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Introduction

In a two-player zero-sum game, the gain of one player is the loss of the other player. We typically represent a zero-sum game with a payoff matrix where the rows and the columns are the actions of player 1 and player 2, respectively. von Neumann [START_REF] Von Neumann | On the theory of games[END_REF] showed that there exists a mixed strategy saddle point equilibrium (SPE) of a zero-sum game. Dantzig [START_REF] Dantzig | A proof of the equivalence of the programming problem and the game problem[END_REF] showed the equivalence of SPE and the solution of a primal-dual pair of linear programs. Adler [START_REF] Adler | The equivalence of linear programs and zero-sum games[END_REF] studied the equivalence between linear programming problems and zero-sum games. Charnes [START_REF] Charnes | Constrained games and linear programming[END_REF] generalized the zero-sum game considered in [START_REF] Dantzig | A proof of the equivalence of the programming problem and the game problem[END_REF][START_REF] Von Neumann | On the theory of games[END_REF] by introducing linear inequality constraints on the mixed strategies of both the players. He showed the equivalence of an SPE of a constrained zero-sum game and an optimal solution of a primal-dual pair of linear programs. Nash [START_REF] Nash | Equilibrium points in n-person games[END_REF] introduced the equilibrium concept for a finite number of rational players where each player has finite number of actions. He showed that there exists a mixed strategy Nash equilibrium for finite strategic games. Since then, general strategic games have been extensively studied in the literature [START_REF] Basar | Dynamic noncooperative game theory 2nd ed[END_REF][START_REF] Debreu | A social equilibrium existence theorem[END_REF][START_REF] Fan | Applications oi a theorem concerning sets with convex sections[END_REF]. The games discussed in the above-mentioned papers have deterministic strategy set and payoff function for each player. However, the decision making process is fed by input parameters which are usually subject to uncertainties [START_REF] Couchman | Gaming strategy for electric power with random demand[END_REF][START_REF] Mazadi | Impact of wind integration on electricity markets: A chance-constrained Nash Cournot model[END_REF]. The model uncertainties can be accounted for the expected value approach in case of risk neutral decision makers. Ravat and Shanbhag [START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF] considered the stochastic Nash games where each player optimizes his expected value payoff subject to his expected value constraints. For risk averse players, the payoff criterion with the risk measure CVaR [START_REF] Kannan | Addressing supply-side risk in uncertain power markets: stochastic Nash models, scalable algorithms and error analysis[END_REF][START_REF] Ravat | On the characterization of solution sets of smooth and nonsmooth convex stochastic Nash games[END_REF] and the variance was considered in the literature [START_REF] Conejo | Risk-constrained self-scheduling of a thermal power producer[END_REF]. Singh et al. [START_REF] Singh | Existence of Nash equilibrium for chance-constrained games[END_REF][START_REF] Singh | Distributionally robust chanceconstrained games: Existence and characterization of Nash equilibrium[END_REF][START_REF] Singh | A characterization of Nash equilibrium for the games with random payoffs[END_REF] introduced chance-constrained games by considering a risk averse payoff criterion based on the chance constraint programming for finite strategic games with random payoffs. As for the elliptically distributed random payoffs, the authors showed the existence of a Nash equilibrium for a chance-constrained game [START_REF] Singh | Existence of Nash equilibrium for chance-constrained games[END_REF], and proposed an equivalent mathematical program to compute the Nash equilibria of the game [START_REF] Singh | A characterization of Nash equilibrium for the games with random payoffs[END_REF]. In [START_REF] Singh | Distributionally robust chanceconstrained games: Existence and characterization of Nash equilibrium[END_REF], the authors considered the games where the probability distributions of the players' payoffs are partially known, and belong to given distributional uncertainty sets. They defined each player's payoff function via a distributionally robust chance constraint, and showed the existence of a Nash equilibrium. Moreover, they proposed an equivalent mathematical program based method to come-up with Nash equilibria.

There are some zero-sum chance-constrained games studied in past literature [START_REF] Blau | Random-payoff two person zero-sum games[END_REF][START_REF] Cassidy | Solution of a satisficing model for random payoff games[END_REF][START_REF] Charnes | Zero-zero chanceconstrained games[END_REF][START_REF] Cheng | Random-payoff two-person zero-sum game with joint chance constraints[END_REF].

The chance-constrained games in the above-mentioned papers considered the case where players' payoffs are random variables and the strategy sets are deterministic in nature. The chance constraint based strategy sets are often considered in various applications, e.g., resource constraints in stochastic shortest path problem [START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF] and risk constraints in portfolio optimization [START_REF] Ji | Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints[END_REF] can be modelled using chance constraints. To the best of our knowledge, the research on the games with chance constraint based strategy set is very scarce [START_REF] Peng | General sum games with joint chance constraints[END_REF][START_REF] Singh | A second order cone programming formulation for zero sum game with chance constraints[END_REF]. Peng et al. [START_REF] Peng | General sum games with joint chance constraints[END_REF] considered an n-player general sum game with joint chance constraint for each player.

They showed the existence of a Nash equilibrium when the random constraint vectors are independent, and follow a multivariate normal distribution. Singh and Lisser [START_REF] Singh | A second order cone programming formulation for zero sum game with chance constraints[END_REF] considered a stochastic version of a two-player constrained zero-sum game studied in [START_REF] Charnes | Constrained games and linear programming[END_REF] where each player has individual chance constraints. They showed the equivalence of an SPE and an optimal solution of a primal-dual pair of a second order cone programs (SOCPs) when the random constraint vectors follow a multivariate elliptically symmetric distribution. Unlike stochastic two-player constrained zero-sum game [START_REF] Singh | A second order cone programming formulation for zero sum game with chance constraints[END_REF], the only information we have on the probability distribution of a random constraint vector is that it belongs to a certain uncertainty set. In this paper, we consider three different types of well-known uncertainty sets [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF][START_REF] Delage | Distributionally robust optimization under moment uncertainty with application to data-driven problems[END_REF][START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF] based on the first and second order moments of the random constraint vectors. For each type of uncertainty set, we show that there exists an SPE and it can be obtained from the optimal solutions of a primal-dual pair of SOCPs. We perform the numerical experiments by considering randomly generated games of different sizes. We use CVX package in MATLAB for solving equivalent SOCPs.

The structure of the rest of the paper is as follows. Section 2 contains the definition of a zero-sum game with distributionally robust chance constraints. Section 3 presents the reformulation of distributionally robust chance constraints as second order cone constraints under three different uncertainty sets. Section 4 outlines a primal-dual pair of SOCPs whose optimal solutions constitute an SPE of the game. We present our numerical results in Section 5, and conclude the paper in Section 6.

The Model

We consider a two-player zero-sum game defined by an n 1 × n 2 matrix G, where n 1 and n 2 denote the number of pure strategies of player 1 and player 2, respectively. The set of mixed strategies of player i, i = 1, 2, is given by

X i = x i ∈ R n i | ∑ n i j=1 x i j = 1, x i j ≥ 0, ∀ j = 1, 2, .
. . , n i . Each component of the matrix G corresponds to the payoff for player 1 and the cost for player 2. For a given strategy pair (x 1 , x 2 ) ∈ X 1 × X 2 , (x 1 ) T Gx 2 represents the payoff of player 1 and the cost of player 2; T denotes the transposition. For a given x 1 ∈ X 1 (resp., x 2 ∈ X 2 ), player 2 (resp., player 1) chooses an optimal strategy by minimizing (resp., maximizing) (x 1 ) T Gx 2 over all x 2 ∈ X 2 (resp., x 1 ∈ X 1 ). A strategy pair (x 1 , x 2 ) is an SPE of the zero-sum game if x 1 (resp., x 2 ) is an optimal strategy of player 1 (resp., player 2) for a fixed strategy x 2 (resp., x 1 ) of player 2 (resp., player 1). An SPE of a zero-sum game exists in mixed strategies [START_REF] Von Neumann | On the theory of games[END_REF], and can be computed via a primal-dual pair of linear programs [START_REF] Dantzig | A proof of the equivalence of the programming problem and the game problem[END_REF]. In certain cases, the players' mixed strategies are further restricted by linear inequalities. For example, in a portfolio management problem, the fractions of total amount invested in different assets incur random losses and an investor wants the total loss below certain threshold [START_REF] Ji | Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints[END_REF]. In game theoretic context these problems can be represented as a zero-sum game where nature can be considered as the adversary player. Let the mixed strategies of player 1 satisfy the following linear constraints

A 1 x 1 ≤ b 1 , (1) 
whilst the mixed strategies of player 2 satisfy the linear constraints given by

A 2 x 2 ≥ b 2 , (2) 
where A 1 is a p × n 1 matrix and A 2 is a q × n 2 matrix. We denote

A 1 = [a 1 1 , a 1 2 , . . . , a 1 p ] T and A 2 = [a 2
1 , a 2 2 , . . . , a 2 q ] T , where a i k represents kth row of the matrix A i . Let I 1 = {1, 2, . . . , p} and I 2 = {1, 2, . . . , q} be the index sets for the constraints of player 1 and player 2, respectively.

Charnes [START_REF] Charnes | Constrained games and linear programming[END_REF] considered the case where A 1 and A 2 are deterministic matrices and called it a constrained zero-sum game. He showed that an SPE of a two-player constrained zerosum game can be obtained from the optimal solutions of a primal-dual pair of linear programs.

Singh and Lisser [START_REF] Singh | A second order cone programming formulation for zero sum game with chance constraints[END_REF] considered the case when A 1 and A 2 are random matrices where each row vector follows a multivariate elliptically symmetric distribution. They formulated each random linear constraint from (1) and (2) as a chance constraint. Such games are called zero-sum chance-constrained games. They showed that an SPE of a zero-sum chance-constrained game can be obtained from the optimal solutions of a primal-dual pair of SOCPs. In this paper, we consider the case where we have no distributional knowledge of the probability distributions of the random vectors of A 1 and A 2 except their first two moments which leads to optimize over an uncertainty set. When considering the worst case scenario, we use distributionally robust framework to formulate the random linear constraints (1) and ( 2). The distributionally robust chance constraints of player 1 are given by inf

F 1 k ∈D 1 k P a 1 k x ≤ b 1 k ≥ α 1 k , ∀ k ∈ I 1 , (3) 
where

F 1 k is a probability distribution of a 1 k , D 1 k
is the uncertainty set corresponding to the probability distribution of random vector a 1 k , and α 1 k is the confidence level of player 1 for the kth constraint. Similarly, the distributionally robust chance constraints of player 2 are given by inf

F 2 l ∈D 2 l P -a 2 l y ≤ -b 2 l ≥ α 2 l , ∀ l ∈ I 2 , (4) 
where F 2 l , D 2 l and α 2 l are analogously defined. Therefore, for a given α 1 = (α 1 k ) k∈I 1 and α 2 = (α 2 l ) l∈I 2 the feasible strategy sets of player 1 and player 2 are given by

S 1 α 1 = x 1 ∈ X 1 | inf F 1 k ∈D 1 k P{a 1 k x 1 ≤ b 1 k } ≥ α 1 k , ∀ k ∈ I 1 , (5) 
and

S 2 α 2 = x 2 ∈ X 2 | inf F 2 l ∈D 2 l P{-a 2 l x 2 ≤ -b 2 l } ≥ α 2 l , ∀ l ∈ I 2 . ( 6 
)
We call the matrix game G with the strategy set S 1 α 1 for player 1 and the strategy set S 2 α 2 for player 2 as a distributionally robust zero-sum chance-constrained game. We denote this game by Z α . A strategy pair

(x 1 * , x 2 * ) ∈ S 1 α 1 × S 2 α 2 is called an SPE of the game Z α at α = (α 1 , α 2 ) ∈ [0, 1] p × [0, 1] q , if (x 1 ) T Gx 2 * ≤ (x 1 * ) T Gx 2 * ≤ (x 1 * ) T Gx 2 , for all x 1 ∈ S 1 α 1 , x 2 ∈ S 2 α 2 .

Reformulation of distributionally robust chance constraints

We consider three different uncertainty sets based on the full/partial information about the mean vectors and covariance matrices of the random vectors a 1 k , k ∈ I 1 , and a 2 l , l ∈ I 2 . For each uncertainty set, chance constraints (3) and ( 4) are reformulated as second order cone constraints.

Moments based uncertainty sets

First, we consider the case where the first two moments are known. The uncertainty set of player i, i = 1, 2, defined by the mean vector µ i k and the covariance matrix Σ i k of (a i k ) T , is given by

D i k µ i k , Σ i k =    F i k E F i k (a i k ) T = µ i k E F i k (a i k ) T -µ i k (a i k ) T -µ i k T = Σ i k    , (7) 
for all k ∈ I i . These uncertainty sets are considered in [START_REF] Calafiore | On distributionally robust chanceconstrained linear programs[END_REF][START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF]. As for the second uncertainty set, we assume that the first moment is known whilst the second moment is unknown. The uncertainty set of player i, i = 1, 2, defined by the mean vector µ i k and the upper bound Σ i k on covariance matrix of (a i k ) T , is given by

D i k µ i k , Σ i k =    F i k E F i k (a i k ) T = µ i k E F i k (a i k ) T -µ i k (a i k ) T -µ i k T Σ i k    , (8) 
for all k ∈ I i . These uncertainty sets are considered in [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF]. The last uncertainty set is based on unknown first two moments. The uncertainty set of player i, i = 1, 2, where the mean vector of (a i k ) T lies in an ellipsoid of size γ i k1 ≥ 0 centered at µ i k and the covariance matrix of (a i k ) T lies in a positive semidefinite cone defined with a linear matrix inequality, is given by

D i k (µ i k , Σ i k ) =    F i k E F i k [(a i k ) T ] -µ i k Σ i k -1 E F i k [(a i k ) T ] -µ i k ≤ γ i k1 , COV F i k [(a i k ) T ] γ i k2 Σ i k    , (9) 
for all k ∈ I i . COV F i k is a covariance operator under probability distribution F i k . These uncertainty sets are considered in [START_REF] Delage | Distributionally robust optimization under moment uncertainty with application to data-driven problems[END_REF][START_REF] Liu | Distributionally robust chance constrained geometric optimization[END_REF].

Second order cone constraint reformulation

It follows from Theorem 3.1 of [START_REF] Calafiore | On distributionally robust chanceconstrained linear programs[END_REF] that the chance constraints (3) and (4) for uncertainty set [START_REF] Charnes | Constrained games and linear programming[END_REF] can be reformulated as

(µ 1 k ) T x 1 + α 1 k 1 -α 1 k (Σ 1 k ) 1 2 x 1 ≤ b 1 k , ∀ k ∈ I 1 ,
and

-(µ 2 l ) T x 2 + α 2 l 1 -α 2 l (Σ 2 l ) 1 2 x 2 ≤ -b 2 l , ∀ l ∈ I 2 ,
where • is the Euclidean norm. The same reformulation based on Lagrangian duality follows from Theorem 1 of [START_REF] El-Ghaoui | Worst-case value-at-risk and robust portfolio optimization: A conic programming approach[END_REF]. Based on the structure of uncertainty set (8), the constraint (3) can be written as inf

Σ∈U 1 k inf F 1 k ∈D(µ 1 k ,Σ) P a 1 k x 1 ≤ b 1 k ≥ α 1 k ,
where

D(µ 1 k , Σ) = F 1 k E F 1 k [(a 1 k ) T ] = µ 1 k ,COV F 1 k [(a 1 k ) T ] = Σ and U 1 k = Σ Σ Σ 1 k .
The bound of one-sided Chebyshev inequality can be achieved by a two-point distribution given by equation ( 2) of [START_REF] Rujeerapaiboon | Chebyshev inequalities for products of random variables[END_REF]. Therefore, we have inf

F 1 k ∈D(µ 1 k ,Σ) P a 1 k x 1 ≤ b 1 k =          1 - 1 1+ ((µ 1 k ) T x 1 -b 1 k ) 2 ((x 1 ) T Σx 1 ) , if (µ 1 k ) T x 1 ≤ b 1 k , 0, otherwise. 
For the case (µ

1 k ) T x 1 > b 1 k , inf F 1 k ∈D(µ 1 k ,Σ) P a 1 k x 1 ≤ b 1 k = 0,
which leads to constraint (3) to be infeasible for any α 1 > 0. Therefore, for

x 1 ∈ S 1 α 1 the condition (µ 1 k ) T x 1 ≤ b 1 k always holds and the constraint (3) is equivalent to inf Σ∈U 1 k 1 - 1 1 + ((µ 1 k ) T x 1 -b 1 k ) 2 /((x 1 ) T Σx 1 ) ≥ α 1 k ,
which can be reformulated as

h 1 k (x 1 ) ≥ α 1 k 1 -α 1 k , (10) 
where

h 1 k (x 1 ) =      min Σ b 1 k -(µ 1 k ) T x 1 √ (x 1 ) T Σx 1 s.t.(i) Σ Σ 1 k . (11) 
From [START_REF] Cheng | A second-order cone programming approach for linear programs with joint probabilistic constraints[END_REF], it follows that h

1 k (x 1 ) = b 1 k -(µ 1 k ) T x 1 (x 1 ) T Σ 1 k x 1
. Then, from (10) the reformulation of (3) is given by

(µ 1 k ) T x 1 + α 1 k 1 -α 1 k (Σ 1 k ) 1 2 x 1 ≤ b 1 k , ∀ k ∈ I 1 .
Similarly, the reformulation of (4) for uncertainty set ( 8) is given by

-(µ 2 l ) T x 2 + α 2 l 1 -α 2 l (Σ 2 l ) 1 2 x 2 ≤ -b 2 l , ∀ l ∈ I 2 .
This implies that the deterministic reformulations of ( 3) and ( 4) for uncertainty sets [START_REF] Charnes | Constrained games and linear programming[END_REF] and [START_REF] Charnes | Zero-zero chanceconstrained games[END_REF] are same. Based on the structure of the uncertainty set ( 9), the constraint (3) can be written as inf

(µ,Σ)∈ Ũ1 k inf F 1 k ∈D(µ,Σ) P a 1 k x 1 ≤ b 1 k ≥ α 1 k ,
where

D(µ, Σ) = F 1 k E F 1 k [(a 1 k ) T ] = µ,COV F 1 k [(a 1 k ) T ] = Σ and Ũ1 k = (µ, Σ) µ -µ 1 k Σ 1 k -1 µ -µ 1 k ≤ γ 1 k1 , Σ γ 1 k2 Σ 1 k .
Using the similar arguments as in previous case, the constraint ( 3) is equivalent to inf

(µ,Σ)∈ Ũ1 k 1 - 1 1 + (µ T x 1 -b 1 k ) 2 /((x 1 ) T Σx 1 ) ≥ α 1 k ,
which can be reformulated as

h1 k (x 1 ) ≥ α 1 k 1 -α 1 k , (12) 
where

h1 k (x 1 ) =              min µ,Σ b 1 k -µ T x 1 √ (x 1 ) T Σx 1 s.t. (i) µ -µ 1 k Σ 1 k -1 µ -µ 1 k ≤ γ 1 k1 , (ii) Σ γ 1 k2 Σ 1 k . (13) 
For the sake of simplicity, we separate problem (13) into two optimization problems

h1 k (x 1 ) = b 1 k + v 1 (x 1 ) v 2 (x 1 ) ,
where

v 1 (x 1 ) =      min µ -µ T x 1 s.t. µ -µ 1 k Σ 1 k -1 µ -µ 1 k ≤ γ 1 k1 , (14) 
v 2 (x 1 ) =      max Σ (x 1 ) T Σx 1 s.t. Σ γ 1 k2 Σ 1 k .
Let β ≥ 0 be a Lagrange multiplier associated with the constraint of optimization problem [START_REF] Dantzig | A proof of the equivalence of the programming problem and the game problem[END_REF].

By applying the KKT conditions, the optimal solution of ( 14) is given by µ

= µ 1 k + γ 1 k1 Σ 1 k x 1 (x 1 ) T Σ 1 k x 1
and associated Lagrange multiplier is given by β

= (x 1 ) T Σ 1 k x 1 4γ 1 k1
. Therefore, the corresponding

optimal value v 1 (x 1 ) = -(µ 1 k ) T x 1 -γ 1 k1 (x 1 ) T Σ 1 k x 1 . Since, u T Σu ≤ u T γ 1 k2 Σ 1 k u for any u ∈ R n , then, v 2 (x 1 ) = γ 1 k2 (x 1 ) T Σ 1 k x 1 .
Therefore, using [START_REF] Conejo | Risk-constrained self-scheduling of a thermal power producer[END_REF] we have the following reformulation of ( 3)

(µ 1 k ) T x 1 + α 1 k 1 -α 1 k γ 1 k2 + γ 1 k1 Σ 1 k 1 2 x 1 ≤ b 1 k , (15) 
for all k ∈ I 1 . Similarly, the reformulation of ( 4) is given by

-(µ 2 l ) T x 2 + α 2 l 1 -α 2 l γ 2 l2 + γ 2 l1 Σ 2 l 1 2 x 2 ≤ -b 2 l , (16) 
for all l ∈ I 2 .

The reformulation of feasible strategy sets ( 5) and ( 6) for uncertainty sets ( 7), [START_REF] Charnes | Zero-zero chanceconstrained games[END_REF], and ( 9) can be written as

S 1 α 1 = x 1 ∈ X 1 | (µ 1 k ) T x 1 + κ α 1 k (Σ 1 k ) 1 2 x 1 ≤ b 1 k , k ∈ I 1 , (17) 
and

S 2 α 2 = x 2 ∈ X 2 | -(µ 2 l ) T x 2 + κ α 2 l (Σ 2 l ) 1 2 x 2 ≤ -b 2 l , l ∈ I 2 , ( 18 
)
where

κ α i k = α i k 1-α i k , i = 1, 2
, represents the reformulation under uncertainty sets ( 7) and ( 8),

and

κ α i k = α i k 1-α i k γ i k2 + γ i k1 , i = 1, 2
, represents the reformulation for uncertainty set (9). Proposition 1. Consider the random constraint vectors a i k , k ∈ I i , i = 1, 2, whose probability distributions belong to uncertainty sets defined by ( 7), ( 8), [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF]. Then, the deterministic reformulations of (3) and (4) are given by ( 17) and (18), respectively.

We assume that the strategy sets ( 17) and ( 18) satisfy the strict feasibility condition given by Assumption 1.

Assumption 1.

1. There exists an x 1 ∈ S 1 α 1 such that the inequality constraints of S 1 α 1 defined by (17) are strictly satisfied.

2. There exists an x 2 ∈ S 2 α 2 such that the inequality constraints of S 2 α 2 defined by ( 18) are strictly satisfied.

The conditions given in Assumption 1 are Slater's condition which are sufficient for strong duality in a convex optimization problem. We use these conditions in order to derive equivalent SOCPs for the zero-sum game Z α .

Existence and characterization of saddle point equilibrium

In this section, we show that there exists an SPE of the game Z α if the probability distributions of the random constraint vectors of both the players belong to the uncertainty sets defined in Section 3.1. We further propose a primal-dual pair of SOCPs whose optimal solutions constitute an SPE of the game Z α .

Theorem 1. Consider the game Z α where the probability distributions of the row vectors a i k , k ∈ I i , i = 1, 2, belong to the uncertainty sets described in Section 3.1. Then, there exists an SPE of the game for all α ∈ (0, 1) p × (0, 1) q .

Proof. Let α ∈ (0, 1) p × (0, 1) q . For uncertainty sets described in Section 3.1, the strategy sets S 1 α 1 and S 2 α 2 are given by ( 17) and [START_REF] Fan | Applications oi a theorem concerning sets with convex sections[END_REF], respectively. It is easy to see that S 1 α 1 and S 2 α 2 are convex and compact sets. The function (x 1 ) T Gx 2 is a bilinear and continuous function. Hence, there exists an SPE from the minimax theorem of Neumann [START_REF] Von Neumann | On the theory of games[END_REF].

Equivalent primal-dual pair of second order cone programs

From the minimax theorem [START_REF] Von Neumann | On the theory of games[END_REF], (x 1 * , x 2 * ) is an SPE for the game Z α if and only if

x 1 * ∈ arg max x 1 ∈S 1 α 1 min x 2 ∈S 2 α 2 x 1 T Gx 2 , (19) 
x 2 * ∈ arg min

x 2 ∈S 2 α 2 max x 1 ∈S 1 α 1 x 1 T Gx 2 . ( 20 
)
We start with problem min

x 2 ∈S 2 α 2 max x 1 ∈S 1 α 1 x 1 T Gx 2 .
The inner optimization problem max x 1 ∈S 1 α 1

x 1 T Gx 2 can be equivalently written as max

x 1 ,(t 1 k ) k∈I 1 x 1 T Gx 2 s.t. (i) -x 1 T µ 1 k -κ α 1 k t 1 k + b 1 k ≥ 0, ∀ k ∈ I 1 (ii) t 1 k -Σ 1 k 1 2 x 1 = 0, ∀ k ∈ I 1 (iii) n 1 ∑ j=1 x 1 j = 1, (iv) x 1 j ≥ 0, ∀ j = 1, 2, . . . , n 1 .                                        (21) 
Let

λ 1 = λ 1 k k∈I 1 ∈ R p , δ 1 k ∈ R n 1 , k ∈ I 1 ,
and ν 1 ∈ R be the Lagrange multipliers of constraints (i), (ii), and (iii) of ( 21), respectively. Then, the Lagrangian dual problem of the SOCP ( 21) is an SOCP [START_REF] Boyd | Convex Optimization[END_REF][START_REF] Lobo | Applications of second-order cone programming[END_REF]. Moreover, the duality gap is zero according to Assumption 1 .

Therefore, the problem min

x 2 ∈S 2 α 2 max x 1 ∈S 1 α 1 x 1 T Gx 2 is equivalent to the following SOCP min x 2 ,ν 1 ,(δ 1 k ) k∈I 1 ,(λ 1 k ) k∈I 1 ν 1 + ∑ k∈I 1 λ 1 k b 1 k s.t. (i) Gx 2 -∑ k∈I 1 λ 1 k µ 1 k -∑ k∈I 1 (Σ 1 k ) 1 2 δ 1 k ≤ ν 1 1 n 1 , (ii) -(µ 2 l ) T x 2 + κ α 2 l (Σ 2 l ) 1 2 x 2 ≤ -b 2 l , ∀ l ∈ I 2 , (iii) ||δ 1 k || ≤ λ 1 k κ α 1 k , ∀ k ∈ I 1 , (iv) 
n 2 ∑ j=1 x 2 j = 1, (v) x 2 j ≥ 0, ∀ j = 1, 2, . . . , n 2 (vi) λ 1 k ≥ 0, ∀ k ∈ I 1 ,                                                          (P)
where 1 n 1 is an n 1 × 1 vector of ones. Similarly, problem max

x 1 ∈S 1 α 1 min x 2 ∈S 2 α 2
x 1 T Gx 2 is equivalent to the following SOCP max

x 1 ,ν 2 ,(δ 2 l ) l∈I 2 ,(λ 2 l ) l∈I 2 ν 2 + ∑ l∈I 2 λ 2 l b 2 l s.t. (i) G T x 1 -∑ l∈I 2 λ 2 l µ 2 l -∑ l∈I 2 (Σ 2 l ) 1 2 δ 2 l ≥ ν 2 1 n 2 , (ii) (µ 1 k ) T x 1 + κ α 1 k (Σ 1 k ) 1 2 x 1 ≤ b 1 k , ∀ k ∈ I 1 , (iii) ||δ 2 l || ≤ λ 2 l κ α 2 l , ∀ l ∈ I 2 , (iv) 
n 1 ∑ j=1 x 1 j = 1, (v) x 1 j ≥ 0, ∀ j = 1, 2, . . . , n 1 , (vi) λ 2 l ≥ 0, ∀ l ∈ I 2 .                                                          (D)
It follows from the duality theory of second order cone programming problem that (P) and (D) form a primal-dual pair [START_REF] Boyd | Convex Optimization[END_REF][START_REF] Lobo | Applications of second-order cone programming[END_REF].

Remark 1. For κ α i k = α i k 1-α i k , i = 1, 2 
, (P) and (D) represent the primal-dual pair of SOCPs for the uncertainty sets defined by [START_REF] Charnes | Constrained games and linear programming[END_REF] and [START_REF] Charnes | Zero-zero chanceconstrained games[END_REF]. For

κ α i k = α i k 1-α i k γ i k2 + γ i k1 , i = 1, 2 
, (P) and (D) represent the primal-dual pair of SOCPs for the uncertainty set defined by [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF].

Next, we show that the equivalence between the optimal solutions of (P)-(D) and an SPE of the game Z α .

Theorem 2. Consider the game Z α where the probability distributions of the random constraint vectors a i k , k ∈ I i , i = 1, 2, belong to the uncertainty sets defined by ( 7), ( 8), [START_REF] Cheng | Distributionally robust stochastic knapsack problem[END_REF]. Let Assumption 1 holds. Then, for a given α ∈ (0, 1) p × (0, 1) q , (x 1 * , x 2 * ) is an SPE of the game Z α if and only if there exists (ν 1 * , (δ 1 * k ) k∈I 1 , λ 1 * ) and (ν 2 * , (δ 2 * l ) l∈I 2 , λ 2 * ) such that (x 2 * , ν 1 * , (δ 1 * k ) k∈I 1 , λ 1 * ) and (x 1 * , ν 2 * , (δ 2 * l ) l∈I 2 , λ 2 * ) are optimal solutions of (P) and (D), respectively.

Proof. Let (x 1 * , x 2 * ) be an SPE of the game Z α . Then, x 1 * and x 2 * are the solutions of [START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF] and ( 20) respectively. Therefore, there exists (ν 1 * , (δ

1 * k ) k∈I 1 , λ 1 * ) and (ν 2 * , (δ 2 * l ) l∈I 2 , λ 2 * ) such that (x 2 * , ν 1 * , (δ 1 * k ) k∈I 1 , λ 1 * ) and (x 1 * , ν 2 * , (δ 2 * l ) l∈I 2 , λ 2 
* ) are optimal solutions of (P) and (D) respectively. Let (x 2 * , ν 1 * , (δ 1 * k ) k∈I 1 , λ 1 * ) and (x 1 * , ν 2 * , (δ 2 * l ) l∈I 2 , λ 2 * ) be optimal solutions of (P) and (D) respectively. Under Assumption 1, (P) and (D) are strictly feasible. Therefore, strong duality holds for primal-dual pair (P)-(D). Then, we have

ν 1 * + ∑ k∈I 1 λ 1 * k b 1 k = ν 2 * + ∑ l∈I 2 λ 2 * l b 2 l . (22) 
Consider the constraint (i) of (P) at optimal solution (x 2 * , ν 1 * , (δ 1 * k ) k∈I 1 , λ 1 * ) and multiply it by (x 1 ) T , where x 1 ∈ S 1 α 1 . Then, by using Cauchy-Schwartz inequality, we have

(x 1 ) T Gx 2 * ≤ ν 1 * + ∑ k∈I 1 λ 1 * k b 1 k , ∀ x 1 ∈ S 1 α 1 . (23) 
Similarly, we have

(x 1 * ) T Gx 2 ≥ ν 2 * + ∑ l∈I 2 λ 2 * l b 2 l , ∀ x 2 ∈ S 2 α 2 . (24) 
Take x 1 = x 1 * and x 2 = x 2 * in ( 23) and ( 24), then from ( 22), we get

(x 1 * ) T Gx 2 * = ν 1 * + ∑ k∈I 1 λ 1 * k b 1 k = ν 2 * + ∑ l∈I 2 λ 2 * l b 2 l . (25) 
It follows from ( 23), [START_REF] Lobo | Applications of second-order cone programming[END_REF], and (25) that (x 1 * , x 2 * ) is an SPE of the game Z α .

Numerical Results

For illustration purpose, we consider an instance of a zero-sum game with random constraints. We compute the saddle point equilibria of the game by solving the SOCPs (P) and (D). We use the convex programs solver CVX on MATLAB for solving the SOCPs [START_REF] Grant | Graph implementations for nonsmooth convex programs[END_REF][START_REF] Grant | CVX: Matlab software for disciplined convex programming[END_REF].

Consider a zero-sum game described by the following 4

× 4 payoff matrix G G =         1 4 4 2 5 4 4 2 3 5 4 3 3 2 3 1         .
We consider the stochastic linear constraints defined by 3 × 4 random matrices A 1 and A 2 .

The mean vectors and covariance matrices of the row vectors of A 1 and A 2 are summarized as (0.9, 0.9, 0.9) (0.9, 0.9, 0.9) (0, 3856, 0.6144, 0) (0.0662, 0, 0.3191, 0.6147) 3.13 Uncertainty set [START_REF] Charnes | Constrained games and linear programming[END_REF] or (8) (0.95, 0.95, 0.95) (0.95, 0.95, 0.95) (0.1992, 0.4140, 0.2978, 0.0890) (0.2328, 0.0628, 0.4275, 0.2769) 3.34 (0.9, 0.9, 0.9) (0.9, 0.9, 0.9) {Σ 2 l } q l=1 , corresponding to the constraints of player 1 and player 2 respectively, by setting

(
Σ 1 k = Q 1 + Q T 1 + θ 1 • I m×m and Σ 2 l = Q 2 + Q T 2 + θ 2 • I n×n
, where Q 1 =randi(5, m) and Q 2 =randi(5, n). The matrix Q 1 is an m × m randomly generated integer matrix whose entries are not more than 5, and the matrix Q 2 is an n × n randomly generated integer matrix whose entries are not more than 5. For a given k, I k×k is an k × k identity matrix. We set the parameters θ 1 and θ 2 sufficiently large so that the matrices {Σ 1 k } p k=1 and {Σ 2 l } q l=1 are positive definite. In our experiments, we take θ 1 = 2m and θ 2 = 2n. We take the bounds defining the constraints of both the players as b=randi([13m, 14m], p, 1) and d = randi n 4 , q, 1 . The confidence level for each chance constraint is taken as 0.95. Table 2 summarizes the average time for solving SOCPs (P) and (D).

Conclusions

We show the existence of a mixed strategy SPE for a two-player distributionally robust zero-sum chance-constrained game under three different uncertainty sets. The saddle point equilibria of the game can be obtained from the optimal solutions of a primal-dual pair of SOCPs. We compute the saddle point equilibria of an instance of the game Z α by solving SOCPs (P) and (D). We perform the numerical experiments by considering randomly generated games of different sizes. 

TABLE 1 :

 1 Saddle point equilibrium for different uncertainty sets

	α		Saddle Point Equilibrium		Value
					of the	Uncertainty set
	α 1	α 2	x 1 *	x 2 *	game

  (0.95, 0.95, 0.95) (0.95, 0.95, 0.95) (0.3193, 0.3226, 0.1728, 0.1853) (0.2674, 0.1490, 0.4109, 0.1727) 3.28

				Uncertainty
	0.0216, 0.4609, 0.5175, 0)	(0.0638, 0, 0.4041, 0.5321)	3.2	set (9) with
				γ1=0.3,
				γ2=0.9

TABLE 2 :

 2 Average time for solving SOCPs (P)-(D)

	No. of	Number	of	Number	of	Average time (s)
	instances	actions		constraints		
		m	n	p	q	(P)	(D)
	10	50	60	20	25	2.92	2.94
	10	100	120	40	50	24.27	25.78
	10	160	160	60	60	93.76	90.09
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Table 1 summarizes the saddle point equilibria of the game Z α for various values of α for all three uncertainty sets defined in Section 3.1.

We also perform numerical experiments by considering various random instances of the game with different sizes. We generate the data using the integer random number generator randi. We take A=randi(10, m, n). It generates an m × n integer matrix whose entries are not more than 10. We take mean vectors corresponding to the constraints of player 1

It generates an m × 1 integer vector whose entries are within interval [10m, 12m]. We take the mean vectors corresponding to the constraints of player 2 as µ 2 l =randi(n, n, 1), l ∈ I 2 . We generate the covariance matrices {Σ 1 k } p k=1 and