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Abstract This paper studies an n-player non-cooperative game where each
player has expected-value payoff function and chance-constrained strategy set.
We consider the case where the row vectors defining the constraints are in-
dependent random vectors whose probability distributions are not completely
known and belong to a certain distributional uncertainty set. The chance-
constrained strategy sets are defined using a distributionally robust frame-
work. We consider one density based uncertainty set and four two-moments
based uncertainty sets. One of the considered uncertainty sets is based on a
nonnegative support. Under the standard assumptions on the players’ payoff
functions, we show that there exists a Nash equilibrium of a distributionally
robust chance-constrained game for each uncertainty set. As an application,
we study Cournot competition in electricity market and perform the numerical
experiments for the case of two electricity firms.
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1 Introduction

The theory of games was started with the minimax theorem by John von
Neumann [24] which establishes the existence of a saddle point equilibrium
in a zero-sum game. Later John Nash [23] showed that there exists a mixed
strategy equilibrium, which is called a Nash equilibrium, for a finite strate-
gic non-cooperative game with finite number of players. Since then, the non-
cooperative strategic games have been extensively studied in the literature.
The existence of a Nash equilibrium was shown under certain conditions on
the strategy sets and payoff functions [2, 11, 13].

The above mentioned papers consider the games where players’ strategy
sets and payoff functions are deterministic in nature. In some practical game
theoretic situations, the uncertainties are present due to various external fac-
tors. There are various ways to address the uncertainties present in the model.
The robust optimization framework is used to handle distribution free uncer-
tainties in the model [1, 34]. For the uncertainties involving random vari-
ables, the expected payoff criterion is used in case of risk neutral players
[15, 16, 19, 26, 35, 36] and the risk measures CVaR and variance are used
in the risk averse case [10, 18, 26]. For finite strategic games with random
payoffs, Singh et al. [29, 30, 31] introduced a chance constraint programming
based payoff criterion. It captures a situation where players are guaranteed to
get the payoffs with a certain confidence level. There exists a mixed strategy
Nash equilibrium of a chance-constrained game if the payoff vector of each
player follows a multivariate elliptically symmetric distribution [29]. Such a
Nash equilibrium can be computed by solving an equivalent mathematical
program [31]. The characterization of the set of Nash equilibria of a chance-
constrained game using the solution set of a variational inequality is given
in [32]. The games where the probability distributions of players’ payoffs are
partially known is studied using distributionally robust approach [30]. The
authors showed the existence of a mixed strategy Nash equilibrium for two
different two-moments based uncertainty sets. For each uncertainty set, they
proposed an equivalent mathematical program whose global maximizer gives a
Nash equilibrium. There is a limited literature on zero-sum chance-constrained
games, see for instance [3, 5, 6, 8].

Recently, the games with deterministic payoff functions and chance-
constrained strategy set of each player have been introduced [25, 33]. In [33],
the authors considered a two player zero-sum matrix game with individual
chance constraints. For the case of elliptical distributions, they showed that a
saddle point equilibrium of the game can be computed by solving a primal-dual
pair of second order cone programs. In [25], the authors considered an n-player
general sum game with joint chance constraints. The non-convexity of joint
chance constraint is considered as a major difficulty for the existence of a Nash
equilibrium. Peng et al. [25] proposed a new convex reformulation of the joint
chance constraint when the row vectors defining random linear constraints are
independent and follow multivariate normal distributions. Then, they showed
that there exists a Nash equilibrium of a chance-constrained game (CCG). A
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brief summary of various chance-constrained game models studied by Singh
et al. is given in Table 1.

In this paper, we consider an n-player non-cooperative game with expected
value payoff functions and chance-constrained strategy sets defined in a dis-
tributionally robust framework. The random constraint vectors are indepen-
dent and their probability distributions are not completely known. The only
available information of a probability distribution is that it belongs to some
distributional uncertainty set. We consider various types of distributional un-
certainty sets which are constructed using partially available information of
the underlying probability distribution. The first uncertainty set is based on
the density of the random parameters where the normal distribution is the
reference distribution. The distance between the true density function and the
normal density function is defined using φ-divergence [17]. The other uncer-
tainty sets are moments based, they are constructed with the information of
mean vectors, covariance matrices and a support of a probability distribution
[4, 7, 21]. One of the moments based uncertainty sets is defined on a nonnega-
tive support. For φ-divergence uncertainty set, we show that a distributionally
robust chance-constrained game (DRCCG) problem is equivalent to a CCG
problem. Therefore, the existence of a Nash equilibrium in this case directly
follows from the case of known probability distribution [25]. For each type of
moments based uncertainty set, we propose a new convex reformulation of a
joint chance constraint using a logarithmic transformation. Using convex re-
formulation of the players’ strategy sets, we show that there exists a Nash
equilibrium of a DRCCG under mild conditions on payoff functions. As an
application, we consider a Cournot competition on electricity market compris-
ing of a set of generation nodes and distribution nodes. The firms produce
electricity at generation nodes and transmit to distribution nodes for the con-
sumer. The transmission over long distances creates power losses and the firms
want to keep their power losses below a certain threshold. The power losses are
defined using random variables whose distributions are partially known. We
model the transmission constraints as distributionally robust joint chance con-
straints. We performed numerical experiments by considering two electricity
firms where a Nash equilibrium of the game is computed using a best response
algorithm.

The games considered in this paper are significantly different from the ones
considered in [30]. The players’ payoff functions defined using distributionally
robust individual chance constraints in [30] comes within the class of payoff
functions considered in this paper. Unlike in [30], we consider the strategy set
for each player defined by a distributionally robust joint chance constraint, and
introduce two new moments based uncertainty sets, where one uncertainty set
has a nonnegative support, and a density based uncertainty set.

The rest of the paper is organized as follows. Section 2 contains the def-
inition of a DRCCG. Section 3 shows the existence of a Nash equilibrium
of a DRCCG for different types of distributional uncertainty sets. Section 4
presents an application from an electricity market. We conclude the paper in
Section 5.
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Table 1: Existing chance-constrained game models

No. Model Payoffs Strategy
sets

Main Result

1 n-player finite
strategic games
considered in [29]

payoff functions
are defined using a
chance constraint

Mixed
strategy
setup

A Mixed strategy Nash
equilibrium exists for
elliptical distributions

2 2-player bi-matrix
game considered in
[31]

payoff functions
are defined using a
chance constraint

Mixed
strategy
setup

Equivalent mathemat-
ical program to com-
pute Nash equilibrium
for elliptical distribu-
tions

3 n-player finite
strategic games
considered in [30]

payoff functions
are defined using
a distributionally
robust chance
constraint

Mixed
strategy
setup

A Mixed strategy Nash
equilibrium exists
and it can be com-
puted using equivalent
mathematical pro-
gram for two different
two-moments based
uncertainty sets

4 n-player continu-
ous strategy games
considered in [32]

payoff functions
are defined using a
chance constraint

A general
convex and
compact
continuous
strategy
sets

For elliptically dis-
tributed payoffs,
Nash equilibria and
generalized Nash equi-
libria exists and are
characterized using
the solution sets of
variational inequality

5 2- player zero-sum
matrix game con-
sidered in [33]

payoff matrix is de-
terministic

strategy
sets are de-
fined using
individual
chance
constraints

Saddle point equilibria
are characterized using
a primal-dual pair of
second order cone pro-
grams when random
constraint vectors fol-
low elliptical distribu-
tion

6 n-player game con-
sidered in [25]

payoff functions
are deterministic
and satisfies stan-
dard continuity
and concavity
assumptions

Strategy
sets are
defined us-
ing a joint
chance
constraint

A Nash equilibrium
exists when random
constraint vectors are
independent and follow
multivariate normal
distributions

2 The model

We consider an n-player non-cooperative game defined by the following ob-
jects:

– I = {1, 2, · · · , n} is the set of players.
– Xi ⊂ R

mi
++ denotes the set of all strategies of player i which is a convex

and compact set; Rmi++ (Rmi+ ) denotes the positive (nonnegative) orthant of
R
mi . The product set X =

∏
i∈I X

i is the set of vectors of strategies of
all the players and X−i =

∏n
j=1;j 6=iX

j is the set of vectors of strategies of

all the players but player i. A vector (yi, x−i) represents a strategy profile
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where yi is the strategy of player i and the strategy of player j, j 6= i, is
xj .

– Let ξ : Ω → R
d be a random vector defined on a probability space (Ω,F ,P).

For each ω ∈ Ω, let vi(x, ξ(ω)) represents a real valued payoff function of
player i which is defined on

∏
i∈I R

mi
++ × Rd. We consider the case where

the probability distribution Pi of ξ is only partially known. The only in-
formation we have of Pi is that it belongs to a certain uncertainty set Pi.
We consider the worst-case scenario where the payoff function of player i,
i ∈ I, is defined by

ui(x) = inf
Pi∈Pi

EPi [vi(x, ξ)],

where EPi denotes the expectation operator associated with probability
distribution Pi.

We consider the case where the strategies of player i are further restricted by
the following stochastic linear constraints

Aixi ≤ bi, (1)

where Ai = [Ai1, A
i
2, · · · , AiKi ]

T is a Ki × mi random matrix defined on the

probability space (Ω,F ,P), and bi ∈ R
Ki ; T denotes the transposition. For

each k = 1, 2, · · · ,Ki, A
i
k is the kth row of Ai. We consider the case where

the constraints of player i given by (1) are jointly satisfied with at least a
given probability level αi. Let F i denote the probability distribution of Ai.
In many practical situations, the probability distribution F i is not completely
known. Therefore, we consider the worst case scenario where constraints (1)
are jointly satisfied with at least αi probability for all possible distributions
within a certain distributional uncertainty set Di. Then, the constraint (1) can
be defined as a distributionally robust joint chance constraint given by

inf
F i∈Di

P
{
Aixi ≤ bi

}
≥ αi. (2)

When Di, i ∈ I, contains only multivariate normal distribution, DRCCG re-
duces to a CCG considered in [25]. For an αi ∈ [0, 1], the feasible strategy set
of player i is defined by

Siαi =

{
xi ∈ Xi | inf

F i∈Di
P
{
Aixi ≤ bi

}
≥ αi

}
, i ∈ I.

Using standard notations, we denote Sα =
∏
i∈I S

i
αi and S−iα−i

=
∏
j∈I;j 6=i S

j
αj .

We assume that the set Siαi is non-empty, and the uncertainty sets Di, i ∈ I,
and the probability level vector α = (αi)i∈I are known to all the players. Then,
the above DRCCG is a non-cooperative game with complete information. For
a given α, a strategy profile x∗ is said to be a Nash equilibrium of a DRCCG
if and only if for each i ∈ I,

ui(x
i∗, x−i∗) ≥ ui(xi, x−i∗), ∀ xi ∈ Siαi .

For the rest of the paper we have the following assumption on the players’
payoff functions [22].
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Assumption 1 For each player i, i ∈ I, the following conditions hold.

1. vi(x
i, x−i, ξ) is a concave function of xi for every (x−i, ξ) ∈ X−i × Rd.

2. vi(·) is a continuous function.
3. EPi [vi(x, ξ)] is finite valued for any x ∈ X and Pi ∈ Pi.
4. Pi is weakly compact.

3 Existence of Nash equilibrium for distributionally robust
chance-constrained games

In this section, we consider the case where the rows of Ai are independent
and a probability distribution of Ai is not completely known. We only know
that it belongs to some uncertainty set which is constructed from the partially
available information about the distribution. We consider five different types of
uncertainty sets and for each case we show that there exists a Nash equilibrium
of a DRCCG.

3.1 Density based uncertainty set

The uncertainty sets based on density function are often considered in the
literature [17]. Such uncertainty sets are constructed by considering a reference
distribution from estimated available data. The decision makers believe that
their estimated distribution may not be correct but it is not very far from the
true distribution. We assume a normal distribution as a reference distribution.
We denote the normal density function of row vector Aik by f ik0. Then, the
estimated density function f i0 of Ai is also normal, and it is given by the
product of the density functions (f ik0)Kik=1. The distance between the estimated
density f i0 and the true density f i is modeled by φ-divergence, which is defined
as

Dφ
i

(
f i||f i0

)
=

∫
RKimi

φ

(
f i(y)

f i0(y)

)
f i0(y)dy, ∀ i ∈ I. (3)

The uncertainty set of player i, i ∈ I, is defined as

Dφi =
{
F i | Dφ

i

(
f i||f i0

)
≤ εi

}
,

where F i is a probability distribution corresponding to the density function f i

and εi is divergence tolerance which represents the risk-aversion level of player
i. Moreover, φ(s), called the φ-divergence function, is a convex function on s ≥
0. It can be extended to R by setting φ(s) = +∞ for s < 0. The φ-divergence
function takes value zero if f i(y) > 0 and f i0(y) > 0 have the same value, i.e.,
φ(1) = 0. When the value of density function f i0(y) is zero at some points, the

terms f i0(y)φ
(
fi(y)
fi0(y)

)
used in (3) are defined as 0φ

(
s
0

)
:= s limp→+∞ φ(p)/p

for s > 0, and 0φ
(
0
0

)
:= 0.
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Let φ∗ be a conjugate function of φ defined as φ∗(t) = sups∈R{ty − φ(s)}.
Define, m(φ∗) = sup{m ∈ R : φ∗ is a finite constant on (−∞,m]} and
m(φ∗) = inf{m ∈ R : φ∗(m) = +∞}. Let F i0 be a probability distribution
corresponding to density function f i0. Then, from Theorem 1 of [17] we have

inf
F i∼Dφi

P
{
Aixi ≤ bi

}
≥ αi = PAi∼F i0

{
Aixi ≤ bi

}
≥ α̂i, (4)

where α̂i = min{α′i, 1} such that

α′i = inf
z > 0,m(φ∗) ≤ z0 + z ≤ m(φ∗)

{
φ∗(z0 + z)− z0 − (1− αi)z + εi

φ∗(z0 + z)− φ∗(z0)

}
.

(5)
In (4), Ai ∼ F i0 denotes that F i0 is a probability distribution of Ai and the
probability on the right hand side is defined according to F i0.

The values of m(φ∗) and m(φ∗) for certain φ-divergences are given in Ta-
ble 1 of [17]. We summarize the values of α′i for some famous φ-divergences
obtained from (5) in Table 2. For detailed proofs for these α′i we refer the
readers to the Appendices of Jiang and Guan [17]. By using (4), the strategy

Table 2: The values α′i for various φ-divergences

S.No. φ(y), y ≥ 0 αi α′i

1 (y − 1)2 (0.5, 1] αi +

√
ε2i+4εiαi(1−αi)−(2αi−1)εi

2εi+2

2 |y − 1| [0, 1] αi + εi
2

3 y log y − y + 1 [0, 1] inf
y∈(0,1)

{
e−εiyαi−1

y−1

}

set Siαi of player i, i ∈ I, can be written as

Siαi =
{
xi ∈ Xi | PAi∼F i0

{
Aixi ≤ bi

}
≥ α̂i

}
, (6)

where α̂i can be obtained using (5). Under Assumption 1, the payoff function
ui(x

i, x−i), i ∈ I, is a concave function of xi for every x−i. The strategy set
Siαi , i ∈ I, defined by (6) has a convex and compact reformulation [25]. We
further assume that ui(x

i, x−i), i ∈ I, is a non-increasing function of xi for
every x−i. Then, it follows from Theorem 3.14 of [25] that there exists a Nash
equilibrium of a DRCCG.

3.2 Moments based uncertainty set

We often encounter practical situations where we only have some informa-
tion about the first two moments of underlying probability distribution. We
consider four different two-moments based uncertainty sets and for each un-
certainty set, we propose a new convex reformulation of the distributionally
robust joint chance constraint (2). Under the convex reformulation, we show
that there exists a Nash equilibrium of a DRCCG.
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3.2.1 Uncertainty set with known first two order moments

We consider the uncertainty set of player i, i ∈ I, which accounts for the
information about a mean vector µik and a covariance matrix Σi

k of (Aik)T for
all k = 1, 2, · · · ,Ki. For each i ∈ I, define

Dki (µik, Σ
i
k) =

{
F ik

∣∣∣∣EF ik [(Aik)T ] = µik,

EF ik
[((Aik)T − µik)((Aik)T − µik)T ] = Σi

k

}
, k = 1, · · · ,Ki,

(7)
where F ik is a probability distribution of Aik and EF ik

is the expectation oper-

ator associated with F ik. Under independent assumption on the row vectors of
matrix Ai [9], the distributionally robust joint chance constraint (2) is satisfied

if and only if there exists a vector zi ∈ RKi such that
∑Ki
k=1 z

i
k = 1, zik ≥ 0 for

all k = 1, 2, · · · ,Ki and

inf
F ik∈D

k
i (µ

i
k,Σ

i
k)
P
{
Aikx

i ≤ bik
}
≥ αz

i
k
i , k = 1, 2, · · ·Ki. (8)

Then, using the deterministic reformulation of distributionally robust individ-
ual chance constraints (8) from [4, 12], we have the following deterministic
reformulation for the distributionally robust joint chance constraint (2)

Qiαi =



(i) (µik)Txi +

√√√√ α
zik
i

1− αz
i
k
i

∥∥∥(Σi
k

)1/2
xi
∥∥∥ ≤ bik, ∀ k = 1, 2, · · · ,Ki,

(ii)

Ki∑
k=1

zik = 1,

(iii) zik ≥ 0, ∀ k = 1, 2, · · · ,Ki,
(9)

where || · || is the Euclidean norm. It is clear that Qiαi is not a convex set due
to constraint (i) of (9). We reformulate the constraint (i) of (9) by using a
change of variables technique under logarithmic transformation. We transform
the vector xi ∈ Xi into a vector yi ∈ Rmi , where yij = lnxij , j = 1, 2, . . . ,mi

[20]. Under logarithmic transformation, we have the following reformulation
of (9)

Q̃iαi =



(i) (µik)T ey
i

+

∥∥∥∥∥(Σi
k

)1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

∥∥∥∥∥ ≤ bik,
∀ k = 1, 2, · · · ,Ki,

(ii)

Ki∑
k=1

zik = 1,

(iii) zik ≥ 0, ∀ k = 1, 2, . . . ,Ki.
(10)
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Let Y i be an image of Xi under logarithmic transformation. Since, the loga-
rithmic function is continuous and Xi is a compact set, Y i is also a compact
set. The convexity need not be preserved under logarithmic transformation.
From now onward, we consider the set Xi for which the set Y i remains con-
vex. Such sets indeed exists, see for instance [25]. The reformulation of feasible
strategy set Siαi of player i, i ∈ I, is given by

S̃iαi =
{

(yi, zi) ∈ Y i × RKi | (yi, zi) ∈ Q̃iαi
}
, (11)

and it is a compact set.

Assumption 2 For each i ∈ I and k = 1, 2, . . . ,Ki, all the components of
Σi
k and µik are nonnegative.

Under Assumption 2, we show that the set S̃iαi is convex. It suffices to show
that the constraint (i) of (10) is convex.

Lemma 1 For each i ∈ I, the set S̃iαi is a convex set, under Assumption 2,
for all αi ∈ (0, 1) .

Proof Fix αi ∈ (0, 1). The function log (1− p) is non-increasing and

concave in p, and α
zik
i is a convex function of zik. Therefore, the

composition function log
(

1− αz
i
k
i

)
is a concave function of zik. Then,(

e
1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

)
is an mi× 1 vector whose components are

nonnegative convex functions. Therefore, it follows from Proposition 2.1 of

[14] that

∥∥∥∥∥(Σi
k

)1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

∥∥∥∥∥ is a convex function. The

term (µik)T ey
i

is a convex function because µik is a nonnegative vector. Hence,
the constraints

(µik)T ey
i

+

∥∥∥∥∥(Σi
k

)1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, · · · ,Ki,

are convex. It is easy to see that the other constraints of S̃i(αi) are convex.

Therefore, S̃iαi , i ∈ I is a convex set. ut

3.2.2 Uncertainty set with unknown second order moment

In this section, we consider the uncertainty set of player i, i ∈ I, which accounts
for the information about a mean vector µik and an upper bound Σi

k � 0 on
covariance matrix of (Aik)T for all k = 1, 2, · · · ,Ki. For each i ∈ I, define

Dki (µik, Σ
i
k) =

{
F ik

∣∣∣∣EF ik [(Aik)T ] = µik,

EF ik
[((Aik)T − µik)((Aik)T − µik)T ] � Σi

k

}
, k = 1, 2, · · · ,Ki.

(12)
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Under independent assumption on the row vectors of Ai, it follows from [7]
that the deterministic reformulation of distributionally robust joint chance
constraint (2) for uncertainty set (7) is the same as for the uncertainty set (12)
and it is given by (9). Therefore, under logarithmic transformation described
in Section 3.2.1, a convex and compact reformulation of feasible strategy set
Siαi , i ∈ I, is given by (11).

3.2.3 Uncertainty set with unknown moments

We consider the case where the mean vector of (Aik)T lies in an ellipsoid of size
γik1 ≥ 0 centered at µik and the covariance matrix of (Aik)T lies in a positive
semi-definite cone defined with a linear matrix inequality. For each i ∈ I and
k = 1, 2 · · · ,Ki, let Σi

k � 0, γik2 > 0. We define the uncertainty set of each
player i ∈ I as follows

Dki (µik, Σ
i
k) =

F ik
∣∣∣∣∣∣
(
EF ik

[(Aik)T ]− µik
)> (

Σi
k

)−1 (
EF ik

[(Aik)T ]− µik
)
≤ γik1,

COVF ik [(Aik)T ] � γik2Σi
k


(13)

for all k = 1, · · · ,Ki. COVF ik is a covariance operator under probability distri-

bution F ik. As mentioned earlier in Section 3.2.1, under independent assump-
tion the chance constraint (2) can be equivalently written as

inf
F ik∈D

k
i (µ

i
k,Σ

i
k)
P
{
Aikx

i ≤ bik
}
≥ αz

i
k
i , (14)

Ki∑
k=1

zik = 1, zik ≥ 0, k = 1, 2, · · · ,Ki.

Based on the structure of the uncertainty set Dki (µik, Σ
i
k), the constraint (14)

can be written as

inf
(µ,Σ)∈Uik

inf
F ik∈D(µ,Σ)

P
{
Aikx

i ≤ bik
}
≥ αz

i
k
i ,

where

D(µ,Σ) =
{
F ik

∣∣∣EF ik [(Aik)T ] = µ,COVF ik [Aik] = Σ
}
,

and

U ik =
{

(µ,Σ)
∣∣∣(µ− µik)> (Σi

k

)−1 (
µ− µik

)
≤ γik1, Σ � γik2Σi

k

}
.

According to one-sided Chebyshev inequality [21, 27], we have

inf
F ik∈D(µ,Σ)

P
{
Aikx

i ≤ bik
}

=

1− 1

1+
(µT xi−bi

k
)2

((xi)TΣxi)

, if µTxi ≤ bik,

0, otherwise.
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For the case µTxi > bik,

inf
F ik∈D(µ,Σ)

P
{
Aikx

i ≤ bik
}

= 0,

and it leads constraint (14) to be infeasible. When µTxi ≤ bik, the constraint
(14) is equivalent to

inf
(µ,Σ)∈Uik

1− 1

1 + (µTxi − bik)2/((xi)TΣxi)
≥ αz

i
k
i ,

which can be reformulated as

hik(xi) ≥

√√√√ α
zik
i

1− αz
i
k
i

, (15)

where

hik(xi) =


min
µ,Σ

bik−µ
T xi√

(xi)TΣxi

s.t. (i)
(
µ− µik

)> (
Σi
k

)−1 (
µ− µik

)
≤ γik1,

(ii) Σ � γik2Σi
k.

(16)

The problem (16) can be separated into two optimization problems. Therefore,

hik(xi) =
bik + v1(xi)√

v2(xi)
,

where

v1(xi) =

min
µ
−µTxi

s.t.
(
µ− µik

)> (
Σi
k

)−1 (
µ− µik

)
≤ γik1,

(17)

v2(xi) =

{
max
Σ

(xi)TΣxi

s.t. Σ � γik2Σi
k.

Let λ ≥ 0 be a Lagrange multiplier associated with the constraint of opti-
mization problem (17). By applying the KKT conditions, the optimal solu-

tion of (17) is given by µ = µik +

√
γik1Σ

i
kx
i

√
(xi)TΣikx

i
and associated Lagrange multi-

plier is given by λ =

√
(xi)TΣikx

i

4γik1
. Therefore, the corresponding optimal value

v1(xi) = −(µik)Txi −
√
γik1
√

(xi)TΣi
kx

i. Since, uTΣu ≤ uT γik2Σ
i
ku for any

u ∈ Rn, then, v2(xi) = γik2(xi)TΣi
kx

i. Using this, constraint (15) can be refor-
mulated as

(µik)Txi +


√√√√ α

zik
i

1− αz
i
k
i

√
γik2 +

√
γik1

∥∥∥(Σi
k

)1/2
xi
∥∥∥ ≤ bik. (18)
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Hence, we have the following deterministic reformulation for the distribution-
ally robust joint chance constraint (2)

Qiαi =



(i) (µik)Txi +


√√√√ α

zik
i

1− αz
i
k
i

√
γik2 +

√
γik1

∥∥∥(Σi
k

)1/2
xi
∥∥∥ ≤ bik,
∀ k = 1, 2, · · · ,Ki,

(ii)

Ki∑
k=1

zik = 1,

(iii) zik ≥ 0, ∀ k = 1, 2, · · · ,Ki.
(19)

For a convex reformulation of (19), we use logarithmic transformation de-
scribed in Section 3.2.1. The new convex reformulation of (19) is given by

Q̃iαi =



(i) (µik)T ey
i

+
√
γik2

∥∥∥∥∥(Σi
k

)1/2
e

1
2

(
zik logαi−log

(
1−α

zik
i

))
·1mi+y

i

∥∥∥∥∥
+
√
γik1

∥∥∥(Σi
k

)1/2
ey
i
∥∥∥ ≤ bik, ∀ k = 1, 2, · · · ,Ki,

(ii)

Ki∑
k=1

zik = 1,

(iii) zik ≥ 0, ∀ k = 1, 2, · · · ,Ki.
(20)

Hence, the reformulation of feasible strategy set Siαi of player i, i ∈ I, is given
by

S̃iαi =
{

(yi, zi) ∈ Y i × RKi | (yi, zi) ∈ Q̃iαi
}
.

The reformulation (20) is similar to (10) except in constraint (i) where there
is one extra term and a positive multiplier in the second term. The convexity
of (20) follows from the similar arguments used in Lemma 1. It is also a

compact set. Therefore, the reformulated feasible strategy set S̃iαi of player i
for distributional uncertainty set defined by (13) is a convex and compact set.

3.2.4 Uncertainty set with known first order moment and nonnegative support

So far we have considered the full support for the random vector Aik in the
uncertainty sets. However, in some cases the random vector Aik can be non-
negative. To the best of our knowledge, distributionally robust games with
nonnegative support have not been considered so far in the literature. To
maintain the feasibility of the chance constraint (2), we further assume that
bik > 0 for all k = 1, 2, · · · ,Ki. We define the uncertainty set for player i, i ∈ I,
as follows

Dki (µik) =
{
F ik | EF ik [(Aik)T ] = µik,PF ik [Aik ≥ 0] = 1

}
, k = 1, . . . ,Ki, (21)
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where µik ≥ 0 for all k = 1, · · · ,Ki. Under independent assumption the chance
constraint (2) can be equivalently written as

inf
F ik∈D

k
i (µ

i
k)
P
{
Aikx

i ≤ bik
}
≥ zik, k = 1, 2, · · · ,Ki

Ki∏
k=1

zik ≥ αi, 0 ≤ zik ≤ 1, k = 1, 2, · · · ,Ki.

 (22)

For each k = 1, 2, · · · ,Ki, consider the optimization problem
infF ik∈Dki (µik) P

{
Aikx

i ≤ bik
}

which can be reformulated as

inf
F ik

∫
Aik≥0

1Aikxi≤bikdF ik(Aik)

s.t.

∫
Aik≥0

(Aik)TdF ik(Aik) = µik∫
Aik≥0

dF ik(Aik) = 1

(23)

where 1C is the indicator function over a given set C. The dual problem of
(23) is given by

sup
βik∈R

mi ,λik∈R
(µik)Tβik + λik

s.t. 1Aikxi≤bik −A
i
kβ

i
k − λik ≥ 0,∀Aik ≥ 0. (24)

The strong duality follows from [28] because Dirac measure δµik lies in the

relative interior of Dki (µik). The constraint (24) can be reformulated as

Aikβ
i
k + λik ≤ 1,∀Aik ≥ 0, (25)

Aikβ
i
k + λik ≤ 0,∀Aik ≥ 0, Aikx

i > bik. (26)

Constraint (25) is equivalent to βik ≤ 0 and λik ≤ 1. Since, we look for the
supremum in (24), we can replace Aikx

i > bik in (26) by Aikx
i ≥ bik. Then, using

duality theory of linear programming, the constraint (26) can be equivalently
written as

λik ≤ bikτ ik, τ ik ≥ 0,

βik + τ ikx
i ≤ 0.

Since, there is no duality gap between (23) and (24), using (22) we have the fol-
lowing deterministic reformulation for the distributionally robust joint chance
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constraint (2)

Qiαi =



(i) (µik)Tβik + λik ≥ zik, k = 1, 2, · · · ,Ki,

(ii) βik ≤ 0, λik ≤ 1, k = 1, 2, · · · ,Ki,

(iii) λik ≤ bikτ ik, τ ik ≥ 0, k = 1, 2, · · · ,Ki,

(iv) βik + τ ikx
i ≤ 0, k = 1, 2, · · · ,Ki,

(v)

Ki∏
k=1

zik ≥ αi, 0 ≤ zik ≤ 1, k = 1, 2, · · · ,Ki

(27)

Since µik ≥ 0, βik ≤ 0 and 0 ≤ zik ≤ 1, constraint (i) in (27) implies λik ≥ 0.
In fact, it is easy to see that the components of vector (τ ik, λ

i
k, z

i
k,−βik) are

positive. Therefore, we use change of variables under logarithmic transforma-

tion as follows: λ̃ik = log(λik), β̃ikj = log(−βikj), τ̃ ik = log(τ ik), ζik = log(zik), and

yij = lnxij , for all j = 1, 2, . . . ,mi, k = 1, 2, . . . ,Ki. We have a new convex
reformulation of (27) given by

Q̃iαi =



(i) eζ
i
k−λ̃ik + (µik)T eβ̃

i
k−λ̃

i
k1mi ≤ 1, k = 1, 2, · · · ,Ki,

(ii) λ̃ik ≤ 0, k = 1, 2, · · · ,Ki,

(iii) λ̃ik ≤ τ̃ ik + log(bik), k = 1, 2, · · · ,Ki,

(iv) τ̃ ik + yij − β̃ikj ≤ 0, k = 1, 2, · · · ,Ki, j = 1, · · · ,mi,

(v)

Ki∑
k=1

ζik ≥ log(αi), ζ
i
k ≤ 0, k = 1, 2, · · · ,Ki

Hence, the reformulation of feasible strategy set Siαi of player i, i ∈ I, is given
by

S̃iαi =
{

(yi, λ̃i, β̃i, τ̃ i, ζi) ∈ Y i×RKi×RKi·mi×RKi×RKi | (yi, λ̃i, β̃i, τ̃ i, ζi) ∈ Q̃iαi
}
.

It is evident that S̃iαi is a convex set. It follows from (27) that Qiαi is a compact

set. Then, under logarithmic transformation S̃iαi , i ∈ I, is a compact set.
We present a general theorem on the existence of a Nash equilibrium for a

DRCCG which covers the case of each uncertainty set as a special case. The
concavity of a player’s payoff function in its strategies, for a fixed strategy
profile of other players, plays a crucial role in showing the existence of a Nash
equilibrium. Therefore, we need the following assumption on players’ payoff
functions which ensures the required concavity property of the payoff functions
under logarithmic transformation.

Assumption 3 For each player i, i ∈ I, the payoff function ui(·, x−i) satisfies
the non-increasing condition for every x−i ∈ X−i, i.e., for any two points xi

and x̄i such that xik ≤ x̄ik for all k = 1, 2, . . . ,mi, we have ui(x
i, x−i) ≥

ui(x̄
i, x−i).
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Theorem 1 Consider an n-player DRCCG, where

1. the payoff function of player i, i ∈ I, satisfies the Assumptions 1 and 3,
2. the reformulation of feasible strategy set Siαi , i ∈ I, under logarithmic

transformation is a convex and compact set.

Then, there exists a Nash equilibrium of a DRCCG for all α ∈ (0, 1)n.

Proof Let α ∈ (0, 1)n. Under Assumption 1, the payoff function ui(x
i, x−i),

i ∈ I, is a concave function of xi for every x−i ∈ X−i, and a continuous
function of x. For each i ∈ I, define a composition function Vi = ui ◦di, where
di : Rm1 × Rm2 × · · · × Rmn → R

m1
++ × R

m2
++ × · · · × R

mn
++, such that

di
(
y1, y2, · · · , yn

)
=
(
ey

1

, ey
2

, · · · , ey
n
)
.

Under Assumptions 3, the composition function Vi(·, y−i), i ∈ I, is a concave

function of yi for every y−i and Vi(·) is a continuous function of y. Let S̃iαi ,
i ∈ I, be the reformulation of the feasible strategy set Siαi under logarith-
mic transformation which is a convex and compact set. Then, there exists
a Nash equilibrium of an n-player non-cooperative game defined by strategy
sets

(
S̃iαi
)
i∈I and payoff functions

(
Vi(·)

)
i∈I [11, 13]. Therefore, there exists

y∗ ∈
∏
i∈I S̃

i
αi such that

Vi(y
i∗, y−i∗) ≥ Vi(yi, y−i∗), ∀ yi ∈ S̃iαi

Under the hypothesis of the theorem, S̃iαi is a reformulation of Siαi , where

xi = ey
i

. Therefore, for x∗ = ey
∗

we have

ui(x
i∗, x−i∗) ≥ ui(xi, x−i∗), ∀ xi ∈ Siαi .

Hence, x∗ is a Nash equilibrium of a DRCCG for all α ∈ (0, 1)n. ut

The reformulated feasible strategy sets S̃iαi , i ∈ I, is a convex and compact set
for each uncertainty set. Therefore, the corollary given below follows directly
from Theorem 1.

Corollary 1 Consider an n-player DRCCG, where

1. the payoff function of player i, i ∈ I, satisfies the Assumptions 1 and 3,
2. the row vectors of Ai, i ∈ I are independent,
3. one of the following conditions hold true

– for each k = 1, 2, · · ·Ki, the probability distribution of row vector Aik
belongs to uncertainty set Dki (µik, Σ

i
k) defined as in (7), where the mean

vector µik and the covariance matrix Σi
k satisfy Assumption 2.

or
– for each k = 1, 2, · · ·Ki, the probability distribution of row vector Aik

belongs to uncertainty set Dki (µik, Σ
i
k) defined as in (12), where mean

vector µik and the upper bound Σi
k on covariance matrix satisfy As-

sumption 2.
or
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– for each k = 1, 2, · · ·Ki, the probability distribution of row vector Aik
belongs to uncertainty set Dki (µik, Σ

i
k) defined as in (13), where µik and

Σi
k satisfy Assumption 2.

or
– for each k = 1, 2, · · ·Ki, the probability distribution of row vector Aik

belongs to uncertainty set Dki (µik) defined as in (21).

Then, there exists a Nash equilibrium of a DRCCG for all α ∈ (0, 1)n.

4 Cournot competition in electricity market

We consider an electricity market where the firms compete over an electricity
network comprises of a set of nodes. There are several generation nodes where
the firms installed their generation facilities to produce electricity. There are
also some distribution nodes from where the electricity is distributed to the
consumers. The firms generate the electricity at their facilities and transmit
to the distribution nodes. The transmission over long distances creates power
losses which is better modeled using random variables. For simplicity, we omit
the problem of consumers, which means any quantity of electricity can be
consumed. The components of electricity market are described as follows:

I- set of firms called as players

N − the set of generation nodes

Ni − subset of generation nodes where firm i has installed its generation facilities

Ik − the set of firms who owns generation facilities at node k

M − the set of distribution nodes

Let xik = (xikj)j∈M be a vector of quantities being transmitted from the gen-

eration node k to the distribution nodes by firm i, e.g., xikj is the quantity
transmitted from the generation node k to the distribution node j by firm i.
Denote a generation level vector of firm i by xi = (xik)k∈Ni . We assume that
the price at a generation node k is different for each distribution node j and
it depends on the total amount of electricity being transmitted to the node j
from the node k. The price for a distribution node j at a generation node k is
given by,

Pkj = βkj − δkj
∑
i∈Ik

xikj , k ∈ N, j ∈M, (28)

where δkj ≥ 0 for all k ∈ N , j ∈ M . Each firm incurs cost in generation
as well as in the transmission of electricity. Let cikj(x

i
kj) be the cost incurred

by firm i for the generation and transmission of xikj unit of electricity from
node k to node j. We consider the linear cost function for each firm, i.e.,
cikj(x

i
kj) = cikjx

i
kj for all k ∈ Ni, j ∈M , i ∈ I. The payoff function of firm i is
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given by

ui(x
i, x−i) =

∑
k∈Ni

∑
j∈M

(
xikj

(
βkj − δkj

∑
l∈Ik

xlkj

)
− cikjxikj

)
. (29)

The case where parameters βkj , δkj and cikj are random variables, e.g., when
the market has randomness in the price and cost functions. In such cases,
we take the average values of these parameters. The strategy set of player i
is defined as Xi = {xi = (xik)k∈Ni | xikj ∈ [εikj , γ

i
kj ], k ∈ Ni, j ∈ M}, where

εikj > 0 and γikj denote the minimum and maximum output of firm i from node

k to node j, respectively. Let aik = (aikj)j∈M be a vector of unit electricity loss

for firm i at generation node k where aikj represents the unit electricity loss
during the transmission from the kth generation node to the jth distribution
node. We assume that aikj is a random variable for each i ∈ I, j ∈ M and

k ∈ Ni. Each firm wants to keep its loss under a certain threshold. Let bi

denotes the threshold vector for firm i. For a given confidence level αi, the
distributionally robust joint chance constraint of firm i, i ∈ I, is given by

inf
F i∈Di

P
{

(aik)Txik ≤ bik, k ∈ Ni
}
≥ αi. (30)

We assume that the electricity loss for each firm at different node is inde-
pendent, i.e., the random vectors (aik)k∈Ni are independent. Then, under the
logarithmic transformation, the payoff function of player i, i = 1, 2, is given
by

Vi(y
i, y−i) =

∑
k∈Ni

∑
j∈M

(
ey
i
kj

(
βkj − δkj

∑
l∈Ik

ey
l
kj

)
− cikjey

i
kj

)
. (31)

For a fixed y−i, the function Vi(y
i, y−i) is a concave function of yi if its Hessian

matrix is negative semidefinite. The off-diagonal entries of the Hessian matrix
are zero and the diagonal entries are given by

∂2Vi(y
i, y−i)

(∂yikj)
2

= [(βkj − δkj
∑
l∈Ik

ey
l
kj − cikj)× ey

i
kj ]− [3× e2y

i
kj × δkj ].

Then, the Hessian matrix is negative semidefinite if

3ey
i
kj +

∑
l∈Ik

ey
l
kj ≥

βkj − cikj
δkj

, k ∈ Ni j ∈M. (32)

The condition 32 holds for the suitable choice of a minimum output, εikj , of
the firms . The strategy set, under logarithmic transformation, is given by

Y i =
{
yi = (yikj)k∈Ni,j∈M | yikj ∈ [ln εikj , ln γ

i
kj ], k ∈ Ni, j ∈M

}
.

It is clear that Y i is a convex and compact set. We consider the case of known
mean µik and known co-variance matrix Σi

k of aik. In this case, the reformulated

feasible strategy set S̃iαi is given by (11).
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4.1 Case Study

For illustration purpose, we consider the case of two electricity firms whose
generation nodes are the same. It is easy to see that the condition (32) holds
if

ε1kj ≥
3βkj − 4c1kj + c2kj

15δkj
, ε2kj ≥

3βkj − 4c2kj + c1kj
15δkj

, k ∈ N, j ∈M. (33)

Therefore, it follows from Corollary 1 that there exists a Nash equilibrium
of the game. For a fixed (y2, z2) ∈ S̃2

α2
, player 1 solves the following convex

optimization problem

[P1] max
y1,z1

V1(y1, y2)

s.t. (y1, z1) ∈ S̃1
α1
.

The set of optimal solution of [P1], which is also called the best response set
of player 1, is given by

BR1(y2) = {(ȳ1, z̄1) | V1(ȳ1, y2) ≥ V1(y1, y2), ∀ (y1, z1) ∈ S̃1
α1
}.

Similarly, for a fixed (y1, z1) ∈ S̃1
α1

, player 2 solves the following convex opti-
mization problem

[P2] max
y2,z2

V2(y1, y2)

s.t. (y2, z2) ∈ S̃2
α2
.

The best response set of player 2, is given by

BR2(y1) = {(ȳ2, z̄2) | V2(y1, ȳ2) ≥ V2(y1, y2), ∀ (y2, z2) ∈ S̃2
α2
}.

It is clear that, if (y1∗, z1∗) ∈ BR1(y2∗) and (y2∗, z2∗) ∈ BR2(y1∗), (x1∗, x2∗) =

(ey
1∗
, ey

2∗
) is a Nash equilibrium of the game. For computational purpose, we

use the best response algorithm as outlined below:

Algorithm 1 (Best response algorithm) Step-1 Select initial feasi-

ble point (y2(0), z2(0)) ∈ S̃2
α2

for player 2. Set k := 0.
Step-2 Solve convex optimization problem [P1] and find a point
(y1(k), z1(k)) ∈ BR1(y2(k)).

Step-3 If (y2(k), z2(k)) ∈ BR1(y1(k)), then set (x1∗, x2∗) = (ey
1(k)

, ey
2(k)

)
and stop. Otherwise, solve convex optimization problem [P2] and find a
point (y2(k), z2(k)) ∈ BR1(y1(k)), set k = k + 1 and go to step 2.

If the Algorithm 1 stops, (x1∗, x2∗) is a Nash equilibrium of the game. The
proof that Algorithm 1 never cycles is still an open problem.
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Example 1 We consider the case of two electricity firms with four generation
nodes and three distribution nodes, i.e., N = {1, 2, 3, 4} and M = {1, 2, 3}.
We take the confidence level values of player 1 and player 2 as 0.9, i.e., α1 =
α2 = 0.9. The randomly generated data used in the model are summarized as
follows:

βkj = 30, δkj = 1, c1kj = 15, c2kj = 12,

ε1kj = 3, ε2kj = 4, γ1kj = γ2kj = 50 ∀ k ∈ N, j ∈M,

µ1
1 =

0.237
0.224
0.240

 , µ1
2 =

0.241
0.226
0.166

 , µ1
3 =

0.159
0.239
0.224

 , µ1
4 =

0.167
0.165
0.186

 ,

µ2
1 =

0.214
0.182
0.246

 , µ2
2 =

0.218
0.155
0.194

 , µ2
3 =

0.197
0.162
0.211

 , µ2
4 =

0.212
0.195
0.171

 ,

Σ1
1 =

0.074 0.056 0.034
0.056 0.058 0.022
0.034 0.022 0.035

 , Σ1
2 =

0.024 0.007 0.017
0.007 0.009 0.006
0.017 0.006 0.021

 ,

Σ1
3 =

 0.01 0.016 0.010
0.016 0.065 0.038
0.010 0.038 0.037

 , Σ1
4 =

0.042 0.035 0.040
0.035 0.070 0.046
0.040 0.046 0.058

 ,

Σ2
1 =

0.043 0.026 0.030
0.026 0.038 0.025
0.030 0.025 0.036

 , Σ2
2 =

0.045 0.037 0.022
0.037 0.052 0.014
0.022 0.014 0.023

 ,

Σ2
3 =

0.048 0.029 0.039
0.029 0.026 0.027
0.039 0.027 0.044

 , Σ2
4 =

0.006 0.002 0.003
0.002 0.015 0.014
0.003 0.014 0.034

 ,

b1 =


22.138
21.519
20.323
20.921

 , b2 =


23.277
21.393
22.65
24.968

 .

We implement Algorithm 1 on Intel R© CoreTM 64-bit i5-7200U CPU @
2.50GHz × 4 and 11.6 GiB RAM on Ubuntu 18.04.2 LTS. We use sqp in
GNU Octave 5.2.0 to solve the best response convex optimization problem of
both the players. For the above data sets, Algorithm 1 converges to a point
(y1∗, z1∗, y2∗, z2∗) such that (y1∗, z1∗) ∈ BR1(y2∗) and (y2∗, z2∗) ∈ BR2(y1∗).

Therefore, (x1∗, x2∗) = (ey
1∗
, ey

2∗
) is a Nash equilibrium of the game and it is

given by

x1∗ = ((4.34, 4.3, 4.32), (4.4, 4.38, 4.25), (4.39, 4.28, 4.38), (4.04, 4.10, 4.14)) ,

x2∗ = ((6.33, 6.4, 6.36), (6.19, 6.24, 6.49), (6.23, 6.44, 6.25), (6.91, 6.81, 6.71)) .
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Figure 1 shows that Algorithm 1 converges to a Nash equilibrium payoffs of
both the firms after few iterations. The total CPU time to compute Nash
equilibrium is 7.71 seconds.
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Fig. 1: Convergence of Nash equilibrium payoff

We also perform numerical experiments for a relatively large size model
with 10 generation nodes and 12 distribution nodes. For this model, we take
δkj = 1, βkj = randi([30, 50]), c1kj = randi([12, 18]) and c2kj = randi([9, 15])
for all k ∈ N and j ∈ M , where randi([a, b]) generates a random integer
number between closed interval [a, b]. For each k ∈ N and j ∈ M , we choose
ε1kj and ε2kj such that condition (33) is satisfied, and γ1kj = γ2kj = 50. For k ∈ N
and i = 1, 2, we take the mean vector µik = 0.15 + 1

10rand(12, 1) and the co-
variance matrix Σi

k = BBT + s · I12×12, where B = 1
5rand(12, 12) and s > 0.

The rand(12, 1) generates a 12× 1 random vector whose entries are between
0 and 1 and rand(12, 12) generates a 12 × 12 random matrix whose entries
are between 0 and 1. We consider 20 different instances of this model, and for
each instance Algorithm 1 converges to a Nash equilibrium. The average time
to compute a Nash equilibrium is 301.81 seconds. The Figure 2 represents the
variation in the time for different instances.

5 Conclusion

We studied Nash equilibirum problem for the games with joint chance con-
straints, where the row vectors defining the random constraints are indepen-
dent. We studied these games under distributionally robust framework. We
considered a density based uncertainty set and four different types of two-
moments based uncertainty sets. One of the moments based uncertainty sets
is based on nonnegative support. For moments based uncertainty sets, we pro-
posed a new convex reformulation of a distributionally robust joint chance
constraint using logarithmic transformation. Under standard assumptions on
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Fig. 2: Time vs Instances

players’ payoff functions we showed that there exists a Nash equilibrium of a
DRCCG. As an application of these games, we proposed a Cournot competi-
tion model in electricity market, which covers the generation and distribution
of electricity. The best response algorithm is used to compute the Nash equi-
libria of various randomly generated instances of the game.
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