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Abstract
The problem addressed in this paper is the optimal allocation of a CPU to a number
of software control tasks. Each task is used to implement a feedback controller for
a linear and time invariant system and is activated with a fixed period. On every
periodic activation, the task executes a job, which collects the output of the system,
and produces the control values after executing for a random computation time. If
a job’s duration exceeds a deadline, then the job is cancelled and the control values
are not updated.

The systems to be controlled are affected by process noise. Therefore the perfor-
mance of each control loop can be evaluated through the steady state covariance
of the system’s state, which depends on the probability with which the task im-
plementing the controller drops its jobs. We show that by making a proper choice
for the scheduling algorithm, this probability can be straightforwardly computed as
a function of the scheduling parameters. This observation enables the construction
of a very efficient procedure for finding the scheduling parameters that attain the
optimal tradeoff between the performance of the different control loops.

KEYWORDS
Real–Time Control, Stochastic Systems, Hybrid Systems, Optimisation

1. Introduction

In embedded control systems a control loop is usually implemented as a software
application, called control task (or simply task). Upon the periodic arrival of new sensor
data, a control task executes a job in order to compute the control value and deliver it
to the actuators. An important requirement motivated by cost and engineering reasons
is that several control tasks share the same computing hardware. As an example,
the BMW research division (Fürst, 2010) estimates that in a modern car more than
800 control functions share 70 embedded computers (ECU), which corresponds to an
average allocation of more than 10 concurrent applications per ECU. New standards
(such as AUTOSAR) have been defined to guarantee a safe coexistence of several

CONTACT D. Fontanelli. Email: daniele.fontanelli@unitn.it



concurrent applications at the software level, but the implications of this coexistence
on control performance are not yet understood in depth.

The control performance obtained by the computer implementation of a controller
is strongly related to the delays introduced in the computation. When a control task
shares the CPU with other tasks, its jobs incur two types of delays: the first one caused
by their own execution time and the second one by the time spent awaiting their
turn to be “scheduled” and take control of the CPU (scheduling interference). Such
delays are often time–varying and undermine the typical assumptions of digital control
design: regular sampling and negligible (or at least constant) input-to-output latency
for control computation. The ever increasing using of sophisticated sensing devices
such as cameras, LIDARS, LASER scanners in such systems as autonomous robots and
self-driving cars (Economist, 2016), adds complexity to the picture. The time needed
to extract the information from such sensors can be conspicuous and it fluctuates
significantly depending on the input data set. This justifies its modelling as a stochastic
process with potentially long tails in the probability distributions (Fontanelli, Greco,
& Palopoli, 2013).

A standard way to keep in check the delays suffered by a control task is by the
combination of the time–triggered approach (Kopetz & Bauer, 2003) with the real–
time scheduling theory (Liu & Layland, 1973). The former ensures constant delays
by forcing the input-output operations of a task to take place at precise points in
time (e.g., the sampling period expiration), even if the result is produced earlier. The
latter offers conditions to guarantee that all jobs will deliver their results before the
planned instants (called deadlines), given the scheduling parameters and the worst case
execution time of the tasks. An important design problem that emanates from this
approach is how to choose activation periods and scheduling parameters in order to
maximise some “global” control performance metrics, which means how to optimally
share the CPU time between different control tasks.
Related Work. This problem has been tackled in the literature (Palopoli, Pinello,
Bicchi, & Sangiovanni-Vincentelli, 2005; Seto, Lehoczky, Sha, & Shin, 1996; Xu,
Cervin, & Årzén, 2016; Xu, Cervin, & Årzén, 2018) assuming a fixed priority or an
Earliest Deadline First (EDF) scheduler (Liu & Layland, 1973). Unfortunately, these
results are hardly applicable to the important class of application with widespread
probability distributions of the computation time mentioned above, for which a sys-
tem design based on the worst case execution time could leave the CPU under-utilised
for large intervals of time. This problem calls for non conventional approaches in
which stochastic fluctuations in the delays are accepted and harnessed (Fŕıas, Palopoli,
Abeni, & Fontanelli, 2018). Some authors have investigated on how to make the con-
trol design robust against an irregular timing behaviour of the implementation, fo-
cusing on such effects as packet dropout (Ling & Lemmon, 2002), jitter in computa-
tion (Marti, Fuertes, Fohler, & Ramamritham, 2001) and time varying delays (Kao &
Rantzer, 2007). More recently, the onset of a new class of control algorithms, event-
triggered (Wang & Lemmon, 2011) self-triggered (Aminifar, Tabuada, Eles, & Peng,
2016; Velasco, Mart́ı, & Bini, 2008) dismisses the very idea of periodic sampling and
advocates a different idea: the execution of the control action should take place only
when necessary. Significant recent work has been made to close the gap between event-
triggered control and a periodic implementation (Borgers et al., 2018), pushing the
applicability boundary of this idea to the domain of non-linear systems. Other au-
thors have championed innovative models for control applications based on the idea of
anytime computing (Greco, Fontanelli, & Bicchi, 2011) or soft-real-time (Fontanelli &
Palopoli, 2018). Usually control designers take such approaches as a leap into the un-
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known, while much can be said sticking to the traditional implementation of a digital
control algorithm as a periodic task.
Paper Contribution. Following the steps of other authors (Palopoli et al., 2005;
Seto et al., 1996; Xu et al., 2016; Xu et al., 2018), we seek the choice of scheduling
parameters for a set of control task that maximises their global control performance.
However, in our setting, the computation time of the tasks is not characterised by
a single number (the worst case), but by a probability distribution. Based on the
observation that occasional delays or data losses can be tolerated by many control
systems (Cervin & Eker, 2003; Fontanelli, Greco, & Palopoli, 2013; Mohamed, Awan,
Goswami, & Basten, 2019), we consider a model in which a job executing beyond
its deadline is cancelled without closing the control loop (the same approach used in
networked control to deal with packet dropouts by Nilsson and Bernhardsson (1996)).
A key element of our strategy is the use of a scheduling algorithm known as the
Constant Bandwidth Server (CBS) (Abeni & Buttazzo, 1998). Server-based scheduling
for control tasks is proposed by other authors (Aminifar, Bini, Eles, & Peng, 2016) in a
deterministic setting. Our specific motivation is the possibility to control the fraction
of CPU time (bandwidth) allocated to each task, and hence the probability that a job
of the task will miss its deadline and be cancelled.

In view of these choices, our problem bears a close resemblance to the allocation
of bandwidth to channels with stochastic performance, well known in the communi-
cation community (Roberts, 2004). The performance metric is in our case the control
performance, or Quality of Control (QoC), and the way it is evaluated is an additional
contribution of the paper. Assuming that the task controls a plant affected by process
noise, we express the QoC as the trace of the steady state covariance of the system’s
state. In our proposal, the control design can be made using the classical machinery
of digital control, and the choice of the sampling period by the well known rules-of-
the-thumb developed in decades of scientific literature and industrial practice. Then
by assigning a bandwidth, we control the probability of deviating form the design
assumption, and hence the QoC degradation. In particular, we show the functional
dependence between this task level QoC metric and the bandwidth allocated to the
task. By consolidating the QoC of the different control loops into a global QoC met-
ric, we set up an optimisation problem where the values of bandwidth assigned to
the tasks are decision variables. The most important contribution of the paper hinges
on a few theoretical results on the properties of the optimal solution that exploit the
specific structure of the problem and lead to a very efficient numeric algorithm. The
paper subsumes and extends the results contained in a conference paper (Fontanelli,
Palopoli, & Greco, 2013). In this preliminary work, the analysis was restricted to sys-
tems providing a QoC monotonic with respect to the bandwidth and no theoretical
results were provided for the analytic computation of the QoC function. Both limi-
tations have been addressed in this paper and the techniques presented here are now
applicable to any kind of linear systems.

The paper is organised as follows. In Section 2 we offer a formal description of
the problem. In Section 3, we describe how to formulate the optimisation problem,
by identifying constraints and cost function, and by showing how the latter can be
expressed in analytic closed form. In Section 4, we state our results on the solution
of the optimisation problem and show how they can be translated into an efficient
algorithm. In Section 5, we show a numeric validation of our technique selecting an
insightful paradigmatic example in the wide set of simulation data that we collected.
Finally, in Section 6, we offer our conclusions and announce future work directions.
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2. Problem Presentation

Our goal is to control a number of independent linear systems Si, with i = 1, . . . , n,
sharing the same CPU. Each system Si is assumed to be completely observable and
controllable, and is described by the discrete-time dynamic equations:

xi(k + 1) = Aixi(k) + Fiui(k) + wi(k)

yi(k) = Cixi(k)
(1)

where xi(k) ∈ Rnxi represents the system state, ui(k) ∈ Rmi the control input, wi(k) ∈
Rnxi a zero-mean white Gaussian noise term and yi ∈ Rpi the output variables. One
step transition for this discrete time system refers to the evolution of the system step
across one temporal unit, which is equal to the task period Ti.

The system is controlled by a feedback controller implemented through the control
task τi. The temporal behaviour of the task follows the time–triggered model of com-
putation Kopetz and Bauer (2003), described by the following rules: 1. at time kTi,
the input ui(k), which was computed by a previous execution of the task and then
stored in a memory location, is retrieved, applied to the actuator and held constant
up to the next sample (ZoH policy), 2. the plant output sample yi(k) is collected from
Si, 3. a job Ji(k) starts taking yi(k) as an input. Job Ji(k) executes for ci(k) time
units on the CPU to process the data and computes the new control value ui(k + 1),
which will be stored in memory and retrieved at time (k + 1)Ti. The job is required
to finish before a deadline sets equal to the next sampling time (k + 1)Ti. If the job
correctly finishes before the deadline, then its output is stored into a memory location
and sent to the actuators at time (k + 1)Ti. Otherwise, the job Ji(k) is cancelled and
the new one is started without updating the control value.

The adoption of these rules allows us to assume a fixed delay between sampling and
actuation (assumed equal to the period Ti without loss of generality) whenever the
task finishes its job before the deadline, with the control value held constant when it
does not. This model is conveniently captured by an additional state variable ζi ∈ Rmi

to store the control value, hence system (1) becomes[
xi(k + 1)
ζi(k + 1)

]
=

[
Ai Fi
0 0

] [
xi(k)
ζi(k)

]
+

[
0
Im

]
ui(k) +

[
wi(k)

0

]
. (2)

The system is controlled by the stabilising dynamic controller:

zi(k + 1) = Hizi(k) +Kiyi(k)

ui(k) = Nizi(k) +Giyi(k)
(3)

where zi ∈ Rnzi . Define the augmented state x̃i = [xTi , ζ
T
i , z

T
i ]T ∈ Rnx̃i , with nx̃i =

nxi + nzi +mi.
In the considered scenario, the derivation of the output yi(k) is a time-varying

computation demanding activity (e.g., the sample could be derived from processing
an image frame), therefore the computation time {ci(k)}k∈Z≥0

of job Ji(k) can be
modelled as a stochastic process.

A job Ji(k) could occasionally terminate beyond its deadline and be cancelled. As a
result, the system closed loop evolution switches between x̃i(k+ 1) = Aci x̃i(k) + v(k),
when Ji(k) finishes before the deadline, and x̃i(k + 1) = Aoi x̃i(k) + v(k), when it is
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cancelled, where v(k) ,
[
w(k)T , 0

]T ∈ Rnx̃i and

Aci =

 Ai Fi 0
GiCi 0 Ni

KiCi 0 Hi

 , Aoi =

Ai Fi 0
0 Imi

0
0 0 Inzi

 . (4)

The matrix Aci is associated with the nominal closed loop evolution and is Schur-
stable1, while Aoi could be not.

Example 2.1. We start here a simple example that will be developed throughout the
paper with the aim to elucidate some key aspects of the proposed method.

Let us consider the following (randomly generated) system in the form (1):

xi(k + 1) =

[
1.0077 −0.0008
0.0062 1.0154

]
xi(k) +

[
0.0023
0.0189

]
ui(k) + wi(k)

yi(k) =

[
0.4957 0.2867
0.7671 0.7342

]
xi(k)

(5)

having two unstable poles in 1.01 and 1.02. The LQG regulator in the form (3) is given
by:

zi(k + 1) =

 0.04783 −0.05361 0.002259
−0.05404 0.06377 0.01888

9.3 −3.6 −0.04591

 zi(k) +

 4.612 −1.729
−4.761 3.155

0 0

 yi(k)

ui(k) =
[
9.3 −3.6 −0.04591

]
zi(k)

being Gi = 0. The corresponding closed and open loop matrices in (4) can be readily
obtained.

Scheduling Mechanism In order to allocate the CPU to the different tasks, we
adopt the Constant Bandwidth Server (CBS) scheduler Abeni and Buttazzo (1998).
The CBS allows us to assign a bandwidth Bi to each task sharing the CPU. A task
receiving bandwidth Bi can be thought of as executing on a processor whose speed
is a fraction Bi of the speed of the actual processor. The total allocated bandwidth
cannot exceed 100%:

∑n
i=1Bi ≤ 1. (6)

A fundamental property of the CBS is the temporal isolation, meaning that the ability
for a task to respect a temporal constraint only depends on its execution requirement
and on its allocated bandwidth and is independent of the behaviour of the other tasks
in the system. Let Ei(k) denote the event “job Ji(k) finishes before the deadline”. As
a consequence of the temporal isolation property, the event Ei(k) is independent of
any event Ej(k) with j 6= i. Furthermore, in view of the cancellation policy described

above, there is no accumulation of delays between jobs. Therefore, for any k, the event
Ei(k) is independent of any event Ei(k) for k 6= k and the probability of meeting the

1We recall that a discrete–time linear system is said Schur-stable if the absolute value of all eigenvalues of its
dynamical matrix is strictly less than 1.
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deadline is given by (see Fontanelli, Palopoli, and Greco (2013)):

µi , Pr {Ei(k)} = Pr
{
ci(k)
Ti
≤ Bi

}
. (7)

Problem Formulation. Let Pi(k) , E
{
x̃i(k)x̃i(k)T

}
be the variance of the aug-

mented state. When P̃i , limk→∞ Pi(k) < +∞ (i.e., the variance converges), we will
say that the closed loop system is mean square stable Costa, Fragoso, and Marques

(2006). We will consider Tr
{
P̃i

}
(i.e., the sum of the mean squared values of the state

variables) as a QoC metric for control task τi. This is a function of the probability µi

and hence of the bandwidth Bi, which we will denote by φi(Bi) , Tr
{
P̃i

}
.

The QoC functions for each system can be consolidated into a global cost function
Φ(B1, B2, . . . , Bn). We do this by computing the infinity norm of the different QoC
functions: Φ(B1, . . . , Bn) , maxi |φi(Bi)|, where the absolute value can be omitted
because the φi functions are non negative by definition. The infinity norm is a sensible
choice if the designer seeks a balanced performance between the different tasks (avoid-
ing the case of one control loop performing exceedingly well at the expenses of the
other ones). If the designer prefers an unbalanced performance, where some higher
importance tasks receive larger bandwidths, the previous global cost function can be
adapted accordingly. A suitable rescaling of the individual φi functions by means of
some positive coefficients qi can easily achieve this goal. In this case, the ensuing global
cost function will read Φ(B1, . . . , Bn) , maxi |qiφi(Bi)|.

By introducing Φ(B1, . . . , Bn), the optimisation problem can be formally stated as
follows2:

min
B∈B

Φ(B) = min
B∈B

max
i∈{1,...,n}

φi(Bi) (8)

where B , (B1, . . . , Bn). The set B is the set of feasible solutions and is given by the
polytope:

B ,
{
(B1, . . . , Bn) ∈ Rn| B(m)

i ≤ Bi ≤ B
(M)
i ,

∑n
i=1Bi ≤ 1

}
. (9)

where the upper bound B
(M)
i is to ensure that the task does not receive more band-

width than it needs to achieve probability 1 of meeting the deadline and the lower

bound B
(m)
i identifies a minimal critical bandwidth to ensure mean square stability of

the feedback loop, and
∑n

i=1Bi ≤ 1 comes from Condition (6).

3. Cost function and constraints for the optimisation problem

In this section we show how to identify the constraints for Problem (8) and discuss an
analytical expression of φi as function of the probability µi of meeting the deadline,
and then (via Equation (7)) of the bandwidth Bi. For notational simplicity, we will
drop the i subscript whenever the discussion refers to a specific task.

In the following, we assume that the noise w(·) is an i.i.d. process with zero mean
and variance E

{
w(k)w(k)T

}
= W ∈ Rnx×nx . Also the computation time {c(k)}k∈Z≥0

2For sake of exposition, we present here the balanced performance case only.
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of the tasks is an i.i.d. random process, which is mutually independent of w(·). Both
processes w(·) and c(·) are assumed independent of the state.

The dynamic evolution of the variance P ∈ Rnx̃×nx̃ of the state x̃ is given by

P (k + 1) = E
{
x̃(k + 1)x̃(k + 1)T

}
=

=µE
{

(Acx̃(k) + v(k)) (Acx̃(k) + v(k))T
}

+

+ (1− µ)E
{

(Aox̃(k) + v(k)) (Aox̃(k) + v(k))T
}
,

where the probability of meeting the deadline µ stochastically rules the switching
between the different (closed and open loop) dynamics. Taking into account the mutual
independence of the stochastic processes and the fact that w(·) has zero mean and
constant variance W , the equation above can be written as

P (k + 1) = µAcP (k)ATc + (1− µ)AoP (k)ATo +H, (10)

where H ,
[
W 0
0 0

]
.

An algorithmic estimate of the critical probability. In order to identify the

constraints of Problem (8) (and in particular the lower bound B
(m)
i ), we need to iden-

tify the critical probability, defined as the infimum of µ for which the system is mean
square stable. Using Kronecker product properties we can write the dynamics (10) as

vec(P (k + 1)) =
(
µA

[2]
c + (1− µ)A

[2]
o

)
vec(P (k)) + vec(H), (11)

where M [2] ,M ⊗M and vec(·) is the linear operator producing a vector by stacking
the columns of a matrix. This is a discrete–time linear time–invariant system in the
state vec(P (j)) ∈ Rn2

x̃ . Hence, it admits a steady state solution P̃ (µ) w.r.t. the constant
input vec(H) ∈ Rn2

x̃ if

maxi

∣∣∣λi (µA[2]
c + (1− µ)A

[2]
o

)∣∣∣ < 1, (12)

with λi(M) denoting i-th eigenvalue of M .
In view of these considerations the critical probability can be defined as µ̃ ,

inf µ̄∈[0,1] {µ̄ | ∀µ ≥ µ̄ s.t. Cond. (12) is satisfied}. Note that a solution with µ̃ < 1 al-
ways exists, since Ac is Schur and the eigenvalues are continuous functions of µ. In
practice, instead of looking for the infimum in the continuum set [0, 1], we can fix an
accuracy level tµ and adopt Algorithm 1 which implements a dichotomic search in the
µ space. The function SchurStableSegment(A,B) implements the necessary and suf-
ficient algebraic conditions in Theorem 4.iii of Elsner and Szulc (2000) and provides
a positive answer if all the matrices given by the convex combination of A and B are
Schur-stable.
Measuring the QoC of each task. The following Lemma shows an analytic com-
putation for the QoC function φ(·).

Lemma 3.1. The QoC function φ : [µ̃, 1] → R>0 ∪ {+∞}, µ 7→ Tr
{
P̃ (µ)

}
can be
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Algorithm 1 Find Critical Probability
1: function FindMu(Ac,Ao)

2: AC = A
[2]
c

3: AO = A
[2]
o

4: µ̃ = 1

5: µ0 = 0
6: while not(µ̃− µ0 < tµ ∧ µ̃ < 1− tµ) do

7: µ = (µ̃− µ0)/2 + µ0

8: A2 = (1− µ) ∗AO + µ ∗AC
9: if SchurStableSegment(AC , A2) then

10: µ̃ = µ
11: else

12: µ0 = µ

13: end if
14: end while

15: return µ̃

16: end function

expressed as the ratio of two polynomials in µ:

Tr
{
P̃ (µ)

}
=
n2
x̃

∑n2
x̃−1
j=0 αjµ

j∑n2
x̃−1
j=0 γjµj

, (13)

where the αj and γj coefficients can be found as algebraic functions of the Ac and Ao
matrices.

The proof is reported in the Appendix.
The QoC function φ(·) is continuous with respect to µ because so are the eigenval-

ues of P̃ (µ). Moreover, for any µ ∈ [µ̃, 1] Equation (12) is verified by definition and

Tr
{
P̃ (µ)

}
is also finite.

Example 3.2. Coming back to the system of Example 2.1, let us consider a set
of possible sampling periods Ti = {20, 24, 32, 40, 48, 56} ms. The corresponding
set of critical probabilities provided by the Algorithm 1 is then given by µ̃ =
{0.18, 0.2, 0.23, 0.26, 0.29, 0.31}.

Let us assume now that the system is affected by three mutually independent noise
inputs (gathered in the vector w) of zero mean and standard deviation σ = 0.01. The
associated covariance matrix is W = σ2I3. The QoC function φ in (13) can be explicitly
computed by means of the expressions detailed in the Appendix. For the system in
exam, we have nx̃ = 6, hence 36 coefficients αj and 36 coefficients γj . However, most
of the coefficients turn out to be practically zero and the function φ becomes a ratio
of polynomials of degree 8. The non zero coefficients are reported in Table 1. A graph
of the φ for µ ∈ [0.18, 1] is shown in Figure 1.

We stress that in deriving all the previous quantities we did not make any assump-
tion on the distribution of the computation time (except from its independence of the
noise w), as they are all independent of it.

Formalisation of the optimisation problem. Let ∆ci : R≥0 → [0, 1] denote the
cumulative distribution function (cdf) of the computation time {ci(k)}k∈Z≥0

for the

task τi. In view of (7), the probability µi to finish before the deadline is given by µi =
Pr {ci(k) ≤ TiBi} = ∆ci (TiBi). By definition ∆ci is monotone non–decreasing. For
the sake of simplicity, we will also let it to be strictly increasing and hence invertible.
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α27 → α35 γ27 → γ35

0.0000005 0.0000029
−0.0000227 −0.0002319

0.0007560 0.0093476
−0.0148452 −0.2007313

0.1475369 2.0286992
−0.5625039 −7.4926220
−0.0150922 0.2150213

0.0092984 −0.0782990
0.0390932 0.3470355

Table 1. Coefficients αj and γj for the QoC function φ defined in (13). They have been all multiplied by 106.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2.8

2.9

3

3.1

3.2

3.3

3.4

Figure 1. Graph of the function φ computed in the Example 3.2.

This leads us to an easy expression for the bandwidth Bi that attains the probability

µi in Problem (8): Bi =
∆−1
ci

(µi)

Ti
, for every µi ∈ [0, 1]. Consequently, the minimum

bandwidth to achieve mean square stability is given by B
(m)
i ,

∆−1
ci

(µ̃i)

Ti
, where µ̃i is

the critical probability. Likewise, the bandwidth necessary for the i-th task to finish

within its deadline with probability 1 is given B
(M)
i ,

∆−1
ci

(1)

Ti
.

In our framework the deadlines Ti are fixed, thus the probability µi is a strictly
increasing function of the bandwidth Bi: µi = ∆ci(Bi). The composition φi ◦ ∆ci(·)
is a function of the bandwidth Bi in the set [B

(m)
i , B

(M)
i ]. With a slight abuse of

notation, in what follows we will write φi(·) directly as a function of Bi to refer such

a composition. The expressions we have just shown for B
(m)
i , B

(M)
i and φi(·) allow us

to give Problem (8) an explicit form. We will require below that the B polytope be

not empty, and therefore the point B(m) = (B
(m)
1 , . . . , B

(m)
n ) be feasible.

Example 3.3. Still with reference to the system in Example 2.1 and 3.2, let us
assume now that the computation time ci is described by a uniform distribution
U[ηi, bc] parametrised by the mean computation time ηi and by the best-case execu-

9



ηi [ms] 6 8 10 12 14 16 20 24 28

B
(m)
i % 23.6 27.2 30.8 34.4 38 41.6 48.8 56 63.2

B
(M)
i % 40 60 80 100 120 140 180 220 260

Table 2. Minimum and maximum bandwidth computed on the system of Example 2.1.

tion time (BCET) bc (ci ≥ bc). The distribution is defined in the range [bc, wc], where
wc = 2ηi − bc is the worst case execution time (WCET) and we fix here bc = 4 ms.
Fixing the sampling time to T = 20 ms we obtain the corresponding critical proba-
bility µ̃i = 0.18. Once the mean value ηi is given, the distribution and the cumulative
distribution ∆ci of the computation time ci are fixed. Hence, the minimum and max-

imum bandwidth B
(m)
i , B

(M)
i can be easily computed. The Table 2 reports the values

of B
(m)
i and B

(M)
i for different mean values ηi.

Notice that for ηi > 14 ms, the task WCET wc is greater than the deadline Ti and

indeed the maximum bandwidth B
(M)
i is larger than 100%.

4. Solution of the Optimisation Problem

In this section we first state some fundamental results on the structure of the solutions
of the optimisation problem introduced above. Then we show how such properties can
be used to build an efficient optimisation algorithm.
Degenerate Problem. The optimisation Problem (8) can present some special cases
that require a specific consideration.

Definition 4.1. The optimisation Problem (8) is said to be degenerate if there exist

i, j ∈ {1, . . . , n}, i 6= j such that φi(Bi) ≥ φj(Bj) for every Bi ∈ [B
(m)
i , B

(M)
i ] and

Bj ∈ [B
(m)
j , B

(m)
j ]. In such a case φi(·) is said to dominate φj(·).

If φj(·) is a dominated function the optimal value of the cost function is not influ-
enced by the bandwidth Bi: Φ(B) = maxh∈{1,...,n} φh(Bh) = maxh∈{1,...,n}\{j} φh(Bh).

Therefore, we can simply set Bj = B
(m)
j to secure the largest possible feasibility set

for the remaining variables, which will be an (n− 1)–dimensional facet of the original
polytope B. In general, if there are n′ < n dominated functions with indices in the
set I ′ ⊂ {1, . . . , n}, we can reduce the search for the optimal solution to the (n− n′)–
dimensional facet:

Bn′ , B \
{
B ∈ Rn>0 | Bh = B(m),∀h ∈ I ′

}
. (14)

Optimal solution with rectified functions. The non monotonicity of the functions
φi(·) complicates the analysis of the solution set of the optimisation Problem (8), even
in the non degenerate case. Therefore, we first study the solution set of an auxiliary
optimisation problem, obtained by forcing all the φi(·) to be non increasing functions,
and then we exploit such knowledge to address the original one.

We define the “rectified” functions φ
(rect)
i : [B

(m)
i , B

(M)
i ] → R>0 ∪ {+∞} for every

10
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Figure 2. Graphical representation of the rectification of φi(·). φ
(rect)
i (·) holds on the values taken by the

corresponding function φi(·) in its local minima.

i ∈ {1, . . . , n} as follows (see Figure 2)

φ
(rect)
i (Bi) , min

b∈[B
(m)
i ,Bi]

φi(b), (15)

and we consider the associated optimisation problem

min
B∈B

Φ(rect)(B) = min
B∈B

max
i∈{1,...,n}

φ
(rect)
i (Bi). (16)

Remark 1. Differently from the functions φi(·) (which are ratio of polynomials), their

rectified counterparts φ
(rect)
i (·), can be constant over intervals. Such functions hold on

the values taken by the corresponding functions φi(·) in their local minima. Indeed,

if Bi ∈ [B
(m)
i , B

(M)
i ] is such that φ

(rect)
i (Bi) 6= φi(Bi) then it can be easily verified

that B?
i = minα∈{b∈[B

(m)
i ,B

(M)
i ]|φ(rect)

i (b)=φ
(rect)
i (Bi)} α is a local minimum for φi(·) and

φ
(rect)
i (Bi) = φi(B

?
i ) (see also Figure 2).

We now state a result on the structure of the solution for the optimisation Prob-
lem (16).

Theorem 4.2. Assume that the optimisation Problem (16) is not degenerate, the

functions φi : [B
(m)
i , B

(M)
i ]→ R>0 ∪{+∞} are continuous and differentiable for every

i ∈ {1, . . . , n} and the functions φ
(rect)
i : [B

(m)
i , B

(M)
i ] → R>0 ∪ {+∞} are defined as

in (15). Define the optimal solution set as X (rect)∗ , arg minB∈B Φ(rect)(B), and the
following quantities:

t
(M) , max

i∈{1,...,n}
φ

(rect)
i (B

(M)
i ), t(m) , min

i∈{1,...,n}
φ

(rect)
i (B

(m)
i ),

t
(m) , max

i∈{1,...,n}
φ

(rect)
i (B

(m)
i ).

Let Ai (x) , {b ∈ [B
(m)
i , B

(M)
i ] | φ

(rect)
i (b) = x} and the vectors B̌(m) =

11



(B̌
(m)
1 , . . . , B̌

(m)
n ) and B̌(M) = (B̌

(M)
1 , . . . , B̌

(M)
n ) be defined as:

B̌
(m)
i , minα∈Ai(t(m)) α, B̌

(M)
i , min

α∈Ai(t(M)) α, (17)

for every i ∈ {1, . . . , n}. The following mutually exclusive cases are given:

i)
∑n

i=1 B̌
(M)
i ≤ 1, then B̌(M) ∈ X (rect)∗ and the optimal value is t∗ = t

(M)
;

ii)
∑n

i=1 B̌
(m)
i ≤ 1 and

∑n
i=1 B̌

(M)
i > 1, then there exists B̃ = (B̃1, . . . , B̃n), B̃ ∈

X (rect)∗ such that φ
(rect)
i (B̃i) = φ

(rect)
j (B̃j) and

∑n
i=1 B̃i = 1. The optimal value

is t∗ ∈ (t
(M)

, t(m)];

iii)
∑n

i=1 B̌
(m)
i > 1, then there exists B∗ = (B∗1 , . . . , B

∗
n) such that for h̄ =

arg minj∈{1,...,n} φ
(rect)
j (B

(m)
j ), the element B∗

h̄
= B

(m)

h̄
and B∗ ∈ X (rect)∗. The

optimal values is t∗ ∈ (t(m), t
(m)

].

The intuition behind the rationale of the Theorem is as follows. The optimal solution

of Problem (16) belongs to the region in which all the functions φ
(rect)
i (·) assume the

same value, if such a region exists. In that case, the optimal solution is either where

one of the φ
(rect)
i (·) has reached its minimum value (point i)) or where it is not possible

to further decrease it (point ii)). If the region in which the functions φ
(rect)
i (·) assume

the same value does not exist, then there exists at least one function that will not
play a role in the minimisation (point iii)). A detailed representation of the optimal
solution B̃ of type ii) and related optimal value t∗ is depicted in Figure 3. All the key
quantities defined in the Theorem 4.2 are reported, along with the region of admissible

bandwidths and the set where the φ
(rect)
i functions assume the same value.

Remark 2. The degenerate case can be addressed by restricting the optimisation
domain to the facet Bn′ in (14), which is an (n − n′)–dimensional polytope. In the
application of Theoremark 4.2, the sum of the remaining bandwidths Bi has to be

set to
∑

i∈{1,...,n}\I′ Bi = 1−
∑

i∈I′ B
(m)
i (rather than 1) to account for the bandwidth

distributed to the tasks with degenerate functions φi(·).

Remark 3. The case iii) in Theorem 4.2 is similar to the degenerate case. Indeed,

once the h̄-th component of B∗ is fixed to B∗
h̄

= B
(m)

h̄
, the other components are found

solving the optimal problem on the sub-polytope B′ , B∩{(B1, . . . , Bn) ∈ Rn≥0 | Bi =

B
(m)
i } with the constraint

∑
i∈{1,...,n}\{h̄}Bi = 1−B(m)

h̄
.

Optimal solutions of Problem (8). If the φi(·) functions are strictly decreasing,
they coincide with their rectified counterpart in Theorem 4.2. In this case, it is possible
to show that in case the situation of point ii) takes place, the optimal value is unique.
In the discussion below, we show a Corollary tackling the generic case of non-monotone
functions φi(·). The characterisation of the optimal set of the Problem (8) is given in
terms of the optimal set of the Problem (16). A representation of the optimal solution
B∗ of the point i) of the following Corollary is shown in Figure 3.

Corollary 4.3. Assume the optimisation Problem (8) and (16) are not degener-
ate. Define the corresponding optimal solution sets as X ∗ , arg minB∈B Φ(B) and

X (rect)∗ , arg minB∈B Φ(rect)(B). Given B̃∗ = (B̃∗1 , . . . , B̃
∗
n) ∈ X (rect)∗, we have:

12



B
(m)
1
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B
(M)
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B
(M)
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t
(M)

t
(m)

t(m)

t∗

B̌(M)

B̃ B∗

B
(m)
2 ≡ B̌

(m)
2

φ
(rect)
1 = φ

(rect)
2

φrect1

φ1 φ2 φrect2

Figure 3. Example of optimisation in the case of two functions φi. The picture reports all the key quantities

defined in Theorem 4.2 point ii) and Corollary 4.3 point i). In blue are the φi functions and in red their

rectified version. The overall function Φ(rect) is represented in faint gray. The yellow polytope represents the
set of admissible bandwidths (notice the line B1 + B2 = 1) and the dark magenta curve represents the set

of bandwidth for which the φ
(rect)
i functions assume the same value. The optimal value t∗ and the optimal

solution B̃ of the Problem (16) are reported in red, while the optimal solution B∗ of the Problem (8) is reported
in blue.

i) the point B∗ = (B∗1 , . . . , B
∗
n) such that B∗i = minα∈Ai(φ(rect)

i (B̃∗i )) α for every

i ∈ {1, . . . , n}, is optimal for the Problem (8), namely B∗ ∈ X ∗. Moreover, for
the optimal value we have Φ(B∗) = Φ(rect)(B̃∗);

ii) if φi(B̃
∗
i ) = φ

(rect)
i (B̃∗i ) for every i ∈ {1, . . . , n}, then B̃∗ ∈ X ∗; otherwise the

optimal point B∗ ∈ X ∗ defined at point i) is such that there exists at least one

index h̄ ∈ {1, . . . , n} for which B∗
h̄

= B†
h̄

with B†
h̄

local minimum of φh̄(·).

The Solution Algorithm. Theorem 4.2 and Corollary 4.3 are exploited to devise the
Algorithm 2 for the computation of an optimal solution for the Problem (8). First the
quantities B̌(M) and B̌(m) are computed (Lines 6-9), then condition at point i) of The-
orem 4.2 is readily checked (Lines 10-11) and in case the optimal solution immediately
returned. If the condition at point iii) holds, the sub-polytope defined in Remark 2 is
in case determined (Lines 13-18). Then, for condition at point ii), two nested binary
search algorithms are employed (Lines 20-32). The inner one, implemented in the func-
tion FIND POINTS (not reported due to its simplicity), is responsible for computing

the generalised inverse of the functions φ
(rect)
i (·): given a value t̆ ∈ [t

(M)
, t(m)], the

algorithm provides the extreme points B t̆
i , minα∈Ai(t̆) α and B

t̆
i , maxα∈Ai(t̆) α (if

13



Algorithm 2 Solution Algorithm

function OptimalSolution(φ(rect), B(m), B(M), n)
2: SetI = [1, . . . , n]; SetH = ∅; MaxB = 1

t
(M)

= maxi∈SetI
φ

(rect)
i (B

(M)
i )

4: t(m) = mini∈SetI
φ

(rect)
i (B

(m)
i )

t
(m)

= maxi∈SetI
φ

(rect)
i (B

(m)
i )

6: for i ∈ SetI do

[B̌
(m)
i , a] = FindPoints(t(m), φ

(rect)
i , B

(m)
i , B

(M)
i )

8: [B̌
(M)
i , a] = FindPoints(t

(M)
, φ

(rect)
i , B

(m)
i , B

(M)
i )

end for
10: if

∑
i∈SetI

B̌
(M)
i ≤ MaxB then

return [B̌(M), t
(M)

]

12: else
ta = t

(M)
; tb = t(m)

14: while
∑
i∈SetI

B̌
(m)
i > MaxB do

h̄ = arg minj∈SetI
φ

(rect)
j (B

(m)
j )

16: SetI = SetI\h̄; SetH = SetH ∪ h̄; MaxB = MaxB −B
(m)

h̄

t(m) = mini∈SetI
φ

(rect)
i (B

(m)
i ); tb = t(m)

18: end while
t̆ = ta+tb

2

20: while
∑
i∈SetI

Bt̆i > MaxB ∨ (
∑
i∈SetI

Bt̆i < MaxB ∧
∑
i∈SetI

B
t̆
i ≤ MaxB) do

for i ∈ SetI do

22: [Bt̆i, B
t̆
i] = FindPoints(t̆, φ

(rect)
i , B

(m)
i , B

(M)
i )

end for
24: if

∑
i∈SetI

Bt̆i > MaxB then

ta = t̆

26: else

if
∑
i∈SetI

B
t̆
i < MaxB then

28: tb = t̆

end if
30: end if

t̆ = ta+tb
2

32: end while
return [Bt̆SetI

⋃
B

(m)

SetH
, t̆]

34: end if

end function

φ
(rect)
i (·) is locally invertible in t̆, then B t̆

i = B
t̆
i). Notice that the algorithm is proved

to converge to the optimal solution in this case in light of point i) of Corollary 4.3.
Moreover, the problem solution strategy is particularly efficient for the function φi cho-
sen in this paper, which links the bandwidth Bi to the QoC with an explicit analytic
form. Other choices of φi are legitimated and perfectly compatible with the approach.
As an example, if no explicit form is available, φi could be numerically computed “by
points” and interpolated.

5. Numeric Evaluation

In order to show a numeric validation of the bandwidth optimal synthesis described
in Section 4, we consider randomly generated, open-loop unstable, reachable and ob-
servable linear discrete time systems subject to a linear combination of discrete time
noises. The number of independent noise sources equals the number of states and
their stochastic processes are normally distributed with zero mean and standard de-
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Discrete-time linear systems Controllers

(nxi ,mi, pi) Unst. poles Task Ti Distr. µ̃

(2, 1, 2) 1.01, 1.02 τ1 20 U[η?,4] 0.18

(3, 1, 3) 1.03, 1.01, 1.01 τ2 56 B[6,4] 0.33

(4, 1, 3) 1.08 τ3 56 E[6,4] 0.33

Table 3. Systems adopted in the simulations. Mean and best case computation times as well as periods are

expressed in milliseconds. The system executed by task τ1 is the one described in Example 2.1.
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Figure 4. Bandwidth optimal allocation minimising Tr
{
P̃ (µ)

}
with respect to the systems specified in

Table 3 with η? ∈ {6, 8, 10, 12}.

viations equal to σ = 0.01. Among the hundreds of test cases synthesised, we re-
port, as an example, three different systems, for which number of states nxi , inputs
mi, outputs pi and the open loop unstable poles are reported in Table 3. The con-
trollers are designed using the systematic LQG optimal control synthesis. They are
executed in the tasks τ1, τ2 and τ3, respectively, with execution period Ti. Three
different probability density functions (pdf) have been chosen for the computation
times of the control tasks, which are parametrised by the mean value ηi and by the
best-case execution time bc (ci ≥ bc): U[ηi, bc] is a uniform distribution defined as in

Example 3.3; E[ηi, bc] = 1
ηi

e
− ci−bc

ηi is an exponential distribution, where the WCET

is wc = +∞; B[ηi, bc] = 1
N

(
ci−bc
wc−bc

)α−1 (
1− ci−bc

wc−bc

)β−1
, with normalisation factor

N =
∫ 1

0 x
α−1(1 − x)β−1dx, is a beta distribution, having WCET wc = 60 ms and

parameters α = 2 and β = αwc−ηiηi−bc . For all the distributions, the bc = 4 ms. The
task set is not hard real-time schedulable since the modelled WCETs are so high that
no guarantee to finish the job within the activation period Ti can be given. Table 3
reports the critical probabilities µ̃ computed with Algorithm 1.

To highlight the relevant features of the solution algorithm presented in Section 4,
the possible mean values η? of the execution times of task τ1 are chosen in the set
N = {6, 8, 10, 12} ms (see also Example 3.3), while ηi is fixed to 6 ms for τ2 and τ3.

Figure 4 shows the optimal bandwidths, minimising the Tr
{
P̃ (µ)

}
, in the considered

cases. For η? ≤ 10 ms, the optimal solution is given by B1 = B
(M)
1 , while Bi < B

(M)
i ,

i = 2, 3, since point ii) of Theorem 4.2 applies. By the optimality of the solution, it is

evident that the minimum of Tr
{
P̃ (µ)

}
is the same for any η? ≤ 10 ms. Notice how for

increasing η?, the B
(M)
1 increases as well. When η? = 12 ms, we have a full exploitation

of resources with Bi < B
(M)
i , i = 1, 2, 3, B1 > B2 > B3 and B1 +B2 +B3 = 1 (recall
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Figure 5. Tr
{
P̃ (µ)

}
as a function of the probability µ for the systems scheduled by task τ2 (a) and τ3 (b)

specified in Table 3. The effect of variable execution periods Ti is also considered.

the schedulability condition (6)) and, again, point ii) applies. By further increasing
η?, we observe a slight increase of B1 still preserving full exploitation of computing

resources, i.e. B1 + B2 + B3 = 1. When η? = 28 ms, B3 = B
(m)
3 , hence point iii) of

Theorem 4.2 applies. As a consequence, for η? > 28 ms, the optimal allocation for a
degenerate case applies.

To further substantiate the numerical evaluation, we first present in Figure 5 the

value of Tr
{
P̃ (µ)

}
as a function of the probability µ for the systems scheduled by task

τ2 and τ3. It is evident that for the four-dimensional system (Figure 5-b), increasing
the bandwidth (and hence µ) may lead to worse performance. Moreover, Figure 5
clearly shows the effects of an increased execution period Ti that leads to: i) an higher
critical probability (recall Example 3.2); ii) an higher value of the trace (since the
model noise wi(k) in (1) is integrated for a longer period).

We finally present a set of interesting experiments, where the task τ1 has fixed
mean value η? = 14 ms and variable period T1 ∈ {20, 24, 32, 40} ms. The results of the
optimisation is hence influenced by the different periods (see Figure 6). This figure
shows how increasing the period has evident benefits on the total allocated bandwidth

with a tolerable price to pay on the control performance (the Tr
{
P̃ (µ)

}
remains

almost constant across the selected periods).

6. Conclusions

We considered an application scenario where multiple tasks are used to implement
independent feedback loops. The tasks are scheduled through a CBS scheduler and
different choices of the bandwidth translate into different value for the trace of the
steady state covariance (our QoC metric). We have tackled the problem of optimal
bandwidth allocation showing its formulation as an optimisation problem and an ef-
ficient solution algorithm. We envisage future work directions in the possible use of
different cost functions and of different computation models, where a task execution
is not dropped as soon as it violates a deadline and moderate execution delays can
be tolerated. As a final consideration, even if this work is directly motivated by a
particular industrial problem (CPU sharing), the core of the results in Section 3 and
the solution of the optimisation algorithm could potentially apply to a larger class of
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Figure 6. Bandwidth optimal allocation minimising Tr {P} with respect to the task set specified in Table 3
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resource allocation problems for stochastic systems.
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Xu, Y., Cervin, A., & Årzén, K. E. (2016, Aug). Harmonic scheduling and control co-design.
In 2016 ieee 22nd international conference on embedded and real-time computing systems
and applications (rtcsa) (p. 182-187).
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7. Appendix

Proof of Lemma 3.1

If µ is greater than the critical probability µ̃, then the steady state covariance P̄
converges and can be found identifying the equilibrium of the recursive equation (11):

vec(P̄ ) = S(µ)−1vec(H), (18)
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with S(µ) , Γ0 + Γ1µ, Γ0 , I − A[2]
o and Γ1 , A

[2]
o − A[2]

c , where S(µ) is invertible
whenever Condition (12) holds, leading to a unique solution for the equilibrium.

Recalling that Tr {AB} = vec(AT )Tvec(B) and (18), we can write Tr
{
P̄ (µ)

}
=

vec(I)Tvec(P̄ (µ)) = vec(I)TS(µ)−1vec(H). In order to compute S(µ)−1 we make use
of the recursive algorithm in Bernstein (2009), Fact 2.16.28, Applying this fact if
we construct a sequence of matrices Λij ∈ Rn

2
x̃×n2

x̃ using the following recursion (for
i = 1, . . . , n2

x̃ − 1)

Λ00 = I, Λi0 = Γ0Λi−1,0 −
1

i
Tr {Γ0Λi−1,0}I,

Λij = Γ0Λi−1,j + Γ1Λi−1,j−1+

− 1

i
Tr {Γ0Λi−1,j + Γ1Λi−1,j−1}I, ∀j = 1, . . . , i− 1,

Λii = Γ1Λi−1,i−1 −
1

i
Tr {Γ1Λi−1,i−1}I.

then we can compute S(µ)−1 as

S(µ)−1 = n2
x̃∑n2

x̃
−1

j=0 γjµj

∑n2
x̃−1
j=0 Λn−1,jµ

j , (19)

with

γ0 , Tr
{

Γ0Λn2
x̃−1,0

}
, γn2

x̃−1 , Tr
{

Γ1Λn2
x̃−1,n2

x̃−1

}
,

γj , Tr
{

Γ0Λn2
x̃−1,j + Γ1Λn2

x̃−1,j−1

}
, ∀j = 1, . . . , n2

x̃ − 2.

This leads us to (13), where

αj , vec(I)TΛn2
x̃−1,jvec(H), ∀j = 0, . . . , n2

x̃ − 1.

Proof of Theorem 4.2

We start with some preliminary considerations. By the non degenerate hypothesis we

have that t
(M) ≤ t(m), hence the set [t

(M)
, t(m)] is not empty. If we define t

(M)
i ,

φ
(rect)
i (B

(M)
i ) and t

(m)
i , φ

(rect)
i (B

(m)
i ) for every i ∈ {1, . . . , n}, it is easy to see that

[t
(M)

, t(m)] = ∩ni=1[t
(M)
i , t

(m)
i ], thus [t

(M)
, t(m)] ⊆ [t

(M)
i , t

(m)
i ]. As a consequence, being

all the φ
(rect)
i (·) surjective, the points B̌(m) and B̌(M) exist and are unique (owing to

the minimum operator).

Proof of i). If
∑n

i=1 B̌
(M)
i ≤ 1, B̌(M) is feasible. Moreover, Φ(B̌(M)) = t

(M)
, which

is the minimal value achievable by Φ(·) on B. Hence, B̌(M) ∈ X (rect)∗ .

Proof of ii). If
∑n

i=1 B̌
(m)
i ≤ 1 then the optimal value t∗ is such that t∗ ≤ t(m).

By the fact that
∑n

i=1 B̌
(M)
i > 1, the non-increasing property of all φ

(rect)
i (·) and the

definition of B̌
(M)
i in (17), we can deduce that t∗ > t

(M)
. By the same arguments we

also conclude that t
(M) 6= t(m), thus the set (t

(M)
, t(m)] is not empty. If

∑n
i=1 B̌

(m)
i = 1,

then clearly B̃ = B̌(m) is the optimal point and t∗ = t(m) is the optimal value. Hence,

we will henceforth assume
∑n

i=1 B̌
(m)
i < 1.

The conditions
∑n

i=1 B̌
(m)
i < 1 and

∑n
i=1 B̌

(M)
i > 1 are equivalent to state that
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B̌(M) and B̌(m) are points laying in the two opposite sides of Rn with respect to the
hyperplane P , {(B1, . . . , Bn) ∈ Rn |

∑n
i=1Bi = 1}. By definition, B̌(m) and B̌(M)

belong to the set

G , {B ∈ Rn≥0 | φ
(rect)
i (Bi) = φ

(rect)
j (Bj), ∀i, j, i 6= j}. (20)

In order to show that a point B̃, as defined in the claim, exists, we must show first
that G is compact and path-connected. In this case, indeed, we can easily construct a
continuous path connecting B̌(M) and B̌(m), whose image belongs to G. Such a path
would have at least one point B̃ of intersection with the hyperplane P.

The continuous functions φ
(rect)
i : [B

(m)
i , B

(M)
i ]→ [t

(M)
i , t

(m)
i ] are surjective but only

almost everywhere injective. Indeed, let us consider a point t̆ ∈ [t
(M)
i , t

(m)
i ] for which the

injectivity is lost. By the non-increasing property of φ
(rect)
i (·) we know that there exists

a closed, connected, not empty interval I t̆i , [B t̆
i, B

t̆
i], withB t̆

i , minα∈Ai(t̆) α andB
t̆
i ,

maxα∈Ai(t̆) α, such that for any B ∈ I t̆i we have φ
(rect)
i (B) = t̆. In the light of Remark 1

we can say that there are qi ∈ Z≥0 such points (and intervals) and that qi is less or

equal than the number of local minima of φi(·) in the set [B
(m)
i , B

(M)
i ]. Let us name

the finite set of points where the injectivity of φ
(rect)
i (·) is lost as T i , {ti1, . . . , tiqi}. We

can define the generalised inverse of the function φ
(rect)
i (·), i ∈ {1, . . . , n} as follows:

[
φ

(rect)
i

]−1
: [t

(M)
i , t

(m)
i ]→ [B

(m)
i , B

(M)
i ]

[
φ

(rect)
i

]−1
(t) =

{
φ−1
i (t) for t ∈ [t

(M)
i , t

(m)
i ] \ T i

Iti for t ∈ T i.
(21)

It is worth noting that
[
φ

(rect)
i

]−1
(·) is not a function, but a multi-valued mapping. It

can be verified that it is continuous. Let us consider now the multi-valued mapping 3

Ψ : [t
(M)

, t(m)]→
n

��
i=1

[B̌i, max
α∈Ai(t(M))

α]

Ψ(t) ,
n

��
i=1

[
φ

(rect)
i

]−1
(t).

It is a continuous mapping by virtue of the continuity of all
[
φ

(rect)
i

]−1
(·), but it is

not surjective. Indeed, it is easy to verify that the image of [t
(M)

, t(m)] along Ψ(·) is
exactly the set G defined in (20). G is a compact set made up of continuous paths

and hypercubes (see the definition of
[
φ

(rect)
i

]−1
(·) in (21)). In particular, for any

point t̆ ∈ [t
(M)

, t(m)] such that t̆ ∈ T ij for every ij ∈ {1, . . . , n}, j ∈ {1, . . . , lt̆},
lt̆ ≤ n, we can define the lt̆-dimensional hypercube Ht̆ ⊂ G as Ht̆ , ��

il
t̆

i=i1
I t̆i . By the

continuity of Ψ(·) we have limt↓t̆ Ψ(t) ∈ Ht̆ and limt↑t̆ Ψ(t) ∈ Ht̆, hence G is path-
connected and in particular we can construct a path belonging to G and connecting

3With the symbol ×ni=1 we mean the cartesian product of n indexed objects.
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B̌(m) and B̌(M) as desired. Let us name B̃ a point of intersection of such path with the
hyperplane P. We must show now that it is actually an optimal point. We proceed by
contradiction by assuming that there exists a feasible optimal point B′ = (B′1, . . . , B

′
n)

such that φ
(rect)
i (B′i) < t̃ , Φ(rect)(B̃). The latter inequality, the fact that in B̃ we have

φ
(rect)
i (B̃i) = φ

(rect)
j (B̃j) for every i, j ∈ {1, . . . , n} and the non-increasing property of

φ
(rect)
i (·) require that B′i > B̃i for every i ∈ {1, . . . , n}. But, being

∑n
i=1 B̃i = 1, the

point B′ is not feasible. Hence, B̃ is optimal.

Proof of iii). If
∑n

i=1 B̌
(m)
i > 1 clearly t∗ ∈ (t(m), t

(m)
], and the feasibility set has

been required to be non-empty. We show now that there exists an optimal point B∗ as
defined in the thesis of the theorem. Assume that there exists another optimal point

B′ = (B′1, . . . , B
′
n) such that B′

h̄
6= B

(m)

h̄
, then necessarily B′

h̄
> B

(m)

h̄
. We know that

t′ , Φ(rect)(B′) ∈ (t(m), t
(M)

], but φ
(rect)

h̄
(B′

h̄
) < φ

(rect)

h̄
(B

(m)

h̄
) = t(m), hence B′

h̄
does

not influence the optimal value t′, that is t′ = maxj∈{1,...,n}/{h̄} φ
(rect)
j (B′j). The point

B′ is feasible by definition, hence
∑n

i=1B
′
i ≤ 1. Let us define the point B∗ such that

B∗
h̄

= B
(m)

h̄
and B∗j = B′j for every j ∈ {1, . . . , n}/{h̄}. The point B∗ is feasible since∑n

i=1B
∗
i =

∑n
i=1B

′
i − B′h̄ + B∗

h̄
and B∗

h̄
= B

(m)

h̄
< B′

h̄
. This proves the optimality of

B∗.

Proof of Corollary 4.3

Proof of i). The point B∗ is clearly feasible since B∗i ≤ B̃∗i and B∗i ∈ [B
(m)
i , B

(M)
i ]

for every i ∈ {1, . . . , n}. Moreover, by the definition of B∗ we have φ
(rect)
i (B∗i ) =

φ
(rect)
i (B̃∗i ) for every i ∈ {1, . . . , n} and, by means of the Remark 1, also φi(B

∗
i ) =

φ
(rect)
i (B∗i ). Therefore, the optimal value is Φ(B∗) = Φ(rect)(B̃∗). By the definition of

rectified function (15) we know that φi(b) ≥ φ
(rect)
i (b) for every b ∈ [B

(m)
i , B

(M)
i ] and

every i ∈ {1, . . . , n}, thus φi(b) ≥ φ(rect)
i (B∗i ) for every b ∈ [B

(m)
i , B

(M)
i ], which implies

the optimality of B∗.
The proof of ii) is a straightforward consequence of the definition of rectified function

and of the Remark 1.
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