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Abstract In this paper, we consider an n-player non-cooperative game where
the random payoff function of each player is defined by its expected value and
her strategy set is defined by a joint chance constraint. The random con-
straint vectors are independent. We consider the case when the probability
distribution of each random constraint vector belongs to a subset of elliptical
distributions as well as the case when it is a finite mixture of the probabil-
ity distributions from the subset. We propose a convex reformulation for the
joint chance constraint of each player and derive the bounds for players’ con-
fidence levels and the weights used in the mixture distributions. Under mild
conditions on the players’ payoff functions, we show that there exists a Nash
equilibrium of the game when the players’ confidence levels and the weights
used in the mixture distributions are within the derived bounds. As an applica-
tion of these games, we consider the competition between two investment firms
on the same set of portfolios. We use a best response algorithm to compute a
Nash equilibrium of the randomly generated games of different sizes.
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1 Introduction

In strategic games, the rational players choose their strategies simultaneously
which results in payoffs for all the players. The payoffs of each player depend
on the strategies of all the players whereas the strategy set of each player
does not depend on other players’ strategies. The Nash equilibrium concept is
used to analyze the outcome of such strategic interactions. Nash [23] showed
that there exists a mixed strategy Nash equilibrium of a game with finite
number of players where each player has finite number of actions. Since then,
general strategic games have been extensively studied in the literature [1, 10,
11]. The games considered in the above-mentioned papers are deterministic in
nature, i.e., the payoffs and the strategy sets of all the players are defined by
real valued functions. However, the decision making process is often subject
to uncertainties due to the presence of various external factors [9, 22]. The
stochastic modelling of uncertainties present in the system depends on the
attitude of decision makers. The expected value criterion is used for risk neutral
players [25]. For risk averse players, the payoff criterion with the risk measure
CVaR [18, 25] and the variance are considered in the literature [8]. A chance
constraint based payoff criterion for the case of risk averse players is introduced
in [26, 27]. Singh et al. [26] considered a finite strategic games where the
payoff vector of each player is a random vector, and each player is interested
in payoffs obtained with a given confidence level. They showed that there
exists a mixed strategy Nash equilibrium when the payoff vector of each player
follows a multivariate elliptical distribution. In [27], the authors showed that
the Nash equilibria of chance-constrained games (CCGs) considered in [26]
can be obtained from the global optimal solutions of a certain mathematical
program. Notice that there are zero-sum CCGs studied in the literature, see
for instance [2, 4, 5, 6].

The above-mentioned papers on CCGs considered the case where players’
payoffs are random and the strategy sets are deterministic in nature. There is
a scarce literature on games with stochastic strategy sets defined by chance
constraints [24, 28]. Singh and Lisser [28] showed that a saddle point equilib-
rium of a zero-sum game with individual chance constraints can be obtained
by solving a primal-dual pair of second order cone programs. Peng et al. [24]
considered n-player games with deterministic payoff functions and the strat-
egy sets defined using joint chance constraints. They showed that there exists
a Nash equilibrium of the game when the random constraint vectors are inde-
pendent, and follow a multivariate normal distribution. A normal distribution
belongs to the class of elliptical distributions. In practical situations, a normal
distribution is often used to model the uncertain parameters, but, sometimes
the member distributions from elliptical class other than normal distribution
are used to model the uncertainties present in the system. For example, in fi-



Chance-constrained games with mixture distributions 3

nancial market the random return vector from a portfolio follows an elliptical
distribution [16] as well as a finite mixture of elliptical distributions [3, 13, 17].

In this paper, we consider an n-player game where the payoff function of
each player is random and the strategy set of each player is defined by a joint
chance constraint. The players’ payoff functions are defined using expected
value of their random payoff functions and the random constraint vectors are
independent. We identify a list of prominent probability distributions belong-
ing to the class of elliptical distributions. Under mild conditions, we show that
there exists a Nash equilibrium of these CCGs if the underlying probability
distributions of random constraint vectors belong to the list. Then, we con-
sider the case where the random constraint vectors follow a finite mixture
of elliptical distributions from the list and we show that there exists a Nash
equilibrium of the CCG. The CCGs considered in this paper are significantly
different from the ones considered in [24]. Unlike [24], we consider expected
payoff functions for each player and the existence of Nash equilibrium is shown
for certain elliptical distributions and their finite mixture. As an application
of the CCG under mixture distributions, we consider the case of two invest-
ment firms which compete on the same market by investing in the same set
of portfolios. The random return vector of each firm follows a finite mixture
of elliptical distributions. The firms want to keep their random losses below a
certain threshold. The constraints on the random loss function of each player
are modelled as a joint chance constraint. We consider the case where each
firm incurs transaction cost which depends on the strategies of both the firms.
Each firm is interested in maximizing its expected payoffs over the chance-
constrained strategy set. We use a best response algorithm to compute the
Nash equilibrium of the game. The numerical experiments are performed on
randomly generated instances of different sizes.

The rest of the paper is organized as follows. Section 2 contains the def-
inition of the CCGs. In Sections 3 and 4, we show the existence of a Nash
equilibrium for a subset of elliptical distributions, and for a finite mixture of
elliptical distributions from the subset, respectively. Section 5 contains the ap-
plication of the CCG in financial market. We conclude our paper in Section
6.

2 The model

We consider an n-player non-cooperative game, where I = {1, 2, . . . , n} de-
notes the set of players. Let Xi ⊂ R

li
++ be a strategy set of player i which is a

convex and compact set; Rli++ denotes the positive orthant of Rli . The generic
element of Xi is denoted by xi and the vector of strategies of all the players
except player i is denoted by x−i. The strategy profile of all the players is
denoted by x = (xi, x−i). Let ξ : Ω → R

d be a random vector defined on prob-
ability space (Ω,F ,P). For each ω ∈ Ω, let vi(x, ξ(ω)) represents a real valued
payoff function of player i which is defined on

∏
i∈I R

li
++×Rd. The players use
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expected payoff criterion and the payoff function of player i is defined as

ui(x) = EP[vi(x, ξ)], (1)

where EP denotes the expectation operator associated with probability mea-
sure P. The strategy set of player i, i ∈ I, is restricted by the following joint
chance constraint

P
{
Aixi ≤ bi

}
≥ αi, (2)

where αi is confidence level of player i, Ai = [Ai1, A
i
2, . . . , A

i
Ki

]T is a Ki × li
random matrix defined on the probability space (Ω,F ,P) , and bi ∈ RKi ; T
denotes the transposition. For each k = 1, 2, . . . ,Ki, A

i
k is the kth row of Ai.

For a given αi, the feasible strategy set of player i is defined by

Siαi =
{
xi ∈ Rli++ | xi ∈ Xi,P

{
Aixi ≤ bi

}
≥ αi

}
, ∀ i ∈ I. (3)

Let α = (αi)i∈I be a confidence level vector. We denote Sα =
∏
i∈I

Siαi and

S−iα−i =
∏

j∈I;j 6=i

Sjαj . We assume that the set Siαi is nonempty, and the proba-

bility distribution of the random matrix Ai and the probability level vector α,
and the payoff functions defined by (1) are known to all the players. We call
this game a CCG which is a non-cooperative game with complete information.
A strategy profile x∗ = (xi∗, x−i∗) ∈ Sα is a Nash equilibrium of the CCG at
confidence level vector α if and only if for each i ∈ I,

ui(x
i∗, x−i∗) ≥ ui(xi, x−i∗), ∀ xi ∈ Siαi .

Assumption 1 For each player i, i ∈ I, the following conditions hold.

1. vi(x
i, x−i, ξ) is a concave function of xi for every (x−i, ξ) ∈ X−i × Rd.

2. vi(·) is a continuous function.
3. EP[vi(x, ξ)] is finite valued for any x ∈ X.

In this paper, we consider the case where the row vectors Aik, k =
1, 2, . . . ,Ki, of matrix Ai, i ∈ I, are independent [15]. We select a subset
of elliptical distributions given by Table 1, and we show that there exists a
Nash equilibrium of CCG. In addition, we show that a Nash equilibrium exists
when the probability distribution is a finite mixture of the elliptical distribu-
tions listed in Table 1.

Definition 1 A d-dimensional random vector ζ follows an elliptically sym-
metric distribution Ellipd(µ,Σ, ϕ) with location parameter µ, positive definite
scale matrix Σ, and characteristic generator ϕ, if its characteristic function is

given by Eeit
T ζ = eit

Tµϕ(tTΣt).
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The probability density function (if it exists) of an elliptically symmetric dis-
tribution is given by

f (u) =
c√

detΣ
g

(√
(u− µ)TΣ−1(u− µ)

)
, (4)

where g(·) is a nonnegative function called radial density, and c > 0 is a nor-
malization factor such that f integrates to one. The elliptical distributions
with location parameter µ = 0 and scale matrix Σ = Id×d are called as spher-
ical distributions [12]; 0 and Id×d denote a d×1 zero vector and a d×d identity
matrix, respectively. Table 1 presents a short selection of prominent spherical
distributions, together with their radial densities for univariate case [12].

Table 1: List of selected 1-dimensional spherical distributions.

Probability
distribution

Radial density ᾱk,i ᾱi

normal e−
1
2
u2

Ψ ik(1)

max
k=1,2,...,Ki

ᾱk,i

t (1 + 1
ν
u2)−(1+ν)/2,

ν > 0, ν integer
Ψ ik(1)

Cauchy (1 + u2)−1 Ψ ik(1)

Laplace e−|u| Ψ ik(1)

Kotz type
u2(N−1)e−ru

2s
,

r, s > 0, N > 1
2

Ψ ik

((
2N−1
2sr

) 1
2s

)
Pearson Type
VII distribution

(
1 + u2

m

)−N
,

m > 0, N > 1
2

Ψ ik

(√
m

2N−1

)

3 Existence of Nash equilibrium under elliptical distribution

The convexity of the feasibility set of joint chance constraint (2) plays an im-
portant role in the existence of Nash equilibrium for the CCG. When there
is only one random linear constraint, i.e., Ki = 1, the chance constraint (2)
is equivalent to a second-order cone constraint [14]. When the row vectors
Aik, k = 1, 2, . . . ,Ki, are independent and follow a multivariate normal dis-
tribution, then, Strugarek and Henrion [15] showed that the joint chance con-
straint (2) is convex for large values of αi and Shen et al. [24] proposed a
new convex reformulation of (2). Sometimes, in practical situations the distri-
bution of uncertain parameters belongs to the class of elliptical distribution
[16]. We identify a list of prominent elliptical distributions as given in Ta-
ble 1 and propose a convex reformulation of (2) when the row vectors Aik,
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k = 1, 2, . . . ,Ki are independent and follow Ellipli
(
µik, Σ

i
k;ϕik

)
from Table 1.

Under independence assumption, the joint chance constraint (2) can be equiv-

alently written as
∏Ki
k=1 P

{
Aikx

i ≤ bik
}
≥ αi, or alternatively with nonnegative

auxiliary variables zik [7]

P
{
Aikx

i ≤ bik
}
≥ αz

i
k
i , k = 1, 2, · · · ,Ki,

Ki∑
k=1

zik = 1, zik ≥ 0, k = 1, 2, · · · ,Ki.

 (5)

The chance constraint given in (5) can be treated as an individual chance

constraint with α
zik
i confidence level. Using the reformulation of individual

chance constraint from [14], we have the following reformulation of joint chance
constraint (2) [7]

Qiαi =



(i) (µik)Txi + Ψ ik
−1
(
α
zik
i

)∥∥∥(Σi
k

) 1
2 xi
∥∥∥ ≤ bik, ∀ k = 1, 2, . . . ,Ki,

(ii)

Ki∑
k=1

zik = 1,

(iii) zik ≥ 0, ∀ k = 1, 2, . . . ,Ki,

(6)

where Ψ ik
−1

(·) is a quantile function of an 1-dimensional spherical distribu-
tion, and ‖·‖ is the Euclidean norm. The deterministic reformulation (6) of
(2) is not convex due to constraints (i) from (6). When αi ≥ 0.5, we have

Ψ ik
−1
(
α
zik
i

)
≥ 0, where 0 ≤ zik ≤ 1. Then, under logarithmic transformation

[20] yij = log xij , j = 1, 2, . . . , li, we have the following reformulation for (6)

Q̃iαi =



(i) (µik)T ey
i

+

∥∥∥∥∥(Σi
k

) 1
2 e

log (Ψ ik)
−1
(
α
zik
i

)
1li

+yi
∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, . . . ,Ki,

(ii)

Ki∑
k=1

zik = 1,

(iii) zik ≥ 0, ∀ k = 1, 2, . . . ,Ki,
(7)

where 1li is an li × 1 vector of ones, and ey
i

=
(
ey
i
1 , . . . , ey

i
li

)T
and

e
log (Ψ ik)

−1
(
α
zik
i

)
·1li+y

i

=

(
e
log (Ψ ik)

−1
(
α
zik
i

)
+yi1

, . . . , e
log (Ψ ik)

−1
(
α
zik
i

)
+yili

)T
.

Let Y i =
{
yi ∈ Rli | yij = lnxij , x

i = (xi1, . . . , x
i
li

)T , xi ∈ Xi
}

. The set Y i

is a compact set because it is an image of Xi under logarithmic transforma-
tion. The convexity might not be preserved under logarithmic transformation.
Therefore, we consider only Xi for which Y i is a convex set, see for instance
[24]. From now onward, we consider the strategy set Xi for which Y i is a
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convex set. The reformulation of the feasible strategy set Siαi of player i, i ∈ I,
is given by

S̃iαi =
{

(yi, zi) ∈ Y i × RKi | (yi, zi) ∈ Q̃iαi
}
. (8)

The convexity of reformulated feasible strategy set S̃iαi corresponding to el-
liptical distributions listed in Table 1 depends on the convexity of function

log
(
Ψ ik
)−1 (

α
zik
i

)
[24]. We show that the function log

(
Ψ ik
)−1 (

α
zik
i

)
is convex

in zik for probability distributions listed in Table 1. In order to come-up with

the convexity of the set S̃iαi , we consider the following assumption.

Assumption 2 For each i ∈ I and k = 1, 2, . . . ,Ki, all the components of
Σi
k and µik are nonnegative.

Lemma 1 Let Σ be a k × k symmetric positive definite matrix with non-
negative entries and q(δ) = (q1(δ), q2(δ), . . . , qk(δ))T be a k × 1 vector of
functions, where each component qj(δ) is a non-negative convex function of

δ. Then, ||Σ 1
2 q(δ)|| is a convex function of δ.

Proof The proof follows from the Proposition 2.1 of [14]. ut

Lemma 2 For each i ∈ I and k = 1, 2, . . . ,Ki, let (Ψ ik)−1(·) be a quantile
function of 1-dimensional spherical distribution listed in Table 1. Then, there

exists an ᾱk,i such that log
(
Ψ ik
)−1 (

α
zik
i

)
is a convex function of zik on [0, 1]

for all αi ∈ [ᾱk,i, 1].

Proof The proof is given in Appendix A. ut

Lemma 3 For each i ∈ I, let the convex set Xi be such that Y i is a convex
set. If Assumption 2 holds for the elliptical distributions listed in Table 1, S̃iαi ,
i ∈ I, defined by (8) is a convex set for all αi ∈ [ᾱi, 1]; ᾱi is given in Table 1.

Proof It is evident that (µik)T ey
i

is a convex function of yi because the

components of µik are nonnegative. From Lemma 2, log
(
Ψ ik
)−1 (

α
zik
i

)
, k =

1, 2, . . . ,Ki, is a convex function of zik for all αi ∈ [ᾱi, 1]. Therefore, all the

components of the vector of composition functions e
log (Ψ ik)

−1
(
α
zik
i

)
·1li+y

i

are
nonnegative and convex function of (yi, zik). The entries of Σi

k are nonnega-

tive. Then, it follows from Lemma 1 that

∥∥∥∥∥(Σi
k

) 1
2 e

log (Ψ ik)
−1
(
α
zik
i

)
1li

+yi
∥∥∥∥∥ is a

convex function of (yi, zik). Therefore, the constraints

(µik)T ey
i

+

∥∥∥∥∥(Σi
k

) 1
2 e

log (Ψ ik)
−1
(
α
zik
i

)
1li

+yi
∥∥∥∥∥ ≤ bik, ∀ k = 1, 2, . . . ,Ki,

are convex in (yi, zi) for all αi ∈ [ᾱi, 1]. The other constraints of S̃iαi are convex

constraints. Hence, S̃iαi , i ∈ I, is a convex set for all αi ∈ [ᾱi, 1]. ut
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Finally, we show that there exists a Nash equilibrium of a CCG for which
we need the following assumption on the players’ payoff functions.

Assumption 3 For each player i, i ∈ I, the payoff function ui(·, x−i) satisfies
the non-increasing condition for every x−i ∈ X−i, i.e., for any two points
xi and x̄i such that xik ≤ x̄ik for all k = 1, 2, . . . , li, we have ui(x

i, x−i) ≥
ui(x̄

i, x−i).

Theorem 1 Consider an n-player CCG where

1. Assumptions 1 and 3 holds,
2. the row vectors of Ai, i ∈ I are independent,
3. for each k = 1, 2, . . .Ki, the row vector Aik ∼ Ellipli

(
µik, Σ

i
k;ϕik

)
w.r.t.

Table 1, where the location vector µik and the scale matrix Σi
k satisfy As-

sumption 2.

Then, there exists a Nash equilibrium of a CCG for all α ∈ [ᾱ1, 1]× [ᾱ2, 1]×
. . .× [ᾱn, 1]; ᾱi, i ∈ I, is given in Table 1.

Proof Let α ∈ [ᾱ1, 1]× [ᾱ2, 1]× . . .× [ᾱn, 1]. Under Assumption 1, the payoff
function ui(x

i, x−i), i ∈ I, is a concave function of xi for every x−i ∈ X−i,
and a continuous function of x. For each i ∈ I, define a composition function
Vi = ui ◦ di, where di :

∏n
i=1 R

li →
∏n
i=1 R

li
++ such that

di
(
y1, y2, . . . , yn

)
=
(
ey

1

, ey
2

, . . . , ey
n
)
.

Under Assumption 3, Vi(y
i, y−i) is a concave function of yi for all y−i. The

function Vi(y) is a continuous function of y. It follows from Lemma 3 that

the reformulated strategy set S̃iαi of player i, i ∈ I, is a convex set. For each

i ∈ I, S̃iαi is also a compact set. Then, there exists a Nash equilibrium for an
n-player non-cooperative game with the payoff functions Vi(y), i ∈ I, and the

strategy sets S̃iαi , i ∈ I [10, 11]. Therefore, there exists
(
yi∗, zi∗

)
i∈I such that

for each i ∈ I,

Vi(y
i∗, y−i∗) ≥ Vi(yi, y−i∗), ∀ (yi, zi) ∈ S̃iαi .

For x∗ = ey
∗

we have for each i ∈ I,

ui(x
i∗, x−i∗) ≥ ui(xi, x−i∗), ∀ xi ∈ Siαi .

Hence, x∗ is a Nash equilibrium for a CCG for all α ∈ [ᾱ1, 1]× [ᾱ2, 1]× · · · ×
[ᾱn, 1]. ut

A natural question is whether we can extend Theorem 1 for the entire elliptical
family of distributions. The results on the existence of a Nash equilibrium are
mainly based on the fixed point arguments of a certain set-valued map, which

in our case depends on the convexity of function log
(
Ψ ik
)−1 (

α
zik
i

)
. We give

an example of an 1-dimensional spherical distribution for which it is not a
convex function. Due to this, the present approach cannot be used to prove
the existence of Nash equilibrium for the entire class of elliptical distributions.
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Example 1 Consider an 1-dimensional spherical distribution with probability
density function

f(y) =

{
3
2y

2, y ∈ [−1, 1],
0, otherwise.

The cumulative distribution function Ψ can be expressed as

Ψ(y) =

0, (−∞,−1),
1
2y

3 + 1
2 , y ∈ [−1, 1],

1, (1,+∞).

Let h(z) = log (Ψ)
−1

(αz). We have h(z) = 1
3 log (2αz − 1). For α > 1

2 , the
second derivative of h(z) is given by

h′′(z) =
2

3
(logα)2αz

(
−1

(2αz − 1)2

)
.

It is easy to see that h′′(z) < 0. This implies that log (Ψ)
−1

(αz) is not a convex
function.

4 Existence of Nash equilibrium under a finite mixture of elliptical
distributions

We assume that the probability distribution of row vector Aik, k = 1, 2, . . . ,Ki,
is a finite mixture of elliptical distributions listed in Table 1. The density
function f ik(u) of Aik is defined by

f ik(u) =

Mi
k∑

m=1

wik,mf
i
k,m(u), (9)

where f ik,m(u) is the density function of an elliptical distribution from Table 1

with location parameter µik,m, scale matrix Σi
k,m, and characteristic generator

ϕik,m. In addition, (wik,m)
Mi
k

m=1 is a weight vector such that wik,m ≥ 0 for all

m = 1, 2, . . . ,M i
k, and

∑Mi
k

m=1 w
i
k,m = 1. From the definition of the mixture

distribution, we have

P
{
Aikx

i ≤ bik
}

=

∫
Aikx

i≤bik
f ik(Aik)dAik =

Mi
k∑

m=1

wik,m

∫
Aikx

i≤bik
f ik,m(Aik)dAik,

(10)
In this case, the joint chance constraint (2) can be reformulated as

Mi
k∑

m=1

wik,mP∼Pm{Aikxi ≤ bik} ≥ α
zik
i , k = 1, 2, . . . ,Ki,

Ki∑
k=1

zik = 1, zik ≥ 0, k = 1, 2, . . . ,Ki,

(11)
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where P∼Pm{·} denotes the probability function of the mth probability dis-
tribution Pm. We introduce an auxiliary variables ηik,m, m = 1, 2, . . . ,M i

k,
k = 1, 2, . . . ,Ki, and reformulate the constraint (11) as follows

P∼Pm{Aikxi ≤ bik} ≥ ηik,m, m = 1, 2, . . . ,M i
k, k = 1, 2, . . . ,Ki,

Mi
k∑

m=1

wik,mη
i
k,m ≥ α

zik
i , k = 1, 2, . . . ,Ki

Ki∑
k=1

zik = 1, zik ≥ 0, k = 1, 2, . . . ,Ki,

(12)

which is equivalent to

(µik,m)Txi + (Ψ ik,m)−1(ηik,m)||
(
Σi
k,m

) 1
2 xi|| ≤ bik,
m = 1, 2, . . . ,M i

k, k = 1, 2, . . . ,Ki,

Mi
k∑

m=1

wik,mη
i
k,m ≥ α

zik
i , k = 1, 2, . . . ,Ki,

Ki∑
k=1

zik = 1, zik ≥ 0, k = 1, 2, . . . ,Ki,

(13)
where (Ψ ik,m)−1(·) is a quantile function of one dimensional spherical distribu-

tion. By taking rik,m = (Ψ ik,m)−1(ηik,m), we have the following reformulation of
joint chance constraint (2)

Qiαi =



(i) (µik,m)Txi + rik,m||
(
Σi
k,m

) 1
2 xi|| ≤ bik,

m = 1, 2, . . . ,M i
k, k = 1, 2, . . . ,Ki,

(ii)

Mi
k∑

m=1

wik,mΨ
i
k,m(rik,m) ≥ αz

i
k
i , k = 1, 2, . . . ,Ki,

(iii)

Ki∑
k=1

zik = 1,

(iv) zik ≥ 0, k = 1, 2, . . . ,Ki.

(14)

The reformulation (14) is not convex in the new variables

(xi, (rik,m)
Ki,M

i
k

k=1,m=1, (z
i
k)Kik=1). To apply the logarithmic transformation as

in the previous case, it is necessary to have rik,m > 0 for all k and m. Next,

we show that for each k and m, rik,m > 0, under certain conditions on weight
vectors and confidence level.

Lemma 4 For a given αi ∈ [0, 1] and for each m = 1, 2, . . . ,M i
k and k =

1, 2, . . . ,Ki if wik,m ≥
1

1− C
(1 − αi) such that

∑Mi
k

m=1 w
i
k,m = 1, where 1

2 <

C < 1, then rik,m ≥ (Ψ ik,m)−1(C) > 0.
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Proof For each k and m, it follows from constraint (ii) of (14) that

1− wik,m + wik,mΨ
i
k,m(rik,m) ≥ αz

i
k
i .

Therefore,

Ψ ik,m(rik,m) ≥ 1− 1− αz
i
k
i

wik,m
.

For 0 ≤ zik ≤ 1, we have α
zik
i ≥ αi. Then, under the condition on the weight

vector, we have rik,m ≥ (Ψ ik,m)−1(C) > 0. ut

For the elliptical distributions listed in Table 1, we derive the bounds on
confidence level and weights for which the condition of Lemma 4 is satisfied.
Let wik,m ∈ [w̄i, 1] for all k and m , where w̄i is defined as in the third column

of Table 2. Such a choice of wik,m does not need to form a weight vector for an

arbitrary choice of αi. The condition 0 ≤ wik,m ≤ 1 gives αi ≥ 1 − 1
βik,m

, and

the condition
∑Mi

k
m=1 w

i
k,m = 1 leads to αi ≥ 1− 1∑Mi

k
m=1 β

i
k,m

. The uniform lower

bound ᾱi on αi can be obtained by taking into account all the constraints
and it is given in the last column of Table 2. Therefore, for αi ∈ [ᾱi, 1] and
wik,m ∈ [w̄i, 1] for all k and m, it is easy to see that the condition of Lemma 4

is satisfied. Therefore, rik,m > 0 for all k and m.

Table 2: Bounds for confidence level and weights used in the mixture
distribution

Probability
distribution

βik,m w̄i ᾱi

normal
1

1−Ψi
k,m

(1)

max
k=1,2,...,Ki,

m=1,2,...,Mi
k

{
βik,m

(
1− αi

)}
max

k=1,2,...,Ki

1−
1∑Mi
k

m=1 β
i
k,m


t

1
1−Ψi

k,m
(1)

Cauchy
1

1−Ψi
k,m

(1)

Laplace
1

1−Ψi
k,m

(1)

Kotz type 1

1−Ψi
k,m

((
2N−1
2sr

) 1
2s

)
Pearson Type
VII

1

1−Ψi
k,m

(√
m

2N−1

)

Now, we reformulate (14) by using the change of variables under logarith-
mic transformation. We transform the vector xi ∈ Xi into a vector yi ∈ Rli ,
where yij = lnxij , j = 1, 2, . . . , li, and τ ik,m = ln rik,m, m = 1, 2, . . . ,M i

k, k =
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1, 2, . . . ,Ki. We have the following reformulation of (14)

Q̃iαi =



(i) (µik,m)T ey
i

+ ‖(Σi
k,m)

1
2 ey

i+τ ik,m·1li‖ ≤ bik,
m = 1, 2, . . . ,M i

k, k = 1, 2, . . . ,Ki,

(ii)

Mi
k∑

m=1

wik,mΨ
i
k,m(eτ

i
k,m) ≥ αz

i
k
i , k = 1, 2, . . . ,Ki,

(iii)

Ki∑
k=1

zik = 1,

(iv) zik ≥ 0, k = 1, 2, . . . ,Ki,

(15)

The reformulation of the feasible strategy set Si(αi) of player i, i ∈ I, is given
by

S̃iαi =
{

(yi, zi, τ i1, . . . , τ
i
Ki) ∈ Y i × RKi+ × RM

i
1 × · · · × RM

i
Ki

∣∣∣
(yi, zi, τ i1, . . . , τ

i
Ki) ∈ Q̃

i
αi

}
. (16)

It is easy to see that S̃iαi is a compact set. As similar to Assumption 2, we have
the following assumption on the location and scale parameters of the elliptical
distributions used in the mixture.

Assumption 4 For each i ∈ I, m = 1, 2, . . . ,M i
k, k = 1, 2, . . . ,Ki, all the

components of Σi
k,m and µik,m are nonnegative.

To prove S̃iαi a convex set for a given αi, it is enough to show that the con-
straints (i) and (ii) of (15) are convex.

Lemma 5 For each i ∈ I, suppose αi ∈ [ᾱi, 1] and wik,m ∈ [w̄i, 1] for all

k = 1, 2, . . . ,Ki and m = 1, 2, . . . ,M i
k, where ᾱi and w̄i are given as in Table

2. If Ψ ik,m(·) is one dimensional distribution function of spherical distributions

listed in Table 2, Ψ ik,m(eτ
i
k,m) is a concave function of τ ik,m.

Proof The proof is given in Appendix B. ut

Lemma 6 For each i ∈ I, let the convex set Xi be such that Y i is a convex
set. Suppose that the probability distributions used in the mixture are from
the list given in Table 2. Then, under Assumption 4, the strategy set S̃iαi ,
i ∈ I, defined by (16) is a convex set for all αi ∈ [ᾱi, 1] and wik,m ∈ [w̄i, 1],

m = 1, 2, . . . ,M i
k, k = 1, 2, . . . ,Ki; ᾱi and w̄i are given in Table 2.

Proof As a nonnegative linear combination of concave function is a concave

function, it follows from Lemma 5 that
∑Mi

k
m=1 w

i
k,mΨ

i
k,m(eτ

i
k,m) − α

zik
i is a

concave function of
(

(τ ik,m)
Mi
k

m=1, z
i
k

)
. Hence, for each k = 1, 2, . . . ,Ki, the

constraint (ii) of (15) is a convex constraint. Under Assumption 4, it follows
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from Lemma 1 that ||(Σi
k,m)

1
2 ey

i+τ ik,m·1li || is a convex function of (yi, τ ik,m) for

each k and each m. For each k and each m, (µik,m)T ey
i

is a convex function

of yi because µik,m ≥ 0. Therefore, for each k and each m the constraint (i) of

(15) is a convex constraint. It is easy to see that the other constraints of S̃iαi
are convex constraints. Therefore, S̃iαi is a convex set. ut

Finally, thanks to the convex reformulation of feasible strategy set for each
player, we show that there exists a Nash equilibrium.

Theorem 2 Consider an n-player CCG where

1. Assumptions 1 and 3 holds,
2. the row vectors of Ai, i ∈ I are independent,
3. for each k = 1, 2, . . .Ki, the row vector Aik, i ∈ I, follows a finite mixture of

multivariate elliptical distributions listed in the Table 2, where the location
vector µik,m and the scale matrix Σi

k,m of the mth elliptical distribution
satisfy Assumption 4.

4. for each i ∈ I, the weights wik,m ∈ [w̄i, 1], k = 1, 2, . . .Ki, m = 1, 2, . . . ,M i
k,

where w̄i is given in Table 2.

Then, there exists a Nash equilibrium of the CCG for all α ∈ [ᾱ1, 1]× [ᾱ2, 1]×
· · · × [ᾱn, 1]; ᾱi, i ∈ I, is given in Table 2.

Proof It follows from Lemma 6 that the reformulated strategy set S̃iαi , i ∈ I,
is convex for all α ∈ [ᾱi, 1]. Then, the proof follows from the similar arguments
used in Theorem 1. ut

5 Competition in financial market

We consider the case of two investment firms which compete on the same
market. Each firm invests in the same set of portfolios consisting of different
assets. Let J be the set of portfolios and Ak be the set of assets in the portfolio
k. We assume that the portfolios are disjoint, i.e., for any k, l ∈ J , Ak and Al
are disjoint sets. Each firm decides to invest its money in different portfolios
whose returns are defined by random vectors. Let xik = (xikj)j∈Ak be the

investment vector of firm i, i = 1, 2, for kth portfolio; xikj represents the

amount of money firm i, invested in the jth asset of kth portfolio. Let xi =
(xik)k∈J denotes an investment vector of firm i. The set of investments Xi of
firm i is defined as

Xi =

{
xi |

∑
j∈Ak

xikj ≤W i
k, x

i
kj ≥ εi, ∀ k ∈ J, j ∈ Ak

}
,

where εi > 0 is the minimum amount invested in any asset by firm i and
W i
k denotes the maximum amount that can be invested by firm i in portfolio

k. The vector x = (x1, x2) ∈ X1 × X2 represents an investment profile of
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both the firms. Let Rik = (Rikj)j∈Ak be a random return vector of firm i from

portfolio k. For a given investment vector xik, the total return received by firm
i from portfolio k is defined as (xik)TRik and (−xik)TRik represents random loss
incurred by firm i (negative return) from portfolio k. Let dik be the maximal
allowable loss level of firm i from portfolio k. Firm i wants to keep its random
losses below the maximal allowable level with at least αi probability, i.e.,

P
{

(−xik)TRik ≤ dik, k ∈ J
}
≥ αi, ∀ i = 1, 2.

Therefore, the set of feasible investments of firm i is given by

Siαi =
{
xi ∈ Xi | P

{
(−xik)TRik ≤ dik, k ∈ J

}
≥ αi

}
. (17)

We consider the case where each firm incurs transaction costs. The transaction
costs can be used to model a number of costs involved in a financial market,
e.g., brokerage fees, bid-ask spread and market impact [19, 21]. Usually the
transaction costs are higher for popular assets due to the participation of many
firms and it is directly proportional to the money invested in it. Therefore,
the transaction cost incurred by a firm also depends on the investment of
other firms. In this paper, we consider the quadratic transaction costs, i.e.,
for a given investment profile (x1k, x

2
k) for portfolio k, the firm 1 incurs cost

c1k(x1k)T (x1k +x2k) and firm 2 incurs cost c2k(x2k)T (x1k +x2k) to manage portfolio
k. Then, for a given investment profile x = (x1, x2), the payoff function of firm
i, i = 1, 2, is given by

ui(x
1, x2) =

∑
k∈J

(E[Rik])Txik −
∑
k∈J

cik(xik)T (x1k + x2k).

Under the logarithmic transformation, the payoff functions of firm 1 and firm
2, are given by

V1(y1, y2) =
∑
k∈J

(E[R1
k]− c1key

2
k)T ey

1
k −

∑
k∈J

c1k
∑
j∈Ak

e2y
1
kj ,

V2(y1, y2) =
∑
k∈J

(E[R2
k]− c2key

1
k)T ey

2
k −

∑
k∈J

c2k
∑
j∈Ak

e2y
2
kj ,

where ey
i
k = (ey

i
kj )j∈Ak , i = 1, 2.

For a fixed y2, the function V1(y1, y2) is a concave function of y1 if its Hes-
sian matrix is negative semidefinite. Therefore, V1(y1, y2) is a concave function
of y1 for a given y2 if

4c1ke
y1kj + c1ke

y2kj ≥ E[R1
kj ], j ∈ Ak, k ∈ J. (18)

Similarly, V2(y1, y2) is a concave function of y2 for a given y1 if

4c2ke
y2kj + c2ke

y1kj ≥ E[R2
kj ], j ∈ Ak, k ∈ J. (19)

The conditions (18) and (19) are satisfied for suitable choice of the minimum
invested amount εi of firm i. The mixture of elliptical distributions are often
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used in the literature to model the random return vectors in financial market
[3, 13, 17]. We assume that the random return vectors Rik, k ∈ J , are indepen-
dent and follow a mixture of elliptical distributions. Then, under logarithmic
transformation the convex reformulation S̃iαi of (17) is given by (16), where

Y i =

{
yi |

∑
j∈Ak

ey
i
kj ≤W i

k, y
i
kj ≥ ln(εi), ∀ k ∈ J, j ∈ Ak

}
.

If the conditions (18) and (19) are satisfied, it follows from Theorem 2 that
there exists a Nash equilibrium of the game.

5.1 Best response algorithm

In this section, we present a best response algorithm which is used to compute
the Nash equilibria of the above game problem. For a fixed (y2, z2, (τ2k )k∈J) ∈
S̃2
α2

, player 1 solves the following convex optimization problem

[P1] max
y1,z1,(τ1

k)k∈J
V1(y1, y2)

s.t. (y1, z1, (τ1k )k∈J) ∈ S̃1
α1
.

The set of optimal solution of [P1], which is also called the best response set
of player 1, is given by

BR1(y2) = {(ȳ1, z̄1, (τ̄1k )k∈J) | V1(ȳ1, y2) ≥ V1(y1, y2), ∀ (y1, z1, (τ1k )k∈J) ∈ S̃1
α1
}.

Similarly, for a fixed (y1, z1, (τ1k )k∈J) ∈ S̃1
α1

, player 2 solves the following
convex optimization problem

[P2] max
y2,z2,(τ2

k)k∈J
V2(y1, y2)

s.t. (y2, z2, (τ2k )k∈J) ∈ S̃2
α2
.

The best response set of player 2, is given by

BR2(y1) = {(ȳ2, z̄2, (τ̄2k )k∈J) | V2(y1, ȳ2) ≥ V2(y1, y2), ∀ (y2, z2, (τ2k )k∈J) ∈ S̃2
α2
}.

It is clear that, if (y1∗, z1∗, (τ1∗k )k∈J) ∈ BR1(y2∗) and (y2∗, z2∗, (τ2∗k )k∈J) ∈
BR2(y1∗), (x1∗, x2∗) = (ey

1∗
, ey

2∗
) is a Nash equilibrium of the game. For

computational purpose, we use the best response algorithm as outlined below:

Algorithm 1 (Best response algorithm) Step-1 Select initial feasi-

ble point (y2(0), z2(0), (τ
2(0)
k )k∈J)) ∈ S̃2

α2
for player 2. Set n := 0.

Step-2 Solve convex optimization problem [P1] and find a point

(y1(n), z1(n), (τ
1(n)
k )k∈J) ∈ BR1(y2(n)).
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Step-3 If (y2(n), z2(n), (τ
2(n)
k )k∈J) ∈ BR1(y1(n)), then set (x1∗, x2∗) =

(ey
1(n)

, ey
2(n)

) and stop. Otherwise, solve convex optimization problem [P2]

and find a point (y2(n), z2(n), (τ
2(n)
k )k∈J) ∈ BR1(y1(n)), set n = n+ 1 and

go to step 2.

If the Algorithm 1 stops, (x1∗, x2∗) is a Nash equilibrium of the game. The
proof that Algorithm 1 never cycles is still an open problem.

5.2 Case Study

Example 2 We consider two investment firms with two portfolios where each
portfolio consists of three assets, i.e., J = {1, 2} and Ak = {1, 2, 3}, k ∈ J .
We take the confidence level values of firm 1 and firm 2 as 0.95, i.e., α1 =
α2 = 0.95. The probability distribution of the return vector Rik is assumed
to be an equiprobable mixture of two normal distributions N (µik,1, Σ

i
k,1) and

N (µik,2, Σ
i
k,2), where µik,m is generated uniformly on [0.1, 0.3]3, and Σi

k,m is
generated randomly with each element drawn from [0, 0.1] uniformly. The ran-
domly generated mean vectors and covariance matrices are summarized as
follows:

µ1
1,1 =

 0.1131
0.1995
0.2909

 , µ1
1,2 =

 0.2991
0.1587
0.1081

 , µ1
2,1 =

 0.1092
0.2006
0.2921

 , µ1
2,2 =

 0.2967
0.2022
0.1045

 .

µ2
1,1 =

 0.1103
0.2022
0.2931

 , µ2
1,2 =

 0.2896
0.2011
0.1052

 , µ2
2,1 =

 0.1048
0.1988
0.2957

 , µ2
2,2 =

 0.2997
0.2053
0.1052

 .

Σ1
1,1 =

 0.1 0.0927 0.0202
0.0927 0.1 0.0187
0.0202 0.0187 0.1

 , Σ1
1,2 =

 0.1 0.0379 0.0520
0.0379 0.1 0.0473
0.052 0.0473 0.1

 ,

Σ1
2,1 =

 0.1 0.0589 0.0382
0.0589 0.1 0.0554
0.0382 0.0554 0.1

 , Σ1
2,2 =

 0.1 0.0072 0.0250
0.0072 0.1 0.0476
0.025 0.0476 0.1

 .

Σ2
1,1 =

 0.1 0.0612 0.0049
0.0612 0.1 0.0732
0.0049 0.0732 0.1

 , Σ2
1,2 =

 0.1 0.031 0.0421
0.031 0.1 0.0404
0.0421 0.0404 0.1

 ,

Σ2
2,1 =

 0.1 0.0469 0.0245
0.0469 0.1 0.0167
0.0245 0.0167 0.1

 , Σ2
2,2 =

 0.1 0.023 0.0522
0.023 0.1 0.0384
0.0522 0.0384 0.1

 .

The values of other parameters are given by ε1 = 0.3, ε2 = 0.25, d1k =
0.75, d2k = 0.6,W 1

k = W 2
k = 1, k ∈ J and c1k = c2k = 0.2, k ∈ J .
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We compute the Nash equilibrium of the game using the Algorithm 1. We run
the numerical experiments on an Intel Core i7-8550U CPU 1.80 GHz 2.00 GHz
with 16.0 GB RAM machine. To solve the best response convex optimization
problem of both firms, we use CVX package in MATLAB. For the above data
the algorithm converges to a Nash equilibrium point (x1∗, x2∗) given by

x1∗ = ((0.3478, 0.3, 0.3249), (0.3431, 0.3319, 0.3250)),

x2∗ = ((0.3385, 0.3067, 0.3390), (0.3333, 0.3314, 0.3353)).

Figure 1 shows that the best response algorithm converges to a Nash equi-
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Fig. 1: Convergence of Nash equilibrium payoff

librium payoffs of both the firms after few iterations. The total CPU time to
compute Nash equilibrium is 23.12 seconds.

We also perform numerical experiments for a relatively large size model
with 10 sets of portfolios and 20 assets in each portfolio. The distribution of
Rik is considered as an equiprobable mixture of two normal distributions whose
mean vectors and covariance matrices are generated similar to the Example
2. The parameters ε1 and ε2 are generated uniformly on the interval [0.2, 0.3],
and W 1

k = W 2
k = 10, c1k = c2k = 0.2 for all k ∈ J , and d1k, d

2
k, k ∈ J, are drawn

randomly from the interval [5, 8], and α1 = α2 = 0.95. We consider 20 different
instances of this model, and for each instance, the Algorithm 1 converges
to a Nash equilibrium. The average time to compute a Nash equilibrium is
805.31 seconds. The Figure 2 represents the variation in the time for different
instances.

.
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Fig. 2: Time vs Instances

6 Conclusion

We consider an n-player non-cooperative game under joint chance constraints.
The random constraint vectors are independent. We identify a list of prominent
probability distributions from the class of elliptical distributions. We consider
the case when the probability distribution of each random constraint vector is
among the identified elliptical distributions as well as the case when it is a fi-
nite mixture of the identified elliptical distributions. We derive the bounds for
the players’ confidence levels and the weights used in the mixture distribution
and propose a new convex reformulation of the joint chance constraint when
the players’ confidence levels and the weights used in the mixture distribu-
tions are within the bounds. Under mild conditions, we show that there exists
a Nash equilibrium of the CCG. As an application of these games, we study a
competition between two investment firms from the same market. The numer-
ical experiments are performed on randomly generated instances of different
sizes by using a best response algorithm.
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Appendix A Proof of Lemma 2

Proof Let h1 : [0, 1] → [ᾱk,i, 1] such that h1(zik) = α
zik
i , and h2 : [ᾱk,i, 1] → R such that

h2(p) = log
(
Ψ ik
)−1

(p) be two functions. Then, the function composition (h2 ◦ h1)(zik) =
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log
(
Ψ ik
)−1

(
α
zik
i

)
. It is easy to see that h1(zik) is a convex function of zik and h2(p) is a

nondecreasing function. Then, from Lemma 3.11 of [24], it suffices to show that h2(p) is a

convex function of p in order to show log
(
Ψ ik
)−1

(
α
zik
i

)
is a convex function. The second

order derivative of h2(p) is given by

−
ug′ik (u) + gik(u)

c2u2(gik(u))3
,

where u =
(
Ψ ik
)−1

(p), gik(u) is the radial density function corresponding to distribution

function Ψ ik(u), g′ik (u) is the derivative of gik(u). Therefore, the function h2(p) is convex if

(
Ψ ik
)−1

(p)g′ik

((
Ψ ik
)−1

(p)
)

+ gik

((
Ψ ik
)−1

(p)
)
≤ 0. (20)

The verification of (20) for each distribution listed in Table 1 is as follows:

Normal Distribution: Using the radial density function of normal distribution given in
Table 1, the condition (20) can be written as

e−
u2

2 (1− u)(1 + u) ≤ 0, (21)

where u =
(
Ψ ik
)−1

(p). From Table 1, the value of ᾱk,i associated with normal distribution

is Ψ ik(1) Since, the function g2(p) is defined on [ᾱk,i, 1], p ≥ ᾱk,i = Ψ ik(1). Hence, the
condition (21) is satisfied.

t distribution: Using the radial density function of t distribution given in Table 1, the
condition (20) can be written as

(
1 +

u2

ν

)− 1+ν
2
−1

(1 + u)(1− u) ≤ 0, (22)

where u =
(
Ψ ik
)−1

(p). From Table 1, the value of ᾱk,i associated with t distribution is

Ψ ik(1). From the similar arguments used in case of normal distribution, we have p ≥ Ψ ik(1).
Hence, the condition (22) is satisfied.

Cauchy distribution: The Cauchy distribution is a special case of t distribution when
ν = 1. Therefore, the condition (20) holds in this case using the similar arguments used in
case of t distribution.

Laplace distribution: Using the radial density function of Laplace distribution given in
Table 1, the condition (20) can be written as

e−u(1− u) ≤ 0, (23)

where u =
(
Ψ ik
)−1

(p). From Table 1, the value of ᾱk,i associated with Laplace distribution

is Ψ ik(1) which gives p ≥ Ψ ik(1). Hence, the condition (23) is satisfied.

Kotz type distribution: Using the radial density function of Kotz type distribution given
in Table 1, the condition (20) can be written as

u2(N−1)e−ru
2s

(2N − 1− 2rsu2s) ≤ 0, (24)

where u =
(
Ψ ik
)−1

(p). From Table 1, the value of ᾱk,i associated with Kotz type

distribution is Ψ ik

((
2N−1
2sr

) 1
2s

)
which gives p ≥ Ψ ik

((
2N−1
2sr

) 1
2s

)
. Hence, the condition
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(24) is satisfied.

Pearson type VII distribution: Using the radial density function of Pearson Type VII
distribution given in Table 1, the condition (20) can be written as(

1 +
u2

m

)−N−1 (
1−

2N − 1

m
u2
)
≤ 0, (25)

where u =
(
Ψ ik
)−1

(p). From Table 1, the value of ᾱk,i associated with Pearson type VII

distribution is Ψ ik

(√
m

2N−1

)
which gives p ≥ Ψ ik

(√
m

2N−1

)
. Hence, the condition (25) is

satisfied.
ut

Appendix B Proof of Lemma 5

Proof The second order derivative of Ψ ik,m(eτ
i
k,m ) is

Ψ
′′i
k,m(eτ

i
k,m )(e2τ

i
k,m ) + Ψ

′i
k,m(eτ

i
k,m )(eτ

i
k,m ),

where Ψ
′i
k,m(·) and Ψ

′′i
k,m(·) are the first and second order derivative functions of Ψ ik,m(·),

respectively. Let gik,m(·) be a radial density associated with the distribution function Ψ ik,m(·).

Then, the concavity of Ψ ik,m(eτ
i
k,m ) is equivalent to

g
′i
k,m(eτ

i
k,m )(eτ

i
k,m ) + gik,m(eτ

i
k,m ) ≤ 0. (26)

The verification of (26) for each distribution listed in Table 2 is as follows:

Normal distribution: The radial density function of normal distribution is gik,m(u) =

e−
u2

2 and its first derivative is g
′i
k,m(u) = −ue−

u2

2 . The condition (26) can be written as

e−
u2

2 (1− u)(1 + u) ≤ 0, (27)

where u = eτ
i
k,m . From Table 2, the weight wik,m associated with normal distribution is

such that wik,m ≥
1

1−Ψi
k,m

(1)
(1−αi). Then, from Lemma 4, rik,m ≥ 1 which in turn implies

that eτ
i
k,m ≥ 1. Hence, the condition (27) is satisfied.

t distribution: Using the radial density function of t distribution given in Table 1, the
condition (26) can be written as(

1 +
u2

ν

)− 1+ν
2
−1

(1 + u)(1− u) ≤ 0, (28)

where u = eτ
i
k,m . As similar to the case of normal distribution, the weight wik,m associated

with t distribution is such that wik,m ≥
1

1−Ψi
k,m

(1)
(1−αi). From the similar arguments used

in the case of normal distribution, the condition (28) is satisfied.
Cauchy distribution: The Cauchy distribution is a special case of t distribution when
ν = 1. Therefore, the condition (26) holds in this case using the similar arguments used in
the case of t distribution.
Laplace distribution: Using the radial density function of Laplace distribution given in
Table 1, the condition (26) can be written as

e−u(1− u) ≤ 0, (29)
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where u = eτ
i
k,m . From Table 2, the weight wik,m associated with Laplace distribution is

such that wik,m ≥
1

1−Ψi
k,m

(1)
(1−αi). Then, from Lemma 4, rik,m ≥ 1 which in turn implies

that eτ
i
k,m ≥ 1. Hence, the condition (29) is satisfied.

Kotz type distribution: Using the radial density function of Kotz type distribution given
in Table 1, the condition (26) can be written as

u2(N−1)e−ru
2s

(2N − 1− 2rsu2s) ≤ 0, (30)

where u = eτ
i
k,m . From Table 2, the weight wik,m associated with Kotz type distribution is

such that wik,m ≥
1

1−Ψi
k,m

(
2N−1
2sr

) 1
2s

(1 − αi). Then, from Lemma 4, rik,m ≥
(

2N−1
2sr

) 1
2s

which in turn implies that eτ
i
k,m ≥

(
2N−1
2sr

) 1
2s

. Hence, the condition (30) is satisfied.

Pearson Type VII distribution: Using the radial density function of Pearson Type VII
distribution given in Table 1, the condition (26) can be written as(

1 +
u2

m

)−N−1 (
1−

2N − 1

m
u2
)
≤ 0, (31)

where u = eτ
i
k,m . From Table 2, the weight wik,m associated with Pearson Type VII is such

that wik,m ≥
1

1−Ψi
k,m

(√
m

2N−1

) (1 − αi). Then, from Lemma 4, rik,m ≥
√

m
2N−1

which in

turn implies that eτ
i
k,m ≥

√
m

2N−1
. Hence, the condition (31) is satisfied. ut
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