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This paper studies an n-player non-cooperative game where each player has expected-value payoff function and chance-constrained strategy set. We consider the case where the row vectors defining the constraints are independent random vectors whose probability distributions are not completely known and belong to a certain distributional uncertainty set. The chanceconstrained strategy sets are defined using a distributionally robust framework. We consider one density based uncertainty set and four two-moments based uncertainty sets. One of the considered uncertainty sets is based on a nonnegative support. Under the standard assumptions on the players' payoff functions, we show that there exists a Nash equilibrium of a distributionally robust chance-constrained game for each uncertainty set. As an application, we study Cournot competition in electricity market and perform the numerical experiments for the case of two electricity firms.

Introduction

The theory of games was started with the minimax theorem by John von Neumann [START_REF] Von Neumann | On the theory of games[END_REF] which establishes the existence of a saddle point equilibrium in a zero-sum game. Later John Nash [START_REF] Nash | Equilibrium points in n-person games[END_REF] showed that there exists a mixed strategy equilibrium, which is called a Nash equilibrium, for a finite strategic non-cooperative game with finite number of players. Since then, the noncooperative strategic games have been extensively studied in the literature. The existence of a Nash equilibrium was shown under certain conditions on the strategy sets and payoff functions [START_REF] Basar | Dynamic noncooperative game theory, 2nd edn[END_REF][START_REF] Debreu | A social equilibrium existence theorem[END_REF][START_REF] Fan | Applications oi a theorem concerning sets with convex sections[END_REF].

The above mentioned papers consider the games where players' strategy sets and payoff functions are deterministic in nature. In some practical game theoretic situations, the uncertainties are present due to various external factors. There are various ways to address the uncertainties present in the model. The robust optimization framework is used to handle distribution free uncertainties in the model [START_REF] Aghassi | Robust game theory[END_REF][START_REF] Xie | On robust solutions to uncertain linear complementarity problems and their variants[END_REF]. For the uncertainties involving random variables, the expected payoff criterion is used in case of risk neutral players [START_REF] Jadamba | Variational inequality approach to stochastic Nash equilibrium problems with an application to Cournot oligopoly[END_REF][START_REF] Jiang | Distributed computation of equilibria in misspecified convex stochastic Nash games[END_REF][START_REF] Koshal | Regularized iterative stochastic approximation methods for stochastic variational inequality problems[END_REF][START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF][START_REF] Xu | Stochastic Nash equilibrium problems: Sample average approximation and applications[END_REF][START_REF] Yousefian | On stochastic mirror-prox algorithms for stochastic cartesian variational inequalities: Randomized block coordinate and optimal averaging schemes[END_REF] and the risk measures CVaR and variance are used in the risk averse case [START_REF] Conejo | Riskconstrained self-scheduling of a thermal power producer[END_REF][START_REF] Kannan | Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis[END_REF][START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF]. For finite strategic games with random payoffs, Singh et al. [START_REF] Singh | Existence of Nash equilibrium for chance-constrained games[END_REF][START_REF] Singh | Distributionally robust chanceconstrained games: Existence and characterization of Nash equilibrium[END_REF][START_REF] Singh | A characterization of Nash equilibrium for the games with random payoffs[END_REF] introduced a chance constraint programming based payoff criterion. It captures a situation where players are guaranteed to get the payoffs with a certain confidence level. There exists a mixed strategy Nash equilibrium of a chance-constrained game if the payoff vector of each player follows a multivariate elliptically symmetric distribution [START_REF] Singh | Existence of Nash equilibrium for chance-constrained games[END_REF]. Such a Nash equilibrium can be computed by solving an equivalent mathematical program [START_REF] Singh | A characterization of Nash equilibrium for the games with random payoffs[END_REF]. The characterization of the set of Nash equilibria of a chanceconstrained game using the solution set of a variational inequality is given in [START_REF] Singh | Variational inequality formulation for the games with random payoffs[END_REF]. The games where the probability distributions of players' payoffs are partially known is studied using distributionally robust approach [START_REF] Singh | Distributionally robust chanceconstrained games: Existence and characterization of Nash equilibrium[END_REF]. The brief summary of various chance-constrained game models studied by Singh et al. is given in Table 1.

In this paper, we consider an n-player non-cooperative game with expected value payoff functions and chance-constrained strategy sets defined in a distributionally robust framework. The random constraint vectors are independent and their probability distributions are not completely known. The only available information of a probability distribution is that it belongs to some distributional uncertainty set. We consider various types of distributional uncertainty sets which are constructed using partially available information of the underlying probability distribution. The first uncertainty set is based on the density of the random parameters where the normal distribution is the reference distribution. The distance between the true density function and the normal density function is defined using φ-divergence [START_REF] Jiang | Data-driven chance constrained stochastic program[END_REF]. The other uncertainty sets are moments based, they are constructed with the information of mean vectors, covariance matrices and a support of a probability distribution [START_REF] Calafiore | On distributionally robust chanceconstrained linear programs[END_REF][START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF][START_REF] Liu | Distributionally robust chance constrained geometric optimization[END_REF]. One of the moments based uncertainty sets is defined on a nonnegative support. For φ-divergence uncertainty set, we show that a distributionally robust chance-constrained game (DRCCG) problem is equivalent to a CCG problem. Therefore, the existence of a Nash equilibrium in this case directly follows from the case of known probability distribution [START_REF] Peng | General sum games with joint chance constraints[END_REF]. For each type of moments based uncertainty set, we propose a new convex reformulation of a joint chance constraint using a logarithmic transformation. Using convex reformulation of the players' strategy sets, we show that there exists a Nash equilibrium of a DRCCG under mild conditions on payoff functions. As an application, we consider a Cournot competition on electricity market comprising of a set of generation nodes and distribution nodes. The firms produce electricity at generation nodes and transmit to distribution nodes for the consumer. The transmission over long distances creates power losses and the firms want to keep their power losses below a certain threshold. The power losses are defined using random variables whose distributions are partially known. We model the transmission constraints as distributionally robust joint chance constraints. We performed numerical experiments by considering two electricity firms where a Nash equilibrium of the game is computed using a best response algorithm.

The games considered in this paper are significantly different from the ones considered in [START_REF] Singh | Distributionally robust chanceconstrained games: Existence and characterization of Nash equilibrium[END_REF]. The players' payoff functions defined using distributionally robust individual chance constraints in [START_REF] Singh | Distributionally robust chanceconstrained games: Existence and characterization of Nash equilibrium[END_REF] comes within the class of payoff functions considered in this paper. Unlike in [START_REF] Singh | Distributionally robust chanceconstrained games: Existence and characterization of Nash equilibrium[END_REF], we consider the strategy set for each player defined by a distributionally robust joint chance constraint, and introduce two new moments based uncertainty sets, where one uncertainty set has a nonnegative support, and a density based uncertainty set.

The rest of the paper is organized as follows. Section 2 contains the definition of a DRCCG. Section 3 shows the existence of a Nash equilibrium of a DRCCG for different types of distributional uncertainty sets. Section 4 presents an application from an electricity market. We conclude the paper in Section 5. 

The model

We consider an n-player non-cooperative game defined by the following objects:

-I = {1, 2, • • • , n} is the set of players. -X i ⊂ R mi
++ denotes the set of all strategies of player i which is a convex and compact set; R mi ++ (R mi + ) denotes the positive (nonnegative) orthant of R mi . The product set X = i∈I X i is the set of vectors of strategies of all the players and X -i = n j=1;j =i X j is the set of vectors of strategies of all the players but player i. A vector (y i , x -i ) represents a strategy profile where y i is the strategy of player i and the strategy of player j, j = i, is x j .

-Let ξ : Ω → R d be a random vector defined on a probability space (Ω, F, P).

For each ω ∈ Ω, let v i (x, ξ(ω)) represents a real valued payoff function of player i which is defined on i∈I R mi ++ × R d . We consider the case where the probability distribution P i of ξ is only partially known. The only information we have of P i is that it belongs to a certain uncertainty set P i . We consider the worst-case scenario where the payoff function of player i, i ∈ I, is defined by

u i (x) = inf Pi∈Pi E Pi [v i (x, ξ)],
where E Pi denotes the expectation operator associated with probability distribution P i .

We consider the case where the strategies of player i are further restricted by the following stochastic linear constraints

A i x i ≤ b i , (1) 
where

A i = [A i 1 , A i 2 , • • • , A i Ki ]
T is a K i × m i random matrix defined on the probability space (Ω, F, P), and b i ∈ R Ki ; T denotes the transposition. For

each k = 1, 2, • • • , K i , A i k is the k th row of A i .
We consider the case where the constraints of player i given by (1) are jointly satisfied with at least a given probability level α i . Let F i denote the probability distribution of A i . In many practical situations, the probability distribution F i is not completely known. Therefore, we consider the worst case scenario where constraints (1) are jointly satisfied with at least α i probability for all possible distributions within a certain distributional uncertainty set D i . Then, the constraint (1) can be defined as a distributionally robust joint chance constraint given by inf

F i ∈Di P A i x i ≤ b i ≥ α i . (2) 
When D i , i ∈ I, contains only multivariate normal distribution, DRCCG reduces to a CCG considered in [START_REF] Peng | General sum games with joint chance constraints[END_REF]. For an α i ∈ [0, 1], the feasible strategy set of player i is defined by

S i αi = x i ∈ X i | inf F i ∈Di P A i x i ≤ b i ≥ α i , i ∈ I.
Using standard notations, we denote S α = i∈I S i αi and S -i α-i = j∈I;j =i S j αj . We assume that the set S i αi is non-empty, and the uncertainty sets D i , i ∈ I, and the probability level vector α = (α i ) i∈I are known to all the players. Then, the above DRCCG is a non-cooperative game with complete information. For a given α, a strategy profile x * is said to be a Nash equilibrium of a DRCCG if and only if for each i ∈ I,

u i (x i * , x -i * ) ≥ u i (x i , x -i * ), ∀ x i ∈ S i αi .
For the rest of the paper we have the following assumption on the players' payoff functions [START_REF] Liu | Distributionally robust equilibrium for continuous games: Nash and Stackelberg models[END_REF]. Assumption 1 For each player i, i ∈ I, the following conditions hold.

1. v i (x i , x -i , ξ) is a concave function of x i for every (x -i , ξ) ∈ X -i × R d . 2. v i (•) is a continuous function.
3. E Pi [v i (x, ξ)] is finite valued for any x ∈ X and P i ∈ P i .

4. P i is weakly compact.

3 Existence of Nash equilibrium for distributionally robust chance-constrained games

In this section, we consider the case where the rows of A i are independent and a probability distribution of A i is not completely known. We only know that it belongs to some uncertainty set which is constructed from the partially available information about the distribution. We consider five different types of uncertainty sets and for each case we show that there exists a Nash equilibrium of a DRCCG.

Density based uncertainty set

The uncertainty sets based on density function are often considered in the literature [START_REF] Jiang | Data-driven chance constrained stochastic program[END_REF]. Such uncertainty sets are constructed by considering a reference distribution from estimated available data. The decision makers believe that their estimated distribution may not be correct but it is not very far from the true distribution. We assume a normal distribution as a reference distribution. We denote the normal density function of row vector A i k by f i k0 . Then, the estimated density function f i 0 of A i is also normal, and it is given by the product of the density functions (f i k0 ) Ki k=1 . The distance between the estimated density f i 0 and the true density f i is modeled by φ-divergence, which is defined as

D φ i f i ||f i 0 = R K i m i φ f i (y) f i 0 (y) f i 0 (y)dy, ∀ i ∈ I. (3) 
The uncertainty set of player i, i ∈ I, is defined as

D φ i = F i | D φ i f i ||f i 0 ≤ ε i ,
where F i is a probability distribution corresponding to the density function f i and ε i is divergence tolerance which represents the risk-aversion level of player i. Moreover, φ(s), called the φ-divergence function, is a convex function on s ≥ 0. It can be extended to R by setting φ(s) = +∞ for s < 0. The φ-divergence function takes value zero if f i (y) > 0 and f i 0 (y) > 0 have the same value, i.e., φ(1) = 0. When the value of density function f i 0 (y) is zero at some points, the terms f i 0 (y)φ f i (y)

f i 0 (y)
used in (3) are defined as 0φ s 0 := s lim p→+∞ φ(p)/p for s > 0, and 0φ 0 0 := 0.

Let φ * be a conjugate function of φ defined as φ

* (t) = sup s∈R {ty -φ(s)}. Define, m(φ * ) = sup{m ∈ R : φ * is a finite constant on (-∞, m]} and m(φ * ) = inf{m ∈ R : φ * (m) = +∞}. Let F i
0 be a probability distribution corresponding to density function f i 0 . Then, from Theorem 1 of [START_REF] Jiang | Data-driven chance constrained stochastic program[END_REF] we have inf

F i ∼D φ i P A i x i ≤ b i ≥ α i = P A i ∼F i 0 A i x i ≤ b i ≥ αi , (4) 
where αi = min{α i , 1} such that

α i = inf z > 0, m(φ * ) ≤ z 0 + z ≤ m(φ * ) φ * (z 0 + z) -z 0 -(1 -α i )z + ε i φ * (z 0 + z) -φ * (z 0 ) .
(5) In ( 4), A i ∼ F i 0 denotes that F i 0 is a probability distribution of A i and the probability on the right hand side is defined according to F i 0 . The values of m(φ * ) and m(φ * ) for certain φ-divergences are given in Table 1 of [START_REF] Jiang | Data-driven chance constrained stochastic program[END_REF]. We summarize the values of α i for some famous φ-divergences obtained from (5) in Table 2. For detailed proofs for these α i we refer the readers to the Appendices of Jiang and Guan [START_REF] Jiang | Data-driven chance constrained stochastic program[END_REF]. By using ( 4), the strategy Table 2: The values α i for various φ-divergences

S.No. φ(y), y ≥ 0 α i α i 1 (y -1) 2 (0.5, 1] α i + ε 2 i +4ε i α i (1-α i )-(2α i -1)ε i 2ε i +2 2 |y -1| [0, 1] α i + ε i 2 3 y log y -y + 1 [0, 1] inf y∈(0,1) e -ε i y α i -1 y-1
set S i αi of player i, i ∈ I, can be written as

S i αi = x i ∈ X i | P A i ∼F i 0 A i x i ≤ b i ≥ αi , (6) 
where αi can be obtained using [START_REF] Cassidy | Solution of a satisficing model for random payoff games[END_REF]. Under Assumption 1, the payoff function u i (x i , x -i ), i ∈ I, is a concave function of x i for every x -i . The strategy set S i αi , i ∈ I, defined by ( 6) has a convex and compact reformulation [START_REF] Peng | General sum games with joint chance constraints[END_REF]. We further assume that u i (x i , x -i ), i ∈ I, is a non-increasing function of x i for every x -i . Then, it follows from Theorem 3.14 of [START_REF] Peng | General sum games with joint chance constraints[END_REF] that there exists a Nash equilibrium of a DRCCG.

Moments based uncertainty set

We often encounter practical situations where we only have some information about the first two moments of underlying probability distribution. We consider four different two-moments based uncertainty sets and for each uncertainty set, we propose a new convex reformulation of the distributionally robust joint chance constraint [START_REF] Basar | Dynamic noncooperative game theory, 2nd edn[END_REF]. Under the convex reformulation, we show that there exists a Nash equilibrium of a DRCCG.

Uncertainty set with known first two order moments

We consider the uncertainty set of player i, i ∈ I, which accounts for the information about a mean vector µ i k and a covariance matrix

Σ i k of (A i k ) T for all k = 1, 2, • • • , K i . For each i ∈ I, define D k i (µ i k , Σ i k ) = F i k E F i k [(A i k ) T ] = µ i k , E F i k [((A i k ) T -µ i k )((A i k ) T -µ i k ) T ] = Σ i k , k = 1, • • • , K i , (7) 
where F i k is a probability distribution of A i k and E F i k is the expectation operator associated with F i k . Under independent assumption on the row vectors of matrix A i [9], the distributionally robust joint chance constraint (2) is satisfied if and only if there exists a vector

z i ∈ R Ki such that Ki k=1 z i k = 1, z i k ≥ 0 for all k = 1, 2, • • • , K i and inf F i k ∈D k i (µ i k ,Σ i k ) P A i k x i ≤ b i k ≥ α z i k i , k = 1, 2, • • • K i . (8) 
Then, using the deterministic reformulation of distributionally robust individual chance constraints [START_REF] Cheng | Random-payoff two-person zero-sum game with joint chance constraints[END_REF] from [START_REF] Calafiore | On distributionally robust chanceconstrained linear programs[END_REF][START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF], we have the following deterministic reformulation for the distributionally robust joint chance constraint (2)

Q i αi =                    (i) (µ i k ) T x i + α z i k i 1 -α z i k i Σ i k 1/2 x i ≤ b i k , ∀ k = 1, 2, • • • , K i , (ii) Ki k=1 z i k = 1, (iii) z i k ≥ 0, ∀ k = 1, 2, • • • , K i , (9) 
where || • || is the Euclidean norm. It is clear that Q i αi is not a convex set due to constraint (i) of [START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF]. We reformulate the constraint (i) of ( 9) by using a change of variables technique under logarithmic transformation. We transform the vector x i ∈ X i into a vector y i ∈ R mi , where y i j = ln x i j , j = 1, 2, . . . , m i [START_REF] Liu | Stochastic geometric optimization with joint probabilistic constraints[END_REF]. Under logarithmic transformation, we have the following reformulation of ( 9)

Q i αi =                        (i) (µ i k ) T e y i + Σ i k 1/2 e 1 2 z i k log αi-log 1-α z i k i •1m i +y i ≤ b i k , ∀ k = 1, 2, • • • , K i , (ii) Ki k=1 z i k = 1, (iii) z i k ≥ 0, ∀ k = 1, 2, . . . , K i . (10) 
Let Y i be an image of X i under logarithmic transformation. Since, the logarithmic function is continuous and X i is a compact set, Y i is also a compact set. The convexity need not be preserved under logarithmic transformation.

From now onward, we consider the set X i for which the set Y i remains convex. Such sets indeed exists, see for instance [START_REF] Peng | General sum games with joint chance constraints[END_REF]. The reformulation of feasible strategy set S i αi of player i, i ∈ I, is given by

S i αi = (y i , z i ) ∈ Y i × R Ki | (y i , z i ) ∈ Q i αi , (11) 
and it is a compact set.

Assumption 2 For each i ∈ I and k = 1, 2, . . . , K i , all the components of Σ i k and µ i k are nonnegative. Under Assumption 2, we show that the set S i αi is convex. It suffices to show that the constraint (i) of ( 10) is convex.

Lemma 1 For each i ∈ I, the set S i αi is a convex set, under Assumption 2, for all α i ∈ (0, 1) .

Proof Fix α i ∈ (0, 1). The function log (1 -p) is non-increasing and concave in p, and α

z i k i is a convex function of z i k . Therefore, the composition function log 1 -α z i k i is a concave function of z i k . Then, e 1 2 z i k log αi-log 1-α z i k i •1m i +y i
is an m i × 1 vector whose components are nonnegative convex functions. Therefore, it follows from Proposition 2.1 of

[14] that Σ i k 1/2 e 1 2 z i k log αi-log 1-α z i k i •1m i +y i is a convex function. The term (µ i k )
T e y i is a convex function because µ i k is a nonnegative vector. Hence, the constraints

(µ i k ) T e y i + Σ i k 1/2 e 1 2 z i k log αi-log 1-α z i k i •1m i +y i ≤ b i k , ∀ k = 1, 2, • • • , K i ,
are convex. It is easy to see that the other constraints of S i (α i ) are convex. Therefore, S i αi , i ∈ I is a convex set.

Uncertainty set with unknown second order moment

In this section, we consider the uncertainty set of player i, i ∈ I, which accounts for the information about a mean vector µ i k and an upper bound

Σ i k 0 on covariance matrix of (A i k ) T for all k = 1, 2, • • • , K i . For each i ∈ I, define D k i (µ i k , Σ i k ) = F i k E F i k [(A i k ) T ] = µ i k , E F i k [((A i k ) T -µ i k )((A i k ) T -µ i k ) T ] Σ i k , k = 1, 2, • • • , K i . (12) 
Under independent assumption on the row vectors of A i , it follows from [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF] that the deterministic reformulation of distributionally robust joint chance constraint (2) for uncertainty set [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF] is the same as for the uncertainty set [START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF] and it is given by [START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF]. Therefore, under logarithmic transformation described in Section 3.2.1, a convex and compact reformulation of feasible strategy set S i αi , i ∈ I, is given by (11).

Uncertainty set with unknown moments

We consider the case where the mean vector of (A i k ) T lies in an ellipsoid of size γ i k1 ≥ 0 centered at µ i k and the covariance matrix of (A i k ) T lies in a positive semi-definite cone defined with a linear matrix inequality. For each i ∈ I and

k = 1, 2 • • • , K i , let Σ i k 0, γ i k2 > 0.
We define the uncertainty set of each player i ∈ I as follows

D k i (µ i k , Σ i k ) =    F i k E F i k [(A i k ) T ] -µ i k Σ i k -1 E F i k [(A i k ) T ] -µ i k ≤ γ i k1 , COV F i k [(A i k ) T ] γ i k2 Σ i k    (13) for all k = 1, • • • , K i . COV F i k is a covariance operator under probability distri- bution F i k .
As mentioned earlier in Section 3.2.1, under independent assumption the chance constraint (2) can be equivalently written as inf

F i k ∈D k i (µ i k ,Σ i k ) P A i k x i ≤ b i k ≥ α z i k i , (14) 
Ki k=1

z i k = 1, z i k ≥ 0, k = 1, 2, • • • , K i .
Based on the structure of the uncertainty set D k i (µ i k , Σ i k ), the constraint ( 14) can be written as inf

(µ,Σ)∈U i k inf F i k ∈D(µ,Σ) P A i k x i ≤ b i k ≥ α z i k i , where D(µ, Σ) = F i k E F i k [(A i k ) T ] = µ, COV F i k [A i k ] = Σ , and 
U i k = (µ, Σ) µ -µ i k Σ i k -1 µ -µ i k ≤ γ i k1 , Σ γ i k2 Σ i k .
According to one-sided Chebyshev inequality [START_REF] Liu | Distributionally robust chance constrained geometric optimization[END_REF][START_REF] Rujeerapaiboon | Chebyshev inequalities for products of random variables[END_REF], we have inf

F i k ∈D(µ,Σ) P A i k x i ≤ b i k =    1 - 1 1+ (µ T x i -b i k ) 2 ((x i ) T Σx i ) , if µ T x i ≤ b i k , 0, otherwise.
For the case µ

T x i > b i k , inf F i k ∈D(µ,Σ) P A i k x i ≤ b i k = 0,
and it leads constraint ( 14) to be infeasible. When

µ T x i ≤ b i k , the constraint (14) is equivalent to inf (µ,Σ)∈U i k 1 - 1 1 + (µ T x i -b i k ) 2 /((x i ) T Σx i ) ≥ α z i k i ,
which can be reformulated as

h i k (x i ) ≥ α z i k i 1 -α z i k i , (15) 
where

h i k (x i ) =        min µ,Σ b i k -µ T x i √ (x i ) T Σx i s.t. (i) µ -µ i k Σ i k -1 µ -µ i k ≤ γ i k1 , (ii) Σ γ i k2 Σ i k . (16) 
The problem ( 16) can be separated into two optimization problems. Therefore,

h i k (x i ) = b i k + v 1 (x i ) v 2 (x i ) , where v 1 (x i ) =    min µ -µ T x i s.t. µ -µ i k Σ i k -1 µ -µ i k ≤ γ i k1 , (17) 
v 2 (x i ) = max Σ (x i ) T Σx i s.t. Σ γ i k2 Σ i k .
Let λ ≥ 0 be a Lagrange multiplier associated with the constraint of optimization problem [START_REF] Jiang | Data-driven chance constrained stochastic program[END_REF]. By applying the KKT conditions, the optimal solution of ( 17) is given by µ

= µ i k + √ γ i k1 Σ i k x i √ (x i ) T Σ i k x i
and associated Lagrange multiplier is given by λ =

(x i ) T Σ i k x i 4γ i k1
. Therefore, the corresponding optimal value

v 1 (x i ) = -(µ i k ) T x i -γ i k1 (x i ) T Σ i k x i . Since, u T Σu ≤ u T γ i k2 Σ i k u for any u ∈ R n , then, v 2 (x i ) = γ i k2 (x i ) T Σ i k x i .
Using this, constraint (15) can be reformulated as

(µ i k ) T x i +   α z i k i 1 -α z i k i γ i k2 + γ i k1   Σ i k 1/2 x i ≤ b i k . (18) 
Hence, we have the following deterministic reformulation for the distributionally robust joint chance constraint (2)

Q i αi =                          (i) (µ i k ) T x i +   α z i k i 1 -α z i k i γ i k2 + γ i k1   Σ i k 1/2 x i ≤ b i k , ∀ k = 1, 2, • • • , K i , (ii) Ki k=1 z i k = 1, (iii) z i k ≥ 0, ∀ k = 1, 2, • • • , K i . ( 19 
) For a convex reformulation of ( 19), we use logarithmic transformation described in Section 3.2.1. The new convex reformulation of ( 19) is given by

Q i αi =                          (i) (µ i k ) T e y i + γ i k2 Σ i k 1/2 e 1 2 z i k log αi-log 1-α z i k i •1m i +y i + γ i k1 Σ i k 1/2 e y i ≤ b i k , ∀ k = 1, 2, • • • , K i , (ii) Ki k=1 z i k = 1, (iii) z i k ≥ 0, ∀ k = 1, 2, • • • , K i . (20) 
Hence, the reformulation of feasible strategy set S i αi of player i, i ∈ I, is given by

S i αi = (y i , z i ) ∈ Y i × R Ki | (y i , z i ) ∈ Q i αi .
The reformulation [START_REF] Liu | Stochastic geometric optimization with joint probabilistic constraints[END_REF] is similar to [START_REF] Conejo | Riskconstrained self-scheduling of a thermal power producer[END_REF] except in constraint (i) where there is one extra term and a positive multiplier in the second term. The convexity of (20) follows from the similar arguments used in Lemma 1. It is also a compact set. Therefore, the reformulated feasible strategy set S i αi of player i for distributional uncertainty set defined by ( 13) is a convex and compact set.

Uncertainty set with known first order moment and nonnegative support

So far we have considered the full support for the random vector A i k in the uncertainty sets. However, in some cases the random vector A i k can be nonnegative. To the best of our knowledge, distributionally robust games with nonnegative support have not been considered so far in the literature. To maintain the feasibility of the chance constraint (2), we further assume that b i k > 0 for all k = 1, 2, • • • , K i . We define the uncertainty set for player i, i ∈ I, as follows

D k i (µ i k ) = F i k | E F i k [(A i k ) T ] = µ i k , P F i k [A i k ≥ 0] = 1 , k = 1, . . . , K i , (21) 
where µ i k ≥ 0 for all k = 1, • • • , K i . Under independent assumption the chance constraint (2) can be equivalently written as inf

F i k ∈D k i (µ i k ) P A i k x i ≤ b i k ≥ z i k , k = 1, 2, • • • , K i Ki k=1 z i k ≥ α i , 0 ≤ z i k ≤ 1, k = 1, 2, • • • , K i .          (22) 
For each k

= 1, 2, • • • , K i , consider the optimization problem inf F i k ∈D k i (µ i k ) P A i k x i ≤ b i k which can be reformulated as inf F i k A i k ≥0 1 A i k x i ≤b i k dF i k (A i k ) s.t. A i k ≥0 (A i k ) T dF i k (A i k ) = µ i k A i k ≥0 dF i k (A i k ) = 1 ( 23 
)
where 1 C is the indicator function over a given set C. The dual problem of ( 23) is given by sup

β i k ∈R m i ,λ i k ∈R (µ i k ) T β i k + λ i k s.t. 1 A i k x i ≤b i k -A i k β i k -λ i k ≥ 0, ∀A i k ≥ 0. ( 24 
)
The strong duality follows from [START_REF] Shapiro | Semi-infinite programming[END_REF] because Dirac measure δ µ i k lies in the relative interior of D k i (µ i k ). The constraint (24) can be reformulated as

A i k β i k + λ i k ≤ 1, ∀A i k ≥ 0, ( 25 
)
A i k β i k + λ i k ≤ 0, ∀A i k ≥ 0, A i k x i > b i k . (26) 
Constraint ( 25) is equivalent to β i k ≤ 0 and λ i k ≤ 1. Since, we look for the supremum in (24), we can replace

A i k x i > b i k in (26) by A i k x i ≥ b i k .
Then, using duality theory of linear programming, the constraint ( 26) can be equivalently written as

λ i k ≤ b i k τ i k , τ i k ≥ 0, β i k + τ i k x i ≤ 0.
Since, there is no duality gap between ( 23) and ( 24), using [START_REF] Liu | Distributionally robust equilibrium for continuous games: Nash and Stackelberg models[END_REF] we have the following deterministic reformulation for the distributionally robust joint chance constraint (2)

Q i αi =                        (i) (µ i k ) T β i k + λ i k ≥ z i k , k = 1, 2, • • • , K i , (ii) β i k ≤ 0, λ i k ≤ 1, k = 1, 2, • • • , K i , (iii) λ i k ≤ b i k τ i k , τ i k ≥ 0, k = 1, 2, • • • , K i , (iv) β i k + τ i k x i ≤ 0, k = 1, 2, • • • , K i , (v) Ki k=1 z i k ≥ α i , 0 ≤ z i k ≤ 1, k = 1, 2, • • • , K i (27) 
Since 27) implies λ i k ≥ 0. In fact, it is easy to see that the components of vector (τ i k , λ i k , z i k , -β i k ) are positive. Therefore, we use change of variables under logarithmic transformation as follows: λi

µ i k ≥ 0, β i k ≤ 0 and 0 ≤ z i k ≤ 1, constraint (i) in (
k = log(λ i k ), βi kj = log(-β i kj ), τ i k = log(τ i k ), ζ i k = log(z i k )
, and y i j = ln x i j , for all j = 1, 2, . . . , m i , k = 1, 2, . . . , K i . We have a new convex reformulation of [START_REF] Rujeerapaiboon | Chebyshev inequalities for products of random variables[END_REF] given by

Q i αi =                          (i) e ζ i k -λi k + (µ i k ) T e βi k -λi k 1m i ≤ 1, k = 1, 2, • • • , K i , (ii) λi k ≤ 0, k = 1, 2, • • • , K i , (iii) λi k ≤ τ i k + log(b i k ), k = 1, 2, • • • , K i , (iv) τ i k + y i j -βi kj ≤ 0, k = 1, 2, • • • , K i , j = 1, • • • , m i , (v) Ki k=1 ζ i k ≥ log(α i ), ζ i k ≤ 0, k = 1, 2, • • • , K i
Hence, the reformulation of feasible strategy set S i αi of player i, i ∈ I, is given by

S i αi = (y i , λi , βi , τ i , ζ i ) ∈ Y i ×R Ki ×R Ki•mi ×R Ki ×R Ki | (y i , λi , βi , τ i , ζ i ) ∈ Q i αi .
It is evident that S i αi is a convex set. It follows from ( 27) that Q i αi is a compact set. Then, under logarithmic transformation S i αi , i ∈ I, is a compact set. We present a general theorem on the existence of a Nash equilibrium for a DRCCG which covers the case of each uncertainty set as a special case. The concavity of a player's payoff function in its strategies, for a fixed strategy profile of other players, plays a crucial role in showing the existence of a Nash equilibrium. Therefore, we need the following assumption on players' payoff functions which ensures the required concavity property of the payoff functions under logarithmic transformation. Assumption 3 For each player i, i ∈ I, the payoff function u i (•, x -i ) satisfies the non-increasing condition for every x -i ∈ X -i , i.e., for any two points x i and xi such that

x i k ≤ xi k for all k = 1, 2, . . . , m i , we have u i (x i , x -i ) ≥ u i (x i , x -i ).
Theorem 1 Consider an n-player DRCCG, where 1. the payoff function of player i, i ∈ I, satisfies the Assumptions 1 and 3, 2. the reformulation of feasible strategy set S i αi , i ∈ I, under logarithmic transformation is a convex and compact set.

Then, there exists a Nash equilibrium of a DRCCG for all α ∈ (0, 1) n .

Proof Let α ∈ (0, 1) n . Under Assumption 1, the payoff function u i (x i , x -i ), i ∈ I, is a concave function of x i for every x -i ∈ X -i , and a continuous function of x. For each i ∈ I, define a composition function V i = u i • d i , where

d i : R m1 × R m2 × • • • × R mn → R m1 ++ × R m2 ++ × • • • × R mn ++ , such that d i y 1 , y 2 , • • • , y n = e y 1 , e y 2 , • • • , e y n .
Under Assumptions 3, the composition function V i (•, y -i ), i ∈ I, is a concave function of y i for every y -i and V i (•) is a continuous function of y. Let S i αi , i ∈ I, be the reformulation of the feasible strategy set S i αi under logarithmic transformation which is a convex and compact set. Then, there exists a Nash equilibrium of an n-player non-cooperative game defined by strategy sets S i αi i∈I and payoff functions V i (•) i∈I [START_REF] Debreu | A social equilibrium existence theorem[END_REF][START_REF] Fan | Applications oi a theorem concerning sets with convex sections[END_REF]. Therefore, there exists y * ∈ i∈I S i αi such that

V i (y i * , y -i * ) ≥ V i (y i , y -i * ), ∀ y i ∈ S i αi
Under the hypothesis of the theorem, S i αi is a reformulation of S i αi , where x i = e y i . Therefore, for x * = e y * we have

u i (x i * , x -i * ) ≥ u i (x i , x -i * ), ∀ x i ∈ S i αi .
Hence, x * is a Nash equilibrium of a DRCCG for all α ∈ (0, 1) n .

The reformulated feasible strategy sets S i αi , i ∈ I, is a convex and compact set for each uncertainty set. Therefore, the corollary given below follows directly from Theorem 1.

Corollary 1 Consider an n-player DRCCG, where 1. the payoff function of player i, i ∈ I, satisfies the Assumptions 1 and 3, 2. the row vectors of A i , i ∈ I are independent, 3. one of the following conditions hold true for each k = 1, 2, • • • K i , the probability distribution of row vector A i k belongs to uncertainty set D k i (µ i k , Σ i k ) defined as in [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF], where the mean vector µ i k and the covariance matrix [START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF], where mean vector µ i k and the upper bound Σ i k on covariance matrix satisfy Assumption 2. or

Σ i k satisfy Assumption 2. or -for each k = 1, 2, • • • K i , the probability distribution of row vector A i k belongs to uncertainty set D k i (µ i k , Σ i k ) defined as in
-for each k = 1, 2, • • • K i , the probability distribution of row vector A i k belongs to uncertainty set D k i (µ i k , Σ i k )
defined as in [START_REF] Fan | Applications oi a theorem concerning sets with convex sections[END_REF], where µ i k and Σ i k satisfy Assumption 2. or for each k = 1, 2, • • • K i , the probability distribution of row vector A i k belongs to uncertainty set D k i (µ i k ) defined as in [START_REF] Liu | Distributionally robust chance constrained geometric optimization[END_REF]. Then, there exists a Nash equilibrium of a DRCCG for all α ∈ (0, 1) n .

Cournot competition in electricity market

We consider an electricity market where the firms compete over an electricity network comprises of a set of nodes. There are several generation nodes where the firms installed their generation facilities to produce electricity. There are also some distribution nodes from where the electricity is distributed to the consumers. The firms generate the electricity at their facilities and transmit to the distribution nodes. The transmission over long distances creates power losses which is better modeled using random variables. For simplicity, we omit the problem of consumers, which means any quantity of electricity can be consumed. The components of electricity market are described as follows:

I-set of firms called as players N -the set of generation nodes N i -subset of generation nodes where firm i has installed its generation facilities I k -the set of firms who owns generation facilities at node k M -the set of distribution nodes Let x i k = (x i kj ) j∈M be a vector of quantities being transmitted from the generation node k to the distribution nodes by firm i, e.g., x i kj is the quantity transmitted from the generation node k to the distribution node j by firm i. Denote a generation level vector of firm i by x i = (x i k ) k∈Ni . We assume that the price at a generation node k is different for each distribution node j and it depends on the total amount of electricity being transmitted to the node j from the node k. The price for a distribution node j at a generation node k is given by,

P kj = β kj -δ kj i∈I k x i kj , k ∈ N, j ∈ M, (28) 
where δ kj ≥ 0 for all k ∈ N , j ∈ M . Each firm incurs cost in generation as well as in the transmission of electricity. Let c i kj (x i kj ) be the cost incurred by firm i for the generation and transmission of x i kj unit of electricity from node k to node j. We consider the linear cost function for each firm, i.e., c i kj (x i kj ) = c i kj x i kj for all k ∈ N i , j ∈ M , i ∈ I. The payoff function of firm i is given by

u i (x i , x -i ) = k∈Ni j∈M x i kj β kj -δ kj l∈I k x l kj -c i kj x i kj . (29) 
The case where parameters β kj , δ kj and c i kj are random variables, e.g., when the market has randomness in the price and cost functions. In such cases, we take the average values of these parameters. The strategy set of player i is defined as

X i = {x i = (x i k ) k∈Ni | x i kj ∈ [ε i kj , γ i kj ], k ∈ N i , j ∈ M }
, where ε i kj > 0 and γ i kj denote the minimum and maximum output of firm i from node k to node j, respectively. Let a i k = (a i kj ) j∈M be a vector of unit electricity loss for firm i at generation node k where a i kj represents the unit electricity loss during the transmission from the kth generation node to the jth distribution node. We assume that a i kj is a random variable for each i ∈ I, j ∈ M and k ∈ N i . Each firm wants to keep its loss under a certain threshold. Let b i denotes the threshold vector for firm i. For a given confidence level α i , the distributionally robust joint chance constraint of firm i, i ∈ I, is given by inf

F i ∈Di P (a i k ) T x i k ≤ b i k , k ∈ N i ≥ α i . (30) 
We assume that the electricity loss for each firm at different node is independent, i.e., the random vectors (a i k ) k∈Ni are independent. Then, under the logarithmic transformation, the payoff function of player i, i = 1, 2, is given by

V i (y i , y -i ) = k∈Ni j∈M e y i kj β kj -δ kj l∈I k e y l kj -c i kj e y i kj . (31) 
For a fixed y -i , the function V i (y i , y -i ) is a concave function of y i if its Hessian matrix is negative semidefinite. The off-diagonal entries of the Hessian matrix are zero and the diagonal entries are given by

∂ 2 V i (y i , y -i ) (∂y i kj ) 2 = [(β kj -δ kj l∈I k e y l kj -c i kj ) × e y i kj ] -[3 × e 2y i kj × δ kj ].
Then, the Hessian matrix is negative semidefinite if

3e y i kj + l∈I k e y l kj ≥ β kj -c i kj δ kj , k ∈ N i j ∈ M. (32) 
The condition 32 holds for the suitable choice of a minimum output, ε i kj , of the firms . The strategy set, under logarithmic transformation, is given by

Y i = y i = (y i kj ) k∈Ni,j∈M | y i kj ∈ [ln ε i kj , ln γ i kj ], k ∈ N i , j ∈ M .
It is clear that Y i is a convex and compact set. We consider the case of known mean µ i k and known co-variance matrix Σ i k of a i k . In this case, the reformulated feasible strategy set Si αi is given by (11).

Case Study

For illustration purpose, we consider the case of two electricity firms whose generation nodes are the same. It is easy to see that the condition (32) holds if

ε 1 kj ≥ 3β kj -4c 1 kj + c 2 kj 15δ kj , ε 2 kj ≥ 3β kj -4c 2 kj + c 1 kj 15δ kj , k ∈ N, j ∈ M. (33) 
Therefore, it follows from Corollary 1 that there exists a Nash equilibrium of the game. For a fixed (y 2 , z 2 ) ∈ S2 α2 , player 1 solves the following convex optimization problem

[P 1 ] max y 1 ,z 1 V 1 (y 1 , y 2 ) s.t. (y 1 , z 1 ) ∈ S 1 α1 .
The set of optimal solution of [P 1 ], which is also called the best response set of player 1, is given by

BR 1 (y 2 ) = {(ȳ 1 , z1 ) | V 1 (ȳ 1 , y 2 ) ≥ V 1 (y 1 , y 2 ), ∀ (y 1 , z 1 ) ∈ S 1 α1 }.
Similarly, for a fixed (y 1 , z 1 ) ∈ S1 α1 , player 2 solves the following convex optimization problem

[P 2 ] max y 2 ,z 2 V 2 (y 1 , y 2 ) s.t. (y 2 , z 2 ) ∈ S 2 α2 .
The best response set of player 2, is given by

BR 2 (y 1 ) = {(ȳ 2 , z2 ) | V 2 (y 1 , ȳ2 ) ≥ V 2 (y 1 , y 2 ), ∀ (y 2 , z 2 ) ∈ S 2 α2 }.
It is clear that, if (y 1 * , z 1 * ) ∈ BR 1 (y 2 * ) and (y 2 * , z 2 * ) ∈ BR 2 (y 1 * ), (x 1 * , x 2 * ) = (e y 1 * , e y 2 * ) is a Nash equilibrium of the game. For computational purpose, we use the best response algorithm as outlined below:

Algorithm 1 (Best response algorithm)

Step-1 Select initial feasible point (y 2(0) , z 2(0) ) ∈ S 2 α2 for player 2. Set k := 0.

Step-2

Solve convex optimization problem [P 1 ] and find a point (y 1(k) , z 1(k) ) ∈ BR 1 (y 2(k) ).

Step-3 If (y 2(k) , z 2(k) ) ∈ BR 1 (y 1(k) ), then set (x 1 * , x 2 * ) = (e y 1(k) , e y 2(k) ) and stop. Otherwise, solve convex optimization problem [P 2 ] and find a point (y 2(k) , z 2(k) ) ∈ BR 1 (y 1(k) ), set k = k + 1 and go to step 2.

If the Algorithm 1 stops, (x 1 * , x 2 * ) is a Nash equilibrium of the game. The proof that Algorithm 1 never cycles is still an open problem.

Example 1 We consider the case of two electricity firms with four generation nodes and three distribution nodes, i.e., N = {1, 2, 3, 4} and M = {1, 2, 3}. We take the confidence level values of player 1 and player 2 as 0.9, i.e., α 1 = α 2 = 0.9. The randomly generated data used in the model are summarized as follows: We implement Algorithm 1 on Intel R Core TM 64-bit i5-7200U CPU @ 2.50GHz × 4 and 11.6 GiB RAM on Ubuntu 18.04.2 LTS. We use sqp in GNU Octave 5.2.0 to solve the best response convex optimization problem of both the players. For the above data sets, Algorithm 1 converges to a point (y 1 * , z 1 * , y 2 * , z 2 * ) such that (y 1 * , z 1 * ) ∈ BR 1 (y 2 * ) and (y 2 * , z 2 * ) ∈ BR 2 (y 1 * ). Therefore, (x 1 * , x 2 * ) = (e y 1 * , e y 2 * ) is a Nash equilibrium of the game and it is given by Figure 1 shows that Algorithm 1 converges to a Nash equilibrium payoffs of both the firms after few iterations. The total CPU time to compute Nash equilibrium is 7.71 seconds. kj and ε 2 kj such that condition (33) is satisfied, and γ 1 kj = γ 2 kj = 50. For k ∈ N and i = 1, 2, we take the mean vector µ i k = 0.15 + 1 10 rand(12, 1) and the covariance matrix Σ i k = BB T + s • I 12×12 , where B = 1 5 rand [START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF][START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF] and s > 0. The rand(12, 1) generates a 12 × 1 random vector whose entries are between 0 and 1 and rand [START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF][START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF] generates a 12 × 12 random matrix whose entries are between 0 and 1. We consider 20 different instances of this model, and for each instance Algorithm 1 converges to a Nash equilibrium. The average time to compute a Nash equilibrium is 301.81 seconds. The Figure 2 represents the variation in the time for different instances.

β kj = 30, δ kj = 1, c 1 kj = 15, c 2 kj = 12, ε 1 kj = 3, ε 2 kj = 4, γ 1 kj = γ 2 kj = 50 ∀ k ∈ N, j ∈ M, µ 1 
x 1

Conclusion

We studied Nash equilibirum problem for the games with joint chance constraints, where the row vectors defining the random constraints are independent. We studied these games under distributionally robust framework. We considered a density based uncertainty set and four different types of twomoments based uncertainty sets. One of the moments based uncertainty sets is based on nonnegative support. For moments based uncertainty sets, we proposed a new convex reformulation of a distributionally robust joint chance constraint using logarithmic transformation. Under standard assumptions on players' payoff functions we showed that there exists a Nash equilibrium of a DRCCG. As an application of these games, we proposed a Cournot competition model in electricity market, which covers the generation and distribution of electricity. The best response algorithm is used to compute the Nash equilibria of various randomly generated instances of the game.
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Table 1 :

 1 Existing chance-constrained game models

	No.	Model		Payoffs		Strategy	Main Result
						sets	
	1	n-player	finite	payoff	functions	Mixed		A Mixed strategy Nash
		strategic	games	are defined using a	strategy		equilibrium exists for
		considered in [29]	chance constraint	setup		elliptical distributions
	2	2-player bi-matrix	payoff	functions	Mixed		Equivalent mathemat-
		game considered in	are defined using a	strategy		ical program to com-
		[31]		chance constraint	setup		pute Nash equilibrium
								for elliptical distribu-
								tions
	3	n-player	finite	payoff	functions	Mixed		A Mixed strategy Nash
		strategic	games	are defined using	strategy		equilibrium	exists
		considered in [30]	a distributionally	setup		and it can be com-
				robust	chance			puted using equivalent
				constraint			mathematical	pro-
								gram for two different
								two-moments	based
								uncertainty sets
	4	n-player continu-	payoff	functions	A general	For elliptically dis-
		ous strategy games	are defined using a	convex and	tributed	payoffs,
		considered in [32]	chance constraint	compact		Nash equilibria and
						continuous	generalized Nash equi-
						strategy		libria exists and are
						sets		characterized	using
								the solution sets of
								variational inequality
	5	2-player zero-sum	payoff matrix is de-	strategy		Saddle point equilibria
		matrix game con-	terministic	sets are de-	are characterized using
		sidered in [33]			fined using	a primal-dual pair of
						individual	second order cone pro-
						chance		grams when random
						constraints	constraint vectors fol-
								low elliptical distribu-
								tion
	6	n-player game con-	payoff	functions	Strategy	A Nash equilibrium
		sidered in [25]	are deterministic	sets	are	exists when random
				and satisfies stan-	defined us-	constraint vectors are
				dard	continuity	ing a joint	independent and follow
				and	concavity	chance		multivariate	normal
				assumptions	constraint	distributions

  * = ((4.34, 4.3, 4.32), (4.4, 4.38, 4.25), (4.39, 4.28, 4.38), (4.04, 4.10, 4.14)) , x 2 * = ((6.33, 6.4, 6.36), (6.19, 6.24, 6.49), (6.23, 6.44, 6.25), (6.91, 6.81, 6.71)) .
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