]E[v4i ] = 3ψ1

where we used that E[v4i ] = 3(p(p + 2))−1 (see e.g. [43,
Lemma A.1.] and that ψ1 = E[‖z‖4]/p(p + 2). Furthermore,
since E[z2i ] = 1, (51) states that κ = (1/3)kurt(zi). Then
since kurt(zi) = kurt(xi), we have the stated result that κ =
(1/3)kurt(xi).
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