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Abstract

We consider a two-player zero-sum game with random linear constraints. The proba-

bility distributions of the random constraint vectors are partially known. The available

information with respect to the distribution is based mainly on the first two moments. In

this vein, we formulate the random linear constraints as distributionally robust chance

constraints. We consider three different types of moments based uncertainty sets. For

each uncertainty set, we show that a saddle point equilibrium of the game can be obtained

from the optimal solutions of a primal-dual pair of second order cone programs. We

illustrate our theoretical results on randomly generated game instances of different sizes.
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1. Introduction

In a two-player zero-sum game, the gain of one player is the loss of the other player. We

typically represent a zero-sum game with a payoff matrix where the rows and the columns are

the actions of player 1 and player 2, respectively. von Neumann [34] showed that there exists

a mixed strategy saddle point equilibrium (SPE) of a zero-sum game. Dantzig [14] showed

the equivalence of SPE and the solution of a primal-dual pair of linear programs. Adler [1]

studied the equivalence between linear programming problems and zero-sum games. Charnes

[7] generalized the zero-sum game considered in [14, 34] by introducing linear inequality

constraints on the mixed strategies of both the players. He showed the equivalence of an

SPE of a constrained zero-sum game and an optimal solution of a primal-dual pair of linear

programs. Nash [26] introduced the equilibrium concept for a finite number of rational players

where each player has finite number of actions. He showed that there exists a mixed strategy

Nash equilibrium for finite strategic games. Since then, general strategic games have been

extensively studied in the literature [2, 15, 18]. The games discussed in the above-mentioned

papers have deterministic strategy set and payoff function for each player. However, the

decision making process is fed by input parameters which are usually subject to uncertainties

[13, 25]. The model uncertainties can be accounted for the expected value approach in case

of risk neutral decision makers. Ravat and Shanbhag [28] considered the stochastic Nash

games where each player optimizes his expected value payoff subject to his expected value

constraints. For risk averse players, the payoff criterion with the risk measure CVaR [22, 28]

and the variance was considered in the literature [12]. Singh et al. [30, 31, 32] introduced

chance-constrained games by considering a risk averse payoff criterion based on the chance

constraint programming for finite strategic games with random payoffs. As for the elliptically

distributed random payoffs, the authors showed the existence of a Nash equilibrium for a

chance-constrained game [30], and proposed an equivalent mathematical program to compute

the Nash equilibria of the game [32]. In [31], the authors considered the games where the

probability distributions of the players’ payoffs are partially known, and belong to given

distributional uncertainty sets. They defined each player’s payoff function via a distributionally

robust chance constraint, and showed the existence of a Nash equilibrium. Moreover, they

proposed an equivalent mathematical program based method to come-up with Nash equilibria.

There are some zero-sum chance-constrained games studied in past literature [3, 6, 8, 10].
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The chance-constrained games in the above-mentioned papers considered the case where

players’ payoffs are random variables and the strategy sets are deterministic in nature. The

chance constraint based strategy sets are often considered in various applications, e.g., re-

source constraints in stochastic shortest path problem [11] and risk constraints in portfolio

optimization [21] can be modelled using chance constraints. To the best of our knowledge, the

research on the games with chance constraint based strategy set is very scarce [27, 33]. Peng et

al. [27] considered an n-player general sum game with joint chance constraint for each player.

They showed the existence of a Nash equilibrium when the random constraint vectors are

independent, and follow a multivariate normal distribution. Singh and Lisser [33] considered a

stochastic version of a two-player constrained zero-sum game studied in [7] where each player

has individual chance constraints. They showed the equivalence of an SPE and an optimal

solution of a primal-dual pair of a second order cone programs (SOCPs) when the random

constraint vectors follow a multivariate elliptically symmetric distribution. Unlike stochastic

two-player constrained zero-sum game [33], the only information we have on the probability

distribution of a random constraint vector is that it belongs to a certain uncertainty set. In this

paper, we consider three different types of well-known uncertainty sets [9, 16, 17] based on the

first and second order moments of the random constraint vectors. For each type of uncertainty

set, we show that there exists an SPE and it can be obtained from the optimal solutions of a

primal-dual pair of SOCPs. We perform the numerical experiments by considering randomly

generated games of different sizes. We use CVX package in MATLAB for solving equivalent

SOCPs.

The structure of the rest of the paper is as follows. Section 2 contains the definition

of a zero-sum game with distributionally robust chance constraints. Section 3 presents the

reformulation of distributionally robust chance constraints as second order cone constraints

under three different uncertainty sets. Section 4 outlines a primal-dual pair of SOCPs whose

optimal solutions constitute an SPE of the game. We present our numerical results in Section

5, and conclude the paper in Section 6.

2. The Model

We consider a two-player zero-sum game defined by an n1×n2 matrix G, where n1 and n2

denote the number of pure strategies of player 1 and player 2, respectively. The set of mixed
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strategies of player i, i= 1,2, is given by X i =
{

xi ∈ Rni |∑ni
j=1 xi

j = 1,xi
j ≥ 0,∀ j = 1,2, . . . ,ni

}
.

Each component of the matrix G corresponds to the payoff for player 1 and the cost for player

2. For a given strategy pair (x1,x2) ∈ X1×X2, (x1)T Gx2 represents the payoff of player 1 and

the cost of player 2; T denotes the transposition. For a given x1 ∈ X1 (resp., x2 ∈ X2), player

2 (resp., player 1) chooses an optimal strategy by minimizing (resp., maximizing) (x1)T Gx2

over all x2 ∈ X2 (resp., x1 ∈ X1). A strategy pair (x1,x2) is an SPE of the zero-sum game

if x1 (resp., x2) is an optimal strategy of player 1 (resp., player 2) for a fixed strategy x2

(resp., x1) of player 2 (resp., player 1). An SPE of a zero-sum game exists in mixed strategies

[34], and can be computed via a primal-dual pair of linear programs [14]. In certain cases,

the players’ mixed strategies are further restricted by linear inequalities. For example, in a

portfolio management problem, the fractions of total amount invested in different assets incur

random losses and an investor wants the total loss below certain threshold [21]. In game

theoretic context these problems can be represented as a zero-sum game where nature can be

considered as the adversary player. Let the mixed strategies of player 1 satisfy the following

linear constraints

A1x1 ≤ b1, (1)

whilst the mixed strategies of player 2 satisfy the linear constraints given by

A2x2 ≥ b2, (2)

where A1 is a p× n1 matrix and A2 is a q× n2 matrix. We denote A1 = [a1
1,a

1
2, . . . ,a

1
p]

T and

A2 = [a2
1,a

2
2, . . . ,a

2
q]

T , where ai
k represents kth row of the matrix Ai. Let I1 = {1,2, . . . , p} and

I2 = {1,2, . . . ,q} be the index sets for the constraints of player 1 and player 2, respectively.

Charnes [7] considered the case where A1 and A2 are deterministic matrices and called

it a constrained zero-sum game. He showed that an SPE of a two-player constrained zero-

sum game can be obtained from the optimal solutions of a primal-dual pair of linear programs.

Singh and Lisser [33] considered the case when A1 and A2 are random matrices where each row

vector follows a multivariate elliptically symmetric distribution. They formulated each random

linear constraint from (1) and (2) as a chance constraint. Such games are called zero-sum

chance-constrained games. They showed that an SPE of a zero-sum chance-constrained game

can be obtained from the optimal solutions of a primal-dual pair of SOCPs. In this paper, we

consider the case where we have no distributional knowledge of the probability distributions of

the random vectors of A1 and A2 except their first two moments which leads to optimize over
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an uncertainty set. When considering the worst case scenario, we use distributionally robust

framework to formulate the random linear constraints (1) and (2). The distributionally robust

chance constraints of player 1 are given by

inf
F1

k ∈D
1
k

P
(
a1

kx≤ b1
k
)
≥ α

1
k , ∀ k ∈ I1, (3)

where F1
k is a probability distribution of a1

k , D1
k is the uncertainty set corresponding to the

probability distribution of random vector a1
k , and α1

k is the confidence level of player 1 for the

kth constraint. Similarly, the distributionally robust chance constraints of player 2 are given by

inf
F2

l ∈D
2
l

P
(
−a2

l y≤−b2
l
)
≥ α

2
l , ∀ l ∈ I2, (4)

where F2
l , D2

l and α2
l are analogously defined. Therefore, for a given α1 = (α1

k )k∈I1 and

α2 = (α2
l )l∈I2 the feasible strategy sets of player 1 and player 2 are given by

S1
α1 =

{
x1 ∈ X1| inf

F1
k ∈D

1
k

P{a1
kx1 ≤ b1

k} ≥ α
1
k , ∀ k ∈ I1

}
, (5)

and

S2
α2 =

{
x2 ∈ X2| inf

F2
l ∈D

2
l

P{−a2
l x2 ≤−b2

l } ≥ α
2
l , ∀ l ∈ I2

}
. (6)

We call the matrix game G with the strategy set S1
α1 for player 1 and the strategy set S2

α2 for

player 2 as a distributionally robust zero-sum chance-constrained game. We denote this game

by Zα . A strategy pair (x1∗,x2∗)∈ S1
α1×S2

α2 is called an SPE of the game Zα at α = (α1,α2)∈

[0,1]p× [0,1]q, if

(x1)T Gx2∗ ≤ (x1∗)T Gx2∗ ≤ (x1∗)T Gx2,

for all x1 ∈ S1
α1 , x2 ∈ S2

α2 .

3. Reformulation of distributionally robust chance constraints

We consider three different uncertainty sets based on the full/partial information about the

mean vectors and covariance matrices of the random vectors a1
k , k ∈ I1, and a2

l , l ∈ I2. For

each uncertainty set, chance constraints (3) and (4) are reformulated as second order cone

constraints.



6 Singh et al.

3.1. Moments based uncertainty sets

First, we consider the case where the first two moments are known. The uncertainty set of

player i, i = 1,2, defined by the mean vector µ i
k and the covariance matrix Σi

k of (ai
k)

T , is given

by

Di
k
(
µ

i
k,Σ

i
k
)
=

F i
k

∣∣∣ EF i
k

[
(ai

k)
T
]
= µ i

k

EF i
k

[(
(ai

k)
T −µ i

k

)(
(ai

k)
T −µ i

k

)T
]
= Σi

k

 , (7)

for all k ∈ Ii. These uncertainty sets are considered in [5, 17]. As for the second uncertainty

set, we assume that the first moment is known whilst the second moment is unknown. The

uncertainty set of player i, i = 1,2, defined by the mean vector µ i
k and the upper bound Σi

k on

covariance matrix of (ai
k)

T , is given by

Di
k
(
µ

i
k,Σ

i
k
)
=

F i
k

∣∣∣ EF i
k

[
(ai

k)
T
]
= µ i

k

EF i
k

[(
(ai

k)
T −µ i

k

)(
(ai

k)
T −µ i

k

)T
]
� Σi

k

 , (8)

for all k ∈ Ii. These uncertainty sets are considered in [9]. The last uncertainty set is based on

unknown first two moments. The uncertainty set of player i, i = 1,2, where the mean vector of

(ai
k)

T lies in an ellipsoid of size γ i
k1 ≥ 0 centered at µ i

k and the covariance matrix of (ai
k)

T lies

in a positive semidefinite cone defined with a linear matrix inequality, is given by

Di
k(µ

i
k,Σ

i
k) =

F i
k

∣∣∣∣∣∣
(
EF i

k
[(ai

k)
T ]−µ i

k

)> (
Σi

k

)−1
(
EF i

k
[(ai

k)
T ]−µ i

k

)
≤ γ i

k1,

COVF i
k
[(ai

k)
T ]� γ i

k2Σi
k

 , (9)

for all k ∈ Ii. COVF i
k

is a covariance operator under probability distribution F i
k . These uncer-

tainty sets are considered in [16, 23].

3.2. Second order cone constraint reformulation

It follows from Theorem 3.1 of [5] that the chance constraints (3) and (4) for uncertainty

set (7) can be reformulated as

(µ1
k )

T x1 +

√
α1

k

1−α1
k

∥∥∥(Σ1
k)

1
2 x1
∥∥∥≤ b1

k , ∀ k ∈ I1,

and

−(µ2
l )

T x2 +

√
α2

l

1−α2
l

∥∥∥(Σ2
l )

1
2 x2
∥∥∥≤−b2

l , ∀ l ∈ I2,

where ‖·‖ is the Euclidean norm. The same reformulation based on Lagrangian duality follows

from Theorem 1 of [17]. Based on the structure of uncertainty set (8), the constraint (3) can be
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written as

inf
Σ∈U1

k

inf
F1

k ∈D(µ1
k ,Σ)

P
{

a1
kx1 ≤ b1

k
}
≥ α

1
k ,

where

D(µ1
k ,Σ) =

{
F1

k

∣∣∣EF1
k
[(a1

k)
T ] = µ

1
k ,COVF1

k
[(a1

k)
T ] = Σ

}
and

U1
k =

{
Σ
∣∣Σ� Σ

1
k
}
.

The bound of one-sided Chebyshev inequality can be achieved by a two-point distribution

given by equation (2) of [29]. Therefore, we have

inf
F1

k ∈D(µ1
k ,Σ)

P
{

a1
kx1 ≤ b1

k
}
=


1− 1

1+
((µ1

k )
T x1−b1

k )
2

((x1)T Σx1)

, if (µ1
k )

T x1 ≤ b1
k ,

0, otherwise.

For the case (µ1
k )

T x1 > b1
k ,

inf
F1

k ∈D(µ1
k ,Σ)

P
{

a1
kx1 ≤ b1

k
}
= 0,

which leads to constraint (3) to be infeasible for any α1 > 0. Therefore, for x1 ∈ S1
α1

the

condition (µ1
k )

T x1 ≤ b1
k always holds and the constraint (3) is equivalent to

inf
Σ∈U1

k

1− 1
1+((µ1

k )
T x1−b1

k)
2/((x1)T Σx1)

≥ α
1
k ,

which can be reformulated as

h1
k(x

1)≥

√
α1

k

1−α1
k
, (10)

where

h1
k(x

1) =


min

Σ

b1
k−(µ

1
k )

T x1
√

(x1)T Σx1

s.t.(i) Σ� Σ1
k .

(11)

From (11), it follows that h1
k(x

1) =
b1

k−(µ
1
k )

T x1√
(x1)T Σ1

kx1
. Then, from (10) the reformulation of (3) is

given by

(µ1
k )

T x1 +

√
α1

k

1−α1
k

∥∥∥(Σ1
k)

1
2 x1
∥∥∥≤ b1

k , ∀ k ∈ I1.

Similarly, the reformulation of (4) for uncertainty set (8) is given by

−(µ2
l )

T x2 +

√
α2

l

1−α2
l

∥∥∥(Σ2
l )

1
2 x2
∥∥∥≤−b2

l , ∀ l ∈ I2.
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This implies that the deterministic reformulations of (3) and (4) for uncertainty sets (7) and (8)

are same. Based on the structure of the uncertainty set (9), the constraint (3) can be written as

inf
(µ,Σ)∈Ũ1

k

inf
F1

k ∈D(µ,Σ)
P
{

a1
kx1 ≤ b1

k
}
≥ α

1
k ,

where

D(µ,Σ) =
{

F1
k

∣∣∣EF1
k
[(a1

k)
T ] = µ,COVF1

k
[(a1

k)
T ] = Σ

}
and

Ũ1
k =

{
(µ,Σ)

∣∣∣(µ−µ
1
k
)> (

Σ
1
k
)−1 (

µ−µ
1
k
)
≤ γ

1
k1, Σ� γ

1
k2Σ

1
k

}
.

Using the similar arguments as in previous case, the constraint (3) is equivalent to

inf
(µ,Σ)∈Ũ1

k

1− 1
1+(µT x1−b1

k)
2/((x1)T Σx1)

≥ α
1
k ,

which can be reformulated as

h̃1
k(x

1)≥

√
α1

k

1−α1
k
, (12)

where

h̃1
k(x

1) =


min
µ,Σ

b1
k−µT x1
√

(x1)T Σx1

s.t. (i)
(
µ−µ1

k

)> (
Σ1

k

)−1 (
µ−µ1

k

)
≤ γ1

k1,

(ii) Σ� γ1
k2Σ1

k .

(13)

For the sake of simplicity, we separate problem (13) into two optimization problems

h̃1
k(x

1) =
b1

k + v1(x1)√
v2(x1)

,

where

v1(x1) =


min

µ
−µT x1

s.t.
(
µ−µ1

k

)> (
Σ1

k

)−1 (
µ−µ1

k

)
≤ γ1

k1,

(14)

v2(x1) =


max

Σ
(x1)T Σx1

s.t. Σ� γ1
k2Σ1

k .

Let β ≥ 0 be a Lagrange multiplier associated with the constraint of optimization problem (14).

By applying the KKT conditions, the optimal solution of (14) is given by µ = µ1
k +

√
γ1

k1Σ1
kx1√

(x1)T Σ1
kx1
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and associated Lagrange multiplier is given by β =

√
(x1)T Σ1

kx1

4γ1
k1

. Therefore, the corresponding

optimal value v1(x1) = −(µ1
k )

T x1−
√

γ1
k1

√
(x1)T Σ1

kx1. Since, uT Σu ≤ uT γ1
k2Σ1

ku for any u ∈

Rn, then, v2(x1) = γ1
k2(x

1)T Σ1
kx1. Therefore, using (12) we have the following reformulation

of (3)

(µ1
k )

T x1 +

(√
α1

k

1−α1
k

√
γ1

k2 +
√

γ1
k1

)∥∥∥∥(Σ1
k
) 1

2 x1
∥∥∥∥≤ b1

k , (15)

for all k ∈ I1. Similarly, the reformulation of (4) is given by

− (µ2
l )

T x2 +

(√
α2

l

1−α2
l

√
γ2

l2 +
√

γ2
l1

)∥∥∥∥(Σ2
l
) 1

2 x2
∥∥∥∥≤−b2

l , (16)

for all l ∈ I2.

The reformulation of feasible strategy sets (5) and (6) for uncertainty sets (7), (8), and (9)

can be written as

S1
α1 =

{
x1 ∈ X1 | (µ1

k )
T x1 +κ

α1
k

∥∥∥(Σ1
k)

1
2 x1
∥∥∥≤ b1

k , k ∈ I1

}
, (17)

and

S2
α2 =

{
x2 ∈ X2 | −(µ2

l )
T x2 +κ

α2
l

∥∥∥(Σ2
l )

1
2 x2
∥∥∥≤−b2

l , l ∈ I2

}
, (18)

where κ
α i

k
=

√
α i

k
1−α i

k
, i = 1,2, represents the reformulation under uncertainty sets (7) and (8),

and κ
α i

k
=

(√
α i

k
1−α i

k

√
γ i

k2 +
√

γ i
k1

)
, i = 1,2, represents the reformulation for uncertainty set

(9).

Proposition 1. Consider the random constraint vectors ai
k, k ∈ Ii, i = 1,2, whose probabil-

ity distributions belong to uncertainty sets defined by (7), (8), (9). Then, the deterministic

reformulations of (3) and (4) are given by (17) and (18), respectively.

We assume that the strategy sets (17) and (18) satisfy the strict feasibility condition given

by Assumption 1.

Assumption 1. 1. There exists an x1 ∈ S1
α1 such that the inequality constraints of S1

α1

defined by (17) are strictly satisfied.

2. There exists an x2 ∈ S2
α2 such that the inequality constraints of S2

α2 defined by (18) are

strictly satisfied.
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The conditions given in Assumption 1 are Slater’s condition which are sufficient for strong

duality in a convex optimization problem. We use these conditions in order to derive equivalent

SOCPs for the zero-sum game Zα .

4. Existence and characterization of saddle point equilibrium

In this section, we show that there exists an SPE of the game Zα if the probability distribu-

tions of the random constraint vectors of both the players belong to the uncertainty sets defined

in Section 3.1. We further propose a primal-dual pair of SOCPs whose optimal solutions

constitute an SPE of the game Zα .

Theorem 1. Consider the game Zα where the probability distributions of the row vectors ai
k,

k ∈ Ii, i = 1,2, belong to the uncertainty sets described in Section 3.1. Then, there exists an

SPE of the game for all α ∈ (0,1)p× (0,1)q.

Proof. Let α ∈ (0,1)p× (0,1)q. For uncertainty sets described in Section 3.1, the strategy

sets S1
α1 and S2

α2 are given by (17) and (18), respectively. It is easy to see that S1
α1 and S2

α2 are

convex and compact sets. The function (x1)T Gx2 is a bilinear and continuous function. Hence,

there exists an SPE from the minimax theorem of Neumann [34]. �

4.1. Equivalent primal-dual pair of second order cone programs

From the minimax theorem [34], (x1∗,x2∗) is an SPE for the game Zα if and only if

x1∗ ∈ argmax
x1∈S1

α1

min
x2∈S2

α2

(
x1)T

Gx2, (19)

x2∗ ∈ argmin
x2∈S2

α2

max
x1∈S1

α1

(
x1)T

Gx2. (20)

We start with problem minx2∈S2
α2

maxx1∈S1
α1

(
x1
)T Gx2. The inner optimization problem maxx1∈S1

α1

(
x1
)T Gx2

can be equivalently written as
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max
x1,(t1

k )k∈I1

(
x1)T

Gx2

s.t.

(i) −
(
x1)T

µ
1
k −κ

α1
k

∥∥t1
k

∥∥+b1
k ≥ 0, ∀ k ∈ I1

(ii) t1
k −
(
Σ

1
k
) 1

2 x1 = 0, ∀ k ∈ I1

(iii)
n1

∑
j=1

x1
j = 1,

(iv) x1
j ≥ 0, ∀ j = 1,2, . . . ,n1.



(21)

Let λ 1 =
(
λ 1

k

)
k∈I1
∈ Rp, δ 1

k ∈ Rn1 , k ∈ I1, and ν1 ∈ R be the Lagrange multipliers of con-

straints (i),(ii), and (iii) of (21), respectively. Then, the Lagrangian dual problem of the

SOCP (21) is an SOCP [4, 24]. Moreover, the duality gap is zero according to Assumption 1 .

Therefore, the problem minx2∈S2
α2

maxx1∈S1
α1

(
x1
)T Gx2 is equivalent to the following SOCP

min
x2,ν1,(δ 1

k )k∈I1
,(λ 1

k )k∈I1

ν
1 + ∑

k∈I1

λ
1
k b1

k

s.t.

(i) Gx2− ∑
k∈I1

λ
1
k µ

1
k − ∑

k∈I1

(Σ1
k)

1
2 δ

1
k ≤ ν

11n1 ,

(ii) − (µ2
l )

T x2 +κ
α2

l

∥∥∥(Σ2
l )

1
2 x2
∥∥∥≤−b2

l , ∀ l ∈ I2,

(iii) ||δ 1
k || ≤ λ

1
k κ

α1
k
,∀ k ∈ I1,

(iv)
n2

∑
j=1

x2
j = 1,

(v) x2
j ≥ 0, ∀ j = 1,2, . . . ,n2

(vi) λ
1
k ≥ 0, ∀ k ∈ I1,



(P)
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where 1n1 is an n1× 1 vector of ones. Similarly, problem maxx1∈S1
α1

minx2∈S2
α2

(
x1
)T Gx2 is

equivalent to the following SOCP

max
x1,ν2,(δ 2

l )l∈I2
,(λ 2

l )l∈I2

ν
2 + ∑

l∈I2

λ
2
l b2

l

s.t.

(i) GT x1− ∑
l∈I2

λ
2
l µ

2
l − ∑

l∈I2

(Σ2
l )

1
2 δ

2
l ≥ ν

21n2 ,

(ii) (µ1
k )

T x1 +κ
α1

k

∥∥∥(Σ1
k)

1
2 x1
∥∥∥≤ b1

k ,∀ k ∈ I1,

(iii) ||δ 2
l || ≤ λ

2
l κ

α2
l
, ∀ l ∈ I2,

(iv)
n1

∑
j=1

x1
j = 1,

(v) x1
j ≥ 0, ∀ j = 1,2, . . . ,n1,

(vi) λ
2
l ≥ 0, ∀ l ∈ I2.



(D)

It follows from the duality theory of second order cone programming problem that (P) and (D)

form a primal-dual pair [4, 24].

Remark 1. For κ
α i

k
=

√
α i

k
1−α i

k
, i = 1,2, (P) and (D) represent the primal-dual pair of SOCPs

for the uncertainty sets defined by (7) and (8). For κ
α i

k
=

(√
α i

k
1−α i

k

√
γ i

k2 +
√

γ i
k1

)
, i = 1,2, (P)

and (D) represent the primal-dual pair of SOCPs for the uncertainty set defined by (9).

Next, we show that the equivalence between the optimal solutions of (P)-(D) and an SPE of

the game Zα .

Theorem 2. Consider the game Zα where the probability distributions of the random con-

straint vectors ai
k, k ∈ Ii, i = 1,2, belong to the uncertainty sets defined by (7), (8), (9).

Let Assumption 1 holds. Then, for a given α ∈ (0,1)p× (0,1)q, (x1∗,x2∗) is an SPE of the

game Zα if and only if there exists (ν1∗,(δ 1∗
k )k∈I1 ,λ

1∗) and (ν2∗,(δ 2∗
l )l∈I2 ,λ

2∗) such that

(x2∗,ν1∗,(δ 1∗
k )k∈I1 ,λ

1∗) and (x1∗,ν2∗,(δ 2∗
l )l∈I2 ,λ

2∗) are optimal solutions of (P) and (D),

respectively.

Proof. Let (x1∗,x2∗) be an SPE of the game Zα . Then, x1∗ and x2∗ are the solutions of (19)

and (20) respectively. Therefore, there exists (ν1∗,(δ 1∗
k )k∈I1 ,λ

1∗) and (ν2∗,(δ 2∗
l )l∈I2 ,λ

2∗)

such that (x2∗,ν1∗,(δ 1∗
k )k∈I1 ,λ

1∗) and (x1∗,ν2∗,(δ 2∗
l )l∈I2 ,λ

2∗) are optimal solutions of (P)

and (D) respectively.
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Let (x2∗,ν1∗,(δ 1∗
k )k∈I1 ,λ

1∗) and (x1∗,ν2∗,(δ 2∗
l )l∈I2 ,λ

2∗) be optimal solutions of (P) and

(D) respectively. Under Assumption 1, (P) and (D) are strictly feasible. Therefore, strong

duality holds for primal-dual pair (P)-(D). Then, we have

ν
1∗+ ∑

k∈I1

λ
1∗
k b1

k = ν
2∗+ ∑

l∈I2

λ
2∗
l b2

l . (22)

Consider the constraint (i) of (P) at optimal solution (x2∗,ν1∗,(δ 1∗
k )k∈I1 ,λ

1∗) and multiply it

by (x1)T , where x1 ∈ S1
α1

. Then, by using Cauchy-Schwartz inequality, we have

(x1)T Gx2∗ ≤ ν
1∗+ ∑

k∈I1

λ
1∗
k b1

k , ∀ x1 ∈ S1
α1
. (23)

Similarly, we have

(x1∗)T Gx2 ≥ ν
2∗+ ∑

l∈I2

λ
2∗
l b2

l , ∀ x2 ∈ S2
α2
. (24)

Take x1 = x1∗ and x2 = x2∗ in (23) and (24), then from (22), we get

(x1∗)T Gx2∗ = ν
1∗+ ∑

k∈I1

λ
1∗
k b1

k = ν
2∗+ ∑

l∈I2

λ
2∗
l b2

l . (25)

It follows from (23), (24), and (25) that (x1∗,x2∗) is an SPE of the game Zα . �

5. Numerical Results

For illustration purpose, we consider an instance of a zero-sum game with random con-

straints. We compute the saddle point equilibria of the game by solving the SOCPs (P) and

(D). We use the convex programs solver CVX on MATLAB for solving the SOCPs [19, 20].

Consider a zero-sum game described by the following 4×4 payoff matrix G

G =


1 4 4 2

5 4 4 2

3 5 4 3

3 2 3 1

 .

We consider the stochastic linear constraints defined by 3× 4 random matrices A1 and A2.

The mean vectors and covariance matrices of the row vectors of A1 and A2 are summarized as
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below

µ
1
1 =


11

12

9

11

 , µ
1
2 =


14

14

15

12

 , µ
1
3 =


10

11

19

19

 ,µ2
1 =


19

17

18

11

 ,

µ
2
2 =


18

18

14

19

 ,µ2
3 =


15

14

19

9

 , b1 =


24

24

24

 , b2 =


5

5

5

 .

Σ
1
1 =


12 3 3 3

3 10 2 4

3 2 12 2

3 4 2 10

 ,Σ1
2 =


10 2 2 3

2 10 4 4

2 4 10 2

3 4 2 10

 ,

Σ
1
3 =


10 3 3 3

3 12 2 3

3 2 12 2

3 3 2 10

 ,Σ2
1 =


12 3 3 3

3 12 3 3

3 3 10 3

3 3 3 10

 ,

Σ
2
2 =


12 3 2 3

3 10 4 2

2 4 12 2

3 2 2 12

 ,Σ2
3 =


12 2 3 3

2 10 2 3

3 2 10 3

3 3 3 10

 .

Table 1 summarizes the saddle point equilibria of the game Zα for various values of α for all

three uncertainty sets defined in Section 3.1.

We also perform numerical experiments by considering various random instances of the

game with different sizes. We generate the data using the integer random number generator

randi. We take A=randi(10, m, n). It generates an m× n integer matrix whose entries

are not more than 10. We take mean vectors corresponding to the constraints of player 1

as µ1
k =randi

(
[10m,12m],m,1

)
, k ∈ I1. It generates an m× 1 integer vector whose entries

are within interval [10m,12m]. We take the mean vectors corresponding to the constraints

of player 2 as µ2
l =randi(n,n,1), l ∈ I2. We generate the covariance matrices {Σ1

k}
p
k=1 and
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TABLE 1: Saddle point equilibrium for different uncertainty sets

α Saddle Point Equilibrium Value

of the

game

Uncertainty set

α1 α2 x1∗ x2∗

(0.9, 0.9, 0.9) (0.9, 0.9, 0.9) (0,3856,0.6144,0) (0.0662,0,0.3191,0.6147) 3.13 Uncertainty

set (7) or (8)
(0.95, 0.95, 0.95) (0.95, 0.95, 0.95) (0.1992,0.4140,0.2978,0.0890) (0.2328,0.0628,0.4275,0.2769) 3.34

(0.9, 0.9, 0.9) (0.9, 0.9, 0.9) (0.0216,0.4609,0.5175,0) (0.0638,0,0.4041,0.5321) 3.2
Uncertainty

set (9) with

γ1=0.3,

γ2=0.9(0.95, 0.95, 0.95) (0.95, 0.95, 0.95) (0.3193,0.3226,0.1728,0.1853) (0.2674,0.1490,0.4109,0.1727) 3.28

{Σ2
l }

q
l=1, corresponding to the constraints of player 1 and player 2 respectively, by setting Σ1

k =

Q1+QT
1 +θ1 · Im×m and Σ2

l = Q2+QT
2 +θ2 · In×n, where Q1=randi(5,m) and Q2=randi(5,n).

The matrix Q1 is an m×m randomly generated integer matrix whose entries are not more

than 5, and the matrix Q2 is an n× n randomly generated integer matrix whose entries are

not more than 5. For a given k, Ik×k is an k× k identity matrix. We set the parameters θ1

and θ2 sufficiently large so that the matrices {Σ1
k}

p
k=1 and {Σ2

l }
q
l=1 are positive definite. In

our experiments, we take θ1 = 2m and θ2 = 2n. We take the bounds defining the constraints

of both the players as b=randi([13m,14m], p,1) and d = randi
( n

4 ,q,1
)
. The confidence level

for each chance constraint is taken as 0.95. Table 2 summarizes the average time for solving

SOCPs (P) and (D).

6. Conclusions

We show the existence of a mixed strategy SPE for a two-player distributionally robust

zero-sum chance-constrained game under three different uncertainty sets. The saddle point

equilibria of the game can be obtained from the optimal solutions of a primal-dual pair of

SOCPs. We compute the saddle point equilibria of an instance of the game Zα by solving

SOCPs (P) and (D). We perform the numerical experiments by considering randomly gener-

ated games of different sizes.
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TABLE 2: Average time for solving SOCPs (P)-(D)

No. of

instances

Number of

actions

Number of

constraints

Average time (s)

m n p q (P) (D)

10 50 60 20 25 2.92 2.94

10 100 120 40 50 24.27 25.78

10 160 160 60 60 93.76 90.09
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