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Abstract

This paper presents a review of past and present results and approaches in the area of motion planning using MIP (Mixed-
integer Programming). Although in the early 2000s MIP was still seen with reluctance as method for solving motion
planning-related problems, nowadays, due to increases in computational power and theoretical advances, its extensive
modeling capabilities and versatility are coming to the fore and enjoy increased application and appreciation. This
class of control problems involves, essentially, either a selection from a limited number of alternatives or a constrained
optimization problem over a non-convex domain. In both situations, MIP has proven to be an efficient modeling
technique as it will be shown in the present review paper. Furthermore, an emphasis is laid on the existing alternatives
for implementation and on various experimental validations documented in the literature.

Keywords: MIP (Mixed-integer Programming), Motion planning, MPC (Model Predictive Control), Path following,

Trajectory tracking, Task assignment, Collision avoidance

1. Introduction

This section introduces some general real-world prob-
lems/situations actually reducing to optimization prob-
lems which contain both integer and real variables and can
be assimilated to open-loop or closed-loop control prob-
lems. Also, for a more general perspective it presents the
class of problems which are tackled through MIP formula-
tions.

1.1. Motivation and background

During more than 60 years of existence, the field of
integer programming was extensively studied in the math-
ematics community due to its promising modeling capa-
bility and flexibility. In recent years (mainly the last two
decades), mostly owing to the growing computational ca-
pabilities, the integer programming was brought to the
attention of the control and robotic communities. There
exists a broad variety of decision making problems that
can be dealt through a MIP framework/approach.

MIP (Mixed-integer Programming) is a mathe-
matical optimization problem in which some or all the
variables are integers.
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As its name indicates, MIP (Mixed-integer Program-
ming) represents a mathematical optimization problem in
which the objective is a linear, quadratic function or some-
times a more general criterion to be minimized or maxi-
mized, the constraints are linear (or non-linear) equalities
(or inequalities) and there exist some (non-empty) subsets
of integer and real variables playing the role of arguments
(Jiinger et al., 2009; Williams, 2013).

MIP is used to model several design problems and de-
cision processes.

In a larger perspective, MIP is used to model several
design problems and decision processes. Consider a typical
logistics problem: an airport, which serves on average 50
flights per hour. The airport has only four runways. The
task assignment problem that appears is to assign flights
to runways, such that the runways are efficiently and uni-
formly used, while respecting some regulations (e.g., time
separation between two consecutive landings/takeoffs or a
minimum distance between two runways for simultaneous
takeoffs). Another classical situation is described by the
well-known traveling salesman problem and its variations,
where the salesman wants to visit a number of customers
in a minimal time or to cover a minimal distance. This has
applications in several domains (e.g, overhauling gas tur-
bine engines or X-ray crystallography Matai et al. (2010)).
The above problems can be solved either intuitively, based
on experience or by a trial and error method, but for criti-
cal situations an accurate mathematical formulation is nec-
essary in view of certification. There are of course many
other use cases which may employ MIP. For example, the
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optimal power flow in the energy transmission networks
Bahiense et al. (2001) or the transportation problems in
a cluttered environment. Consider a boat moving within
a fjord region. In order to safely arrive to its destination,
the boat should follow a given path and avoid collision
with the fjords. Thus, the feasible region is non-convex
and should be efficiently described.

In the following, a brief classification of the types of
problems, which can be modeled through MIP, is pro-
vided. A first class of problems is designated by those that
involve integer quantities (i.e. discrete/quantified inputs
or outputs), e.g. the knapsack problem (Williams, 2013).
For this type of problem, MIP does not seem the obvious,
natural, first choice, but, usually, it represents a better
solution than a classical approach (e.g., use of the clas-
sical linear programming and approximate the provided
solution to the nearest integer value).

Another MIP-modelisable class of problems is the one
involving logical conditions, extensively treated in: Bem-
porad & Morari (1999); Smith & Taskin (2008); Williams
(2013). For example, in Bemporad & Morari (1999), using
the notations from Williams (2013), boolean algebra tools
are aggregated, which allows to transform logical condi-
tions on continuous variables into mized-integer inequal-
ities (linear inequalities involving continuous and binary
variables).

As well, MIP is a popular modeling tool for sequenc-
ing and/or allocation problems (also, named combinatorial
problems) (Smith & Taskin, 2008), including here the typ-
ical task assignment problem and its variations (e.g travel-
ling salesman problem Dantzig et al. (1954)). This class of
problems can be easily extended to networks (and graph
theory) problems: resource allocation on a PERT (Project
Evaluation and Review Techniques) network (Williams,
2013).

Lastly, but most importantly for this paper’s purpose,
MIP turned out to be a captivating method to model
non-linearity (Bemporad & Morari, 1999; Vielma, 2015)
and/or non-convexity (Prodan et al., 2015; Richards &
How, 2005). A plethora of control engineering problem are
naturally and intrinsically characterized by non-linearity
and/or non-convexity. For this reason and due to the
increasing interest in optimization-based control (Mayne
et al., 2000), MIP has became an essential technique, which
allows to include logical decisions and non-convex con-
straints in the optimization problem. Therefore, MIP’s
presence in control can be perceived in: piecewise-affine
system identification (Bemporad et al., 2001; Roll et al.,
2004), assignment problems (Alighanbari et al., 2003), per-
sisting exciting control (Marafioti et al., 2012), control of
hybrid systems (Bemporad & Morari, 1999), fault detec-
tion (Stoican et al., 2012) or motion planning (Prodan
et al., 2015; Richards & How, 2002). As the title suggests,
in the present review, the main objective is to identify and
summarize the state of the art of MIP-based motion plan-
ning. Hence, in what follows, we place less emphasis on the
other control areas employing MIP, even if throughout the

paper we occasionally refer the interested readers to the
references covering the other MIP-based control topics.

1.2. Contributions

This paper offers a detailed literature review of break-
through research results and open issues in the field of
multi-agent motion planning in a mixed-integer framework.
This work can be employed to the benefit of both control
and optimization research communities allowing to swiftly
identify previous, timely and relevant research topics in
the field and, at the same time, decreasing the time for lit-
erature review, although we acknowledge that the present
review effort is not exhaustive but merely covers the ex-
perience of the authors in the last 10 years in these topics.

To the best of the authors’ knowledge, there are no
other exhaustive surveys in this topic although valuable
attempts with different objectives are to be found in the lit-
erature. For instance, the tutorial session Richards & How
(2005) offers a brief overview on how MIP can be employed
for (feedback) control. As well, the paper of Smith &
Taskin (2008) represents a concise introduction to the MIP
modeling, providing the basic concepts regarding MIP for-
mulations (the principles and some handful recipes) and,
at the same time, discussing the techniques widely-used in
the resolution of MIP problems. Moreover, the work “50
Years of integer programming 1958-2008: From the early
years to the state-of-the-art” (Jiinger et al., 2009) presents
a historical perspective of the field of integer programming
and discusses the theoretical, algorithmic and computa-
tional aspects of MIP throughout more than five decades
of existence. Additionally, but with significant influence,
there exist surveys, as, e.g., Vielma (2015), reviewing the
advanced MIP formulations techniques, aiming to provide
the guidelines for obtaining stronger and/or smaller for-
mulations for a certain class of decision making problems.
These works either limit themselves looking to the pro-
gramming side, either to decision making in general or to
a narrow control design topic. We henceforth decide to
focus our review on control problems based on MIP and
in particular those emerging from the active research field
of motion planning which has a plethora of applications
in automotive, robotics or multi-agent systems to mention
just a few.

1.8. Outline

The remainder of the paper is organized as follows. We
begin in Section 2 with a brief delineation of the evolution
of MIP mathematical descriptions, providing the neces-
sary prerequisites used in these formulations. Section 3
presents and details the standard MIP-based problems in
motion planning, introducing the generic control strat-
egy employed in such problems . Next, Section 4 makes
the transition to multi-agent systems and to the forma-
tion control problems involving MIP. Section 5 gives a
concise overview of the control architectures exploited in
MIP-based navigation problems. Further, we proceed in



Section 6 with a brief presentation of both software and
hardware implementations of MIP solutions in the liter-
ature. Section 7 succinctly presents the motion planning
alternatives to MIP. We close our review with the con-
clusions and with some challenges in MIP-based motion
planning and some suggestions for future research.

Notation

Throughout this paper we use the following standard
notations. The logical operators: A (AND), V (OR) and
- (negation). The Minkowski sum of two sets: A @ B =
{z:x=a+b, a€ Abe B} ForzeR?wedenote |z[3
" Qx. Given a compact set S C R", Cx(S) denotes the
complement of S over X, while ¢l(S) is the closure of the
subset S. For any polyhedron P C R¢, V(P) is the (finite)
set of its vertices. Any polytope (i.e. a bounded polyhe-
dron) has a dual representation in terms of intersection
of half-spaces or convex hull of extreme points: P = {z :
sjx<r,Vi} ={z:z=>au,> a; =1a; >0,Vj}.
For a discrete set Z, #Z7 represents its cardinality.

2. MIP formulations

There are various MIP formulations which go back to
the early '80 (or even earlier), each emphasizing the mod-
eling capabilities of MIP. All these formulations share a
common characteristic: the encoding of discrete decisions
using binary and/or integer variables. These decisions ap-
pear in different problems, each using a certain formula-
tion. This section provides a brief description of the most
used MIP techniques and, concurrently, introduces some
basic theoretical notions and tools.

Although generalized disjunctive programming (GDP)
is not explicitly used in motion planning, we succinctly
present it for the sake of the generality of modeling dis-
junctions through MIP.

2.1. Generalized Disjunctive Programming

Generalized Disjunctive Programming (GDP) has ap-
peared for the first time in Raman & Grossmann (1994) in
the research effort to use both quantitative and qualitative
information in order to optimally solve chemical engineer-
ing problems. To this end, the qualitative information
is represented using disjunctions and logic propositions.
Compared to MIP, the GDP approach has a relatively
more compact formulation, because the logical conditions
are not transformed using boolean algebra and inequal-
ities but rather in their natural (logic) form. In other
words, GDP represents a combination of algebraic and
logical equation as shown by the typical GDP from (1):

min f(x) + Z Ck (1a)

k
st. r(z) <0,z eR", ¢ €R, (1b)
Y;
\/ gik(x) <0|, kekK, (1c)
J€Jk | Ck = Vjk
Q) =true, Yji € {true, false}, (1d)

where r (z) is a generic constraint, which does not depend
on logical decisions; cj cost variables, ;) fixed charges
and k£ € K is the number of disjunctions. The logical
function Q(Y") corresponds to logical decisions in terms of
boolean algebra and it is expressed in conjuctive normal
form ( CNF- “product of sums”). The idea of GDP can be
summarized as follows: If Y}, = true, then the constraints
gik(x) <0 and ¢, = vy, are imposed. Otherwise, they are
ignored.

It is worth mentioning that the disjunction \/ e, Tep-
resents, in fact, an exclusive relationship, in a disjunction
k only a boolean variable Yj; can be true. Some formula-
tions state this requirement explicitly (as a separate con-
straint), others include it implicitly in the boolean function
QY).

The problem (1) can be written as MIP, employing the
binary variables y;; € {0,1} instead of the boolean ones
Y, and replacing the constraint (1c) with:

gk () < M (1 — y) (2a)
Y yp=1 kekK (2b)
J€Jk

where M}, are “big-M” parameters, sufficiently large con-
stants.

Remark 1. The “big-M” formulation' (Williams (2013))
consists in choosing a very large positive number M which
plays the role of a relazation constant (Richards & How
(2005); Vielma € Nemhauser (2011)). In this formula-
tion, the binary variables play the role of a “switch”, acti-
vating/deactivating the corresponding constraints. This is
a powerful technique able to encode logical conditions but
one should proceed with caution in selection of the value of
M. A too large value may hinder the resolution of the MIP.
For a detailed analysis regarding the “big-M” technique, we
refer the interested reader to, e.g. Hooker (2011); Vielma
& Nemhauser (2011). ¢

Remark 2. It is worth discussing the value of the coef-
ficient M. For illustration, we consider a common case
of modeling the logical implication: “x > 0 — a =17
for a variable x which evolves implicitly within a bounded

Tt is also referred to as “big-D” or “big-R”.



domain® of variation X = {z | |x| < z}. The “big-M”
formulation simply reverts the logical implication in terms
of an inequality x — Ma < 0. Intuitively, as long as M
is chosen to satisfy M > T, the implication follows natu-
rally. Nomnetheless, by considering a too large value of the
coefficient M we increase the size of the searching domain.
Thus, the idea is to take M as small as possible (but still
large enough to fulfill its relazation role). In our simple
ezample a proper choice is: M = ;ng x, e, M=Z. @

Moreover, the cost is reformulated by rewriting each
cost variable ¢y, as the product 7;xy;r. As well, the condi-
tion (1d) is written in an algebraic form Ay < a.

The apparent advantage of the GDP over MIP is di-
minished because all the existing GDP-dedicated solvers
are based on a MIP reformulation. It is enough in gen-
eral to assume that a direct MIP modeling of the problem
at hand could lead to a better and more compact model.
In spite of eluding GDP in such a way, there is another
possibility to benefit from GDP. The problem can be mod-
eled as a GDP and the resulting MIP reformulation can
be parsed using one of the several tools, as detailed in
(Williams, 2013).

2.2. MIP - a geometric viewpoint

Complex control synthesis or design leads to a con-
strained optimization problems and whenever a non-convex
feasible domain needs to be handled, the ability of MIP to
mathematically formalize disjunction constraints can be
exploited. An active research topic was the MIP efficient
description of these non-convex regions. Preliminary re-
sults make use of hyperplane arrangements to characterize
these regions. Hereinafter, we briefly recall these results
which involve besides hyperplane arrangements some set-
theoretic notions. It is beyond the scope of this review to
provide an exhaustive presentation of these techniques and
refer the interested readers to complementary materials
referenced in this manuscript(e.g., Vielma (2015); Vielma
& Nembhauser (2011) or Prodan et al. (2015)).

Most sets involved in MIP formulations are polyhedral
ones due to their ability to provide a geometrical repre-
sentation of the linear constraints. In what follows, we
use the notion of polytope which is a bounded polyhedral
set and has a dual representation in terms of intersection
of half-spaces or convex hull of extreme points: P = {z :
siz<rVil={z:z=> v, > a;=1,0; > 0}.

Consider a finite collection of hyperplanes from R¢

Hi={zeR': ha=k}, iel (3)

where Z £ {1... N}, and (hi, k;) € R"*? x R.

2Due to the physical limitations.

Each of these hyperplanes divides the space in two dis-
joint® regions:

Rf={zeR': hz< k}, (4a)
Ry ={zeR?: —hjz < —k;}. (4Db)

A polytope P is a bounded intersection of these half-
spaces?:

P = ﬂ R, (5)
i€T
Its complement (up to its relative interior, see also foot-
note 1) C(P) £ cl(R%\ P) over R? represents the union of
all regions covering the entire space except P. Recalling
the fact that the union and intersection operators inter-
change under complement operation, we write:

c(P)=cC (ﬂ R,.> =Je®R)=URH (©)
i€T i€T i€T

The region (6) is a union of convex sets® and for a

tractable characterization we may employ mixed-integer

techniques. Hence, the binary variables (o ...ay) € {0,1}

are introduced to obtain the representation of the poly-

topic set in the extended space of state and auxiliary bi-
nary variables:

h;x < k¢+MCki,i€I,

Y i <N-1,

ieT
where M is a big-M coefficient as in Remark 1.

The requirement that a point is outside of the polytopic
set P is converted to the condition that the point has to
be within the complement of at least one of the half-spaces
defining the polytope.

Remark 3. The conditions (7a)—(7b) describe the region
(6) via a proper combination of binary variables. For in-
stance, the region ’Rj is expressed by (7a) with the following
binary variables:

(al...aN)f(l...l\()r/l...,l). (8)
(2

When a binary variable takes the value “1” the associ-
ated inequality describes, for the limit case (M — oo) the
entire domain R™. Hence, the condition (7b) is necessary
in order to ensure that at least one of the binary vari-
ables is “0” and, thus, that at least an inequality remains
active. ¢

3The relative interiors of these regions are disjoint, but their clo-
sures have as a common boundary the hyperplane H;

4The sign “-” was chosen for the simplicity of notation, any other
feasible combination of signs from (4a)-(4b) could be chosen in order
to describe the polytope P.

5In general (6) is non-convex with notable exceptions: the com-
plement of an empty set, the complement of the unconstrained space
or the complement of a half-space (possibly in a non-minimal repre-
sentation).



The above reasoning is not restricted to the comple-
ment of one convex polytopic region and can be general-
ized for the case in which the interdicted region is a union
of polytopes as in (Stoican et al., 2013). Explicitly, the
non-convex region is characterized by:

—hyx < —k;;, + Moy, Vi, € 14, (9&)
> i <HL -1 (9b)
€L

with Z in (3) redefined as a union of discrete intervals®:
I=U7.
1

Remark 4. As stated in Remark 1, choosing the value of
the “big-M” constant may lead to increasing complexity in
terms of the computational effort. It is straightforward
that the constraint (9a) cannot describe the entire R™ for
a o; = 1, but rather a domain including the region of
interest, X. Assuming, for instance, that the union of
interdicted regions lies in a bounded cluttered environment
X, the value of M 1is obtained via the following LP:

M; = max (ki — h;z) .

TEX

M = max M;,

Moreover, we may consider a different value of M for each
half-space, that is, M;.

20

10 - hiz =k

T2
o
T

hix =k +M

—10 +

hiz = ki + My

—20 | | | | | | | |

Figure 1: Illustration ”big-M”, M computed as in Remark 4.
While the constraint is active (i.e., a1 = 0 in (9a)), the resulting
inequality: —h;xz < —k; describes the red region. Once a1 = 1
(inactive/relaxed constraint), the selection of M gives the measure
of relaxation. Thus, the idea is to relax sufficiently such that the
remainder of the constraints is not affected.

The formalism can be further extended and the space
is partitioned into cells using the hyperplane arrangement
notion (Ziegler (2012)).

6Sets of indices.

Figure 2: Polytopic obstacles and hyperplane arrangements.

Definition 1 (Hyperplane arrangements). The collec-
tion H partitions the space into a union of disjoint cells
A(0), characterized by a sign tuple o € {—, +}V:

A(o) = R7Y. (10)
€T

The hyperplane arrangement of cells covering the entire
space is described by the collection of all feasible sign tuples:

U A, (11)

I=1...y(N)

A(H) =

where H = {H;}iez, o1 € {—, +}V is the sign tuple result-
ing from a non-empty intersection of half-spaces and y(N)
is the number of feasible cells. ¢

Consider a collection of obstacles:

P=JP
j=1

Briefly, gathering the collection of associated support hy-
perplanes defined as (3) we reach the hyperplane arrange-
ment (11). Labeling the feasible cells (10) into interdicted
Yp = {0 : A(o)NP # 0} or allowed Ex\p = {0 : A(0)NP =
(¢} one can obtain a mixed-integer characterization of the
feasible domain:

hix < ki+ M(1 - «y), (12a)

Yoo -+ D >0, (12¢)
o1 )=+ o1(i)=—

Yo, € ¥p (12d)

Even though the construction presented above is a generic
one, the binary part of the representation is substantially
large as we have a binary variable for each region (4b).
There exists a variety of technical procedures like cell merg-
ing (Prodan et al., 2015) or logarithmic formulations (Vielma
& Nembhauser, 2011) which may be employed to reduce the
complexity of the formulation, a large number of obstacles
and/or agents may still lead to an impractically large num-
ber of binary variables.

The representation of the interdicted domains is not
limited to the polyhedral sets. For instance in Earl &



D’Andrea (2005a), circular obstacles are considered as the
one depicted in Fig. 3, each being determined by its radius
R, and by the coordinates of its center (z,,y,):

O={(z,y): (x—wo)* + (y—10)* < RZ}  (13)

However, to incorporate the corresponding avoidance
constraints, the obstacles as in (13) are approximated with
polygons (polyhedra in R?, having p vertices). Hence, each
interdicted zone is described by a set of K, inequalities:

N 2 2
6= (e (a ) in 22 4 (0 yyeos 2"

<R, Vm=1,...,K,} (14)

Using the same reasoning as in (7) and the big-M tech-
nique, the avoidance constraints are formulated as:

2mm

+ (y - yo) COos ZRO - Mﬂmvvm
p p

(15a)

KIJ
> Bm < Kp—1.

m=1

(15b)

1
0.8

0.6 -
0.4
0.2

= 0f
—0.2
04|
—0.6

—0.8 |

| | | |
02 04 06 08 1

~1 I | | | |
-1 -08 -0.6 —04 =02 0
x

Figure 3: A circular obstacle and its polytopic approximation.

Remark 5. Besides the polytopic representation of the
obstacles, some others representations are considered in
the literature. For instance, Ioan et al. (2019) considers
additional structural constraints by the use of zonotopic
sets (a particular class of polytopes with increased symme-
try). The use of a such representation leads to a trade off
between the complexity and the fidelity of the representa-
tion. ¢

It is worth to mention that restrictions within the state
space can be directly treated in the dynamical system

modeling. In particular is the case of the hybrid sys-
tems where switching (a disjunctive type of selection in
between modes of functioning) include binary variables or
discrete alternatives. The Piece-Wise Affine (PWA) mod-
els represent for example an integrated approach, where
non-convex domains and local dynamics find a unitary rep-
resentation. This unitary modeling needs to be differenti-
ated from the classical motion planning framework where
the dynamics are defined globally and the control decisions
need to satisfy the non-convex feasible domain or disjunc-
tive constraints. Because our review is focused rather on
classical motion planning techniques, we mention some rel-
evant papers, e.g. Bemporad & Morari (1999); Vielma &
Nemhauser (2011), which provide an extensive presenta-
tion of the PWA modeling tools.

2.3. GDP formulation for region description

In order to highlight the relationship between GDP
and MIP, consider the following illustrative example. We
consider four supporting hyperplanes describing the inter-
dicted region and use a GDP formulation.

Hence, corresponding to each hyperplane i € {1,2,3,4}
we have the next disjunction:

[gi(;/; < 0} v L}i(sg > 0]

Yi1 VY < Yo =Y

where g;(z) = x1 = 2 £ 6 and we associate: Y;; = true
with R; (the below half-space) and Yj» = true with R;
(the above half-space). The interdicted and the allowed
region (both illustrated in Fig. 4) can be described using
the following boolean function:

o convex region: QY) =-Y11 AYa AYs5 AYy

o mnon-convex region: Q(Y) =Yy; vV Ya; VYa VYy

1 —13+6=0

T+ +6=0

-0 -8 -6 -4 =2 0 2 4 6 8 10

-10

Figure 4: The illustrative example for GDP formulation.
{L;}i=1.4 hyperplanes

The set-theoretic tools involved in MIP formulations
were briefly sketched. For a more extensive presentation



the interested reader is referred to the well-known works
about polyhedral and hyperplane arrangement notions Kuhn
(1998); Ziegler (2012) or to the more recent monographies,
as Prodan et al. (2015), which offer a more detailed math-
ematical descriptions of the concepts presented here.

3. MIP in motion planning

The presence of MIP in motion planning can be origi-
nated by algebraic or geometrical approaches. The former
relates to situations and circumstances, in which logical de-
cisions are involved, e.g. the selection from a priori known
set of possible alternatives. The later usually refers to the
ability of MIP to describe non-convex constraints.

Prerequisites

Ahead of proceeding with typical MIP implementations
in motion planning, some clarifications are in order. Gen-
erally, for motion planning there exists plenty of appli-
cations that will be treated in detail in Section 6. An
important aspect is that all those applications have a dy-
namical behavior of a point of mass in 2D or 3D spaces
governed by dynamical mathematical models (either linear
or nonlinear).

Up front, let us consider a generic” model of the con-
trolled dynamical system designated by an ordinary dif-
ferential equation (ODE):

@(t) = f (2(t), u(t), w(t)) (16)

where z(t) € R"= denotes the state vector, u(t) € R™ the
control input vector, and w(t) € R™ the disturbance®.
The mapping f(-,-,:) : R? x R™ x R"*™ — R"* is a
continuous function admitting an equilibrium point (i.e.,
f(z,u,0) = 0; without any loss of generality we may as-
sume f(0,0,0) = 0).

Remark 6. The model (16) describes a dynamic in con-
tinuous time. As will be detailed below, a considerable
part of the literature is based on discrete time dynamics.
Hence, we need to consider, concurrently, keeping similar
notations, the discrete time counterpart:

w(k+1) = f (x(k), u(k), w(k))

The correlation between (16) and (17) is done using one
of the various discretization techniques (Sontag, 2013). &

(17)

In what follows, a relevant feature of the previously-
mentioned models is the way of selecting the input vari-
ables and consequently the decision domain. In the lit-
erature we can distinguish these choices with respect to

"There exists in the literature several variation of models, but
most of them can be written in the form designated by (16).

8Usually, the disturbance is bounded w(t) € W, and W C R™» is
convex and compact set.

the linearity/ non-linearity of the models. Thus, for lin-
ear models the references concentrate towards the models
in which the state is composed by the position and the
speed of the agent and the input is represented by the ac-
celeration of the agent, see, for example: Bellingham et al.
(2002a); Liu et al. (2017); Papen et al. (2017); Richards &
How (2002); Yu et al. (2014). This type of model implies
actuation on each direction and is usually based on the
kinematics equations describing the behavior of the con-
trolled systems. Indeed, there are several variations of this
model derived from more complex modelisation techniques
that do not represents the topic of this paper. Regarding
the nonlinear models, the favored variant consists of mod-
els, in which the components of the state are the position
and heading angle, and the input is represented by speed
and steering angle,e.g., (Rey & Hijazi, 2017).

A usual approach is to do trajectory tracking which
hides the nonlinearities induced by obstacle avoidance but
moves the difficulty in the trajectory design step. This can
be mitigated through the use of flatness ( quite popular ap-
proach in this setting) have it. Still, computing offline a
trajectory (or a path) assumes a known environment which
may not be the case. Either linear or nonlinear, the models
involved in motion planning are characterized by flatness.
Generally speaking, a system is flat if there exists a set of
variables (so-called, flat outputs) such that we can deter-
mine all states and inputs based on these variables without
integration Murray et al. (2009). In Martin et al. (2002),
the interested reader can find a detailed presentation of
this type of system and how their properties are used in
trajectory tracking or motion planning.

From the control perspective, the earliest methodolo-
gies have been based either on optimal control or on non-
linear programming, but the controlled systems have op-
erated in obstacle-free environment. Recently, this type
of environment is no longer an appropriate assumption
from practical reasons (especially, in a multi-agent con-
text). Hence, the control community has had to propose
some novel techniques or to adapt the old ones. First ad-
justments consisted in restricting the controlled system to
track predetermined trajectories around the obstacles, but
the the resulting control strategies were working only for
particular systems and environments (LaValle, 2006).

MIP framework is frequently encountered within
optimization-based control

While the focus of this manuscript is MIP and its vari-
ous implementations, ultimately, the obtained formulation
comes as the result of optimization-based control strategy.
Thus, in order to provide a general overview of the MIP-
based motion planning problems we briefly introduce some
notions from optimal control theory.

Essentially, the optimal control problem (Diehl, 2014;
Kirk, 2012) consists in finding a control input v* € R™«
such that the system (16) follows a trajectory z*(t) € R™=,




Table 1
Classification of the research in motion planning using MIP

Applications

References (alphabetical order)

Alighanbari et al. (2003); Bethke et al. (2008); Chen et al. (2016a); Chen &

Task assignment

Wang (2005); Fayazi et al. (2017); Haghighi et al. (2016); Liu et al. (2017);

Richards & How (2005); Wang et al. (2015b); Zhang et al. (2017a,b)

Path planning

Janecek et al. (2017a); Ragi & Mittelmann (2017); Richards & How (2005,
2002); Schouwenaars (2006); Wang et al. (2015b)

Ballesteros-Tolosana et al. (2017); Cetin et al. (2007); Deits & Tedrake

Trajectory planning

(2015b); Earl & D’Andrea (2002, 2005a,b); Fayazi et al. (2017); Huang &

Peng (2017); Zhang et al. (2017b)

Bali & Richards (2018); Bellingham et al. (2002a); Haghighi et al. (2016);

Obstacles and collision avoidance

Janecek et al. (2017a); Mukai et al. (2017); Rey & Hijazi (2017); Richards &

How (2002); Richards & Turnbull (2013); Wang et al. (2015b)

minimizing a specific criterion:

min
ZL’(t),u(t) to

min J =

z(t),u(t)

where t € [to,tf], (t; —to) denotes the time horizon length,
xo the initial state, and g(-,-) is a function incorporating
the physical constraints (e.g., terminal or stage constraints
of the controlled system). The OCP (optimal control prob-
lem) (18) can take various forms according to i) the choice
of functions H(-) and L(-,-), e.g. minimum time problem
or terminal control problem Kirk (2012); ii) the selection
of the horizon ([to,ty]), e.g., Garg et al. (2011).

Standard MIP-based problems in motion planning

The motion planning problems (LaValle, 2006) are well
established and have been studied in time optimal control,
nonlinear control, stabilization, reachability and other re-
lated topics. To review all these topics is beyond the scope
of this manuscript, but we retain those of them in which
the presence of alternatives or discrete decisions making is
explicitly considered. The emphasis is placed on the spe-
cific applications where non-convex feasible domains ap-
pear and are subsequently encoded by mixed-integer tech-
niques.

In this section are presented the motion planning sub-
areas, which can be efficiently formulated through a MIP
approach:

i) Task assignment (TA) is the strategic decision of
allocating one objective to a particular subsystem

GUIDANCE

Task assignment
(MotionPlanning) =
Path planning
=7t
{Obstacle and collision avoidance
Trajectory planning

W [

[CONTROL (optimization—basod)}

*){NAVIGATION (state estimation)

Figure 5: Motion planning sub-areas and the link among them

ii)

iii)

iv)

(who-goes-where?), these objectives can be interchanged

and their suitability is measured by a specific crite-
rion. TA is a discrete decision-making process where
the number of alternatives within the pairs (resource
objective) association is countable.

(Collision-free) Path planning is the construc-
tion of a route in the position space without an ex-
plicit parametrization in time and without explicitly
considering the dynamics.

(Collision-free) Trajectory planning represents
the problem of constructing a function which asso-
ciates a time interval to a path. It takes into account
the particularities of the agent’s dynamics and the
resulting function is generated in an open-loop man-
ner.

(Online) Obstacle and collision avoidance is
the problem of finding input control signals which



minimize a performance criterion as in (18a) while
simultaneously avoiding collisions and using a closed-
loop strategy.

We have graphically illustrated Fig. 5 the functional rela-
tionship among the items described above. A noteworthy
aspect is that for the task assignment and path planning
sub-areas the particularities of the dynamic have, gener-
ally, almost no influence in problem statement, in contrast
with the other sub-areas. However, there are situations,
in which the dynamic impacts on the definition of static
costs. Besides, TA and path planning are not tackled in
most of the motion planning literature as stand-alone top-
ics, but together with or as part of the others sub areas.
As depicted in Fig. 5 (the dotted lines), path planning is
usually implicitly included in trajectory planning and TA
is either a part of obstacle avoidance or included in path
planning.

As well, collision-free trajectory planning and collision
avoidance represent dual approaches, the difference be-
tween them being the manner of interaction with naviga-
tion and control. While the obstacle avoidance intervenes
into the navigation-control loop, the trajectory planning
only generates the reference (to be tracked) for this loop.

As a side remark, a considerable part of the control
community includes also the formation control in motion
planning sub-areas, although it represents, in fact, a con-
trol level which gathers all the above sub-areas of motion
planning, and, as TA, it makes sense only in a multi-agent
context. Therefore, we separately treat this topic in Sec-
tion 4, where connectivity maintenance problems in multi-
agent systems are presented.

Remark 7. Before detailing the motion planning prob-
lems, it is mecessary to highlight the differences between
the path and trajectory planning. There exists a wealth of
manuscripts which treat this topic in detail (see, e.g., Beard
& McLain (2012) or Yang et al. (2014)). The choice be-
tween these two methodologies depends on particularities
of the controlled systems, e.g. for a fized wing UAV, a
trajectory planning methodology can have some undesired
consequences (Beard € McLain, 2012). These particu-
larities are broadly presented and discussed in Section 6.
However, there does not exist in the literature a gener-
ally accepted differentiation between these two concepts.
Hence, for the ease of presentation we opted to consider
the definitions as in ii), and iii) respectively. ¢

In Table 1 we depicted the classification of the refer-
ences with respect to the motion planning problem pre-
dominantly treated therein.

Remark 8. In general, a pre-condition of the MIP ap-
proaches is the existence of an awareness map which en-
tails the global knowledge about the environment. Thus,
representation of the environment has a significant impact
on the performances of the motion planning strategies (ex-
cept the task assignment problem where the impact is not
crucial). ¢

3.1. Task assignment

In what follows, we present a standard MIP formu-
lation for the task assignment problem, emphasizing its
importance in the context of motion planning for a multi-
agent system.

Task assignment refers to a strategic decision of al-
locating one objective to a particular subsystem (it re-
sponds to the question “who-goes-where?”).

At large, a task assignment algorithm must provide an
assignment which optimizes a specific criterion. Consider,
for instance, the undesired occurrence of an earthquake,
which affects 10 buildings. An emergency committee must
assign for each building a rescue team, in order to minimize
the intervention time, taking into account the number of
rescue teams and their necessary time to arrive at respec-
tive buildings. This example can be easily reformulated
for the case of target tracking in a multi-agent system.

More generally, let us consider N agents and M targets.
In order to minimize the amount of time to reach all the
targets, we should optimally assign agents to targets. To
this end, we define a binary variable z;;, which equals
one if the agent ¢ visits the target j and zero otherwise.
Also, we consider a cost associated to each combination
agent-target: c;;. We take into account that each agent
must attain at least one target, and, at the same time,
each target must be reached by an agent (constraints (19b)
and (19c), respectively). Thus, we obtain a standard MIP
formulation of task assignment problem, described in (19).

N M
I;linz Zciszj (19a)
=1 =1
N
st Y @i =1, V) (19b)
i=1
M
D w1, Vi (19¢)
j=1
Tij € {O, 1}, V’L,j (19(1)

Since we have an integer requirement on the variables
x;j, the problem (19) belongs to the class of ILP (inte-
ger linear programming) (a subclass of MIP, where all
the variables are integer.) A noteworthy aspect is given
by a special characteristic of (19): solving its LP relax-
ation? allows obtaining the solution of ILP original prob-
lem. Nonetheless, if the task assignment problem is part
of an enhanced control design, this property will be lost
and the problem should be solved in the generic class of
(M)ILP. For instance, let us define a variable ¢;; which rep-
resents the necessary time for agent i to reach the target

9We replace (19d) with the relazation z;; € [0, 1]



7. We impose that the total time to not exceed a certain
value (20).

N M

SO iy <T (20)

i=1 j=1

In specific situations, LP relaxations may lead to an
integer solution.

Furthermore there are many others variations of the
task assignment problem (19). For example, in Smith &
Taskin (2008) the authors considered a similar problem
but they introduce in the cost a non-linear term corre-
sponding to the case when an agent has to attain more
than one target. Using some refinements (detailed therein)
they posed the problem as a MILP, even if the formulation
is somewhat more complicated compared with (19).

In Alighanbari et al. (2003) and in Bethke et al. (2008)
the task assignment problem for a fleet of UAV is exten-
sively treated. The initial requirements are more compli-
cated than the formulation in (19) in the sense that the
targets are transformed in waypoints and each agent must
visit a sequence of these. Moreover, some restrictions as
the existence of coupled tasks or of tight timing constraints
increase significantly the complexity of the formulation.

A further example is found in Chen et al. (2016a) where
a variation of the task assignment problem is used to pro-
vide higher level control logic to synthesize a cooperative
safety controller. Actually, the objective is to group the
agents in pairs such that the corresponding avoidance ma-
neuvers may not lead to a dangerous configuration for the
other agents. Thus, the theoretical guarantees given by
the lower level controller are extended for a greater num-
ber of agents.

Similar approaches are used for optimal scheduling at
intersections where a prioritization among agents is neces-
sary. The scheduling problem is a variation of the task
assignment problem, while the tasks are assimilated to
time slots or time instants. This variation is one of the
few resource allocation problems in which the dynamic be-
haviour is not completely ignored. For example, in Fayazi
et al. (2017) the agent’s dynamic impacts on the objective
function by introducing a non-linearity in the cost. This
non-linearity is eliminated using a MIP formulation as in

Smith & Taskin (2008).

MILP formulations are NP-hard (Non-deterministic
Polynomial-time hard) (Van Leeuwen & Leeuwen,
1990).

Given the fact that MILP formulations are NP-hard,
the control community has a preference for solving this
type of problems (task assignment or resource allocation)
through heuristic methods, e.g., in Alighanbari et al. (2003)
a comparison between the Tabu search and the MIP formu-
lation is done, and, for higher dimensions the Tabu search
exhibits better performance. However, the tangible the-
oretical advantage of the MIP formulation (19) is that it
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guarantees the global optimum. This has a substantial
importance in some critical situations.

Remark 9. In a similar manner as the task assignment,
the notorious travelling-salesman problem (TSP) appears
first time in Dantzig et al. (1954) posed as MILP. For the
classical TSP the formulation (19) is used by converting the
constraints (19b) and (19¢) into equalities and imposing
that N =1 and M > 2. ¢

Besides task assignment, a plethora of resource allo-
cation problems can be readily formulated as MIP. Many
of these problems are used in several applications within
related motion planning domains such as aircraft mainte-
nance (or repair) Bajestani & Beck (2013), crew schedul-
ing(and flight retiming) Mercier & Soumis (2007) etc.

There exist approaches building on the idea of state
space (workspace) organization in terms of available re-
sources. More precisely, these approaches partition the en-
vironment in equally-shaped cells and the cells are viewed
as a shared resource. In this manner, the collision and
obstacle avoidance problems are transformed in resource
allocation with mutual exclusion.

The collision avoidance problems can be viewed as re-
source allocation with mutual exclusion.

For instance, in Wang et al. (2015b) the collision avoid-
ance constraints are given by the fact that each cell cannot
be visited by two distinct agents at the same time, i.e. the
agents do not use the same resource simultaneously. The
formulation is an extension of the task assignment problem
(19), the novelty comes from the evaluation and resolution
of the MIP in an online manner.

Another reference using this “resource allocation” ap-
proach is Haghighi et al. (2016) where a robotic swarm has
the objective of respecting specific and complex patterns in
a bidimensional workspace. These patterns are described
using the spatio-temporal logic (SpaTeL). SpaTeL consists
in propositions indicating the number of agents which can
access a cell at a certain time. These SpaTeL formulas are
converted in mixed-integer linear constraints, resulting a
formulation comparable with the task assignment (19) but
more complex. A similar approach is employed in Liu et al.
(2017), but the difference is given by the inclusion of the
communication constraints in the motion planning prob-
lem under the form of signal temporal logic (STL).

3.2. Path planning

As stated earlier in Section 3, a path planning strat-
egy involves the generation of a route without an explicit
parametrization'®?. Further, this route is called the planned
path.

Path planning refers to the construction of a route in
the position space without an explicit parametrization
in time and explicitly considering the system dynamics.

10in the sense that the time is not explicitly associated



Definition 2. A path between two points xo, x5 from the
navigation space is given by a map v : [0,1] — X with

(21)

¢

7(0) =z, ¥(1) =z

There are in the literature two major classes of meth-
ods to describe the function «y. The first one, the explicit
methodology, consists in providing the value of v for the
entire interval [0,1] Janecek et al. (2017a). The second
class of methods is the most used alternative, the function
has to take their values from the given set of, so-called,
waypoints Afonso et al. (2013).

Remark 10. The waypoints represent either the nodes of
graph in a dynamic-free setting, or the boundary conditions
for intervals of time. ¢

For further use, we define the set of all waypoints de-
scribing the planned path: W = {@y, ... Twy,, } and con-
sider an additional condition to Def. 2: Vz,,, , 310 € [0, 1]
such that v(0x) = -

The methodologies involved in the selection and de-
termination of the waypoints are outside the scope of this
paper, although they are succinctly presented in Section 7.
In the path planning problem, MIP is not employed in the
generation of the path, but rather to address the problem
of temporal distribution of the waypoints (i.e., their or-
dering along the path), satisfying some criteria. In other
words, MIP plays an instrumental role for optimizing a
path obtained with one of the well-established techniques
from the robotic field (e.g., sampled based methods - see
Section 7 ). The criterion of this optimization procedure
has to include/cover costs given by the physical and “eco-
nomical'!” limitation.

One of the most used approaches treating this type of
problem is based on a particular case of the task assign-
ment (19), the travelling-salesman problem (TSP). Under
this form we can identify the MIP usage in path plan-
ning and a classical example in this sense is to be found in
Richards & How (2002); Schouwenaars (2006). Therein,
they deal with a robot which should visit N,, waypoints
while minimizing the cost of the maneuver. Hence, the MI
constraints which enforce the visiting of the considered
waypoints are the following:

Vie{l,...,T}, Vk e {1,..., Ny}, (22a)

|25 — Ty [| < M1 — big), (22b)
T

> b =1, Vkand by, € {0, 1}, (22¢)
=1

where T is the number of time steps, and b; is a binary
variable that indicates whether or not the waypoint k& was

11 Tn the sense of the economical MPC.
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visited at the time step i. The constraint (22c¢) ensures
that each of the waypoints is visited once by the agent.
The ordering of the waypoints along the interval depends
on the selected criterion (e.g., the minimum time to visit
all the waypoints). In practice, the attainability of the
waypoints is affected by various factor and, thus, in most
of the situations, reaching a vicinity of the waypoint is
a reasonable objective. In such cases, (22) needs to be
adapted,e.g., the constraint (22b) is replaced by Hy(x; —
Tapy,) < hi+ M (1—b;i), where Hy and hy, are given by the
supporting hyperplanes describing the considered vicinity
region.

Remark 11. In the majority of sampled-based methods

LaValle (2006), the problem of finding the shortest path is
tackled using one of the various algorithms (Dijkstra, A*
are common choices). However, in Taccari (2016) several
MIP formulations for the elementary shortest path problem
are introduced as extensions of TSP. ¢

Besides the approach relying on (22), there exist a few
others works, which treat MIP-based path planning in a
different manner. For instance, in Vitus et al. (2008), a
Tunnel-MILP approach is employed. Basically, this algo-
rithm divides the global motion planning problem in three
main tasks. The first task consists in finding a path as in
Def. 2, while ignoring the vehicle’s dynamics constraints.
Next, the path is used along with a convex decomposition
of the space to generate a sequence of N convex poly-
topes from the start to the goal: F; = {x € R? : Az <
b}, Vi € {1,...,Ng}. In the third task, this sequence
(a tunnel of polytopes) is used to constrain the position
of the agent p(t) to an optimal and dynamically feasible
route from the initial point to the goal inside the tunnel.
More precisely, a MILP problem is employed, forcing the
agent to remain in one of the regions of the tunnel at all
times. This leads to some OR-constraints'?, similar with
the GDP formulation (1), which can be readily formulated
using MI techniques:

V

ie{l,...,NR}

Aip(t) < bi, vt (23)

where p(t) is the position of the considered agent.

The same idea is used in Afonso et al. (2013), where
the procedure to find the path relies on generalized Voronoi
diagrams. Here, a number of points is considered: on the
facets of the obstacles (modeled as convex bounded sets)
and on the boundaries of the navigation environment in
order to obtain a Voronoi graph. Subsequently, the nodes
of the graph that are inside the prohibited region are re-
moved along with the edges that connected these nodes to
the other ones in the graph. What then remains is a graph
whose edges form paths that present the nice property of
being equally between the obstacles which are the closest

2Interpreted as XOR.



to an edge and the edges themselves. This property comes
from the nature of the Voronoi graph construction, which
maximizes the minimum distance to all points. The graph
is augmented with the initial and final position, preserving
its connectivity. After that, using a Delaunay triangula-
tion the space is divided into triangles whose intersection
is empty, except for their sides. This triangulation relies
on the vertices of the obstacles and of the known region.
The triangles that are crossed by the planned path are
computed and merged to form convex polytopes, attempt-
ing to have the minimal number of convex regions along
the tunnel. These polytopes are used further to impose
the obstacle avoidance constraints as in the tunnel-MILP
formulation (23).

In a similar approach, Deits & Tedrake (2015b) treats
the problem of path planning in a multi-obstacle environ-
ment for a rotary-wing UAV. The underlying idea is based
on a mixed-integer optimization which assigns polynomial
trajectories to convex regions (known to be obstacle free).
The paths are defined as piece-wise polynomial functions
in time with vector-valued coefficients. Having an a pri-
ori (offline) chosen degree of polynomials and number of
pieces, the optimization problem returns the coefficients of
each polynomial which ensure a collision-free trajectory.
This polynomial parametrization is possible because the
model of the considered system'? is characterized by differ-
ential flatness. Regarding the obstacle-free convex regions,
they are obtained offline using IRIS (Iterative Regional
Inflation by Semidefinite programming Deits & Tedrake
(2015a)), a technique for greedy convex segmentation of
the free space. The proposed approach is tested for various
simulations scenarios with satisfactory results, although
sometimes the convex segmentation does not cover the en-
tire obstacle-free space. Moreover, a comparison with the
classical'* MIP method is done, the second method may
involve a more complex integer program. An interesting
aspect of this work is that the generated paths are depen-
dent on the considered convex safe region segmenting the
space.

Besides the above presented works, there exists oth-
ers which treat, but only marginally, the problem of path
planning. For example, in Janecek et al. (2017a) or in
Janecdek et al. (2017b) a toolbox is introduced and it in-
cludes various helpers to generate a reference path. Thus,
a circular trajectory of a known radius or a polygonic ref-
erence passing through the given set of waypoints are pro-
vided, but the use of MIP is kept to a minimum.

3.3. Trajectory planning

The trajectory planning pertains to the problem of de-
termining both the path and how to move along it. Thus,
a trajectory planning strategy returns a path which is ex-
plicitly parametrized in time. In this section we consider

13The nano-quadcopter Crazyflie 2.0
14From the authors point of view: use the obstacle faces (“hyper-
planes”) directly in the generation of safe region
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first the works dealing with general problems and after
that we focus on classical applications in the field of au-
tonomous vehicles (i.e., autonomous overtaking, merging
junctions or lane changing).

Trajectory planning refers to the construction of
a function generated in open-loop, which associates a
time to each point on the path and takes into account
the particularities of the system dynamics.

Definition 3. A trajectory between two points xo, x¢ from
the navigation space is given by the continuous function
v [to, tf] = X with

7(to) = zo, Y(t5) = x5. (24)

¢

As the path planning task, the specification of the con-
tinuous function describing the trajectory can be done in
two different ways. For the second one, the set of all
waypoints describing the trajectory is modified as follows:
W = {(Zwy, tw,) - - - (Twy, »twy, )} and an additional con-
dition to the Def. 3 is considered: Y(tw,) = Tw,, Y&,
Nevertheless, the waypoint method is rarely used in MIP-
based trajectory planning (and in the related literature).
Hence, whenever it is not specified otherwise, the trajec-
tory is given explicitly as the continuous function ~(t).

Trajectory planning in various tasks

One of the classical works treating the problem of tra-
jectory planning is Earl & D’Andrea (2005a) which intro-
duces an iterative MILP algorithm. More precisely, con-
sidering circular obstacles (see Section 2.2, eq. (13)) and
a traditional nonholonomic (car-like) vehicle, the authors
propose an algorithm which guarantees obstacle avoidance
over the entire trajectory and distributes avoidance times
efficiently, resulting in smaller MILP formulations.

The proposed algorithm needs the discretization in time
of the continuous nonholonomic model. An interesting as-
pect is that the non-uniform discretizations are exploited
in order to bypass an extensive computational effort cor-
responding to the resolution of large MILPs. Support for
non-uniform discretizations in time allows the use of intel-
ligent time step selection algorithms for the generation of
more efficient MILP formulations. Thus, the idea behind
of the iterative MILP algorithm is to find a convenient
distribution of the avoidance times, avoiding in this man-
ner the growing of the specific MIP problem complexity
(induced by the enumeration of the constraints at each
sampling time). Therein, two different problems are con-
sidered: trajectory-generation with obstacle-avoidance re-
quirements and minimum-time trajectory-generation prob-
lems.

Iterative MILP algorithms address the issues of MILP
coping with large-scale models.




The work of Earl & D’Andrea (2002) studies the coop-
erative control of multi-vehicle systems. Building on the
requirements of a robotic competition (but in a simplified
version), the authors model these simplified competition
rules using a hybrid system. Further, they put the control
problem within an optimization framework, using MILP.
The considered simplified competition involves two teams
of robots, the attackers and the defenders, on a playing
field with a region at its center called the defense zone.
The attackers are drones directed toward the defense zone.
The objective for the defenders is to block the attackers
from entering the defense zone by intercepting each at-
tacker before it enters the zone. Once an attacker enters
the defense zone or is intercepted by a defender it remains
stationary for the rest of the competition. While pursuing
its objective defenders must avoid collisions with other de-
fenders and obstacles as well as avoid entering the defense
zone which is off limits to defending robots. The con-
trol strategy is implemented with a centralized controller
with perfect knowledge of the system, perfect access to
all states, and with the ability to transmit control signals
to the defenders instantaneously. The controller needs to
figure out the inputs to provide each defending robot so
that the objective is achieved. Using MPC, they obtained
a set of control inputs that minimize the number of at-
tackers that enter the defense zone over the duration of
the drill and, in addition, is consistent with the system
dynamics (robot dynamics) and the constraints (no col-
lisions, etc.). The obtained model is a system composed
of continuous and discrete states (a hybrid system) with
linear dynamics subject to inequality constraints and log-
ical rules. In other words they obtained a MLD (mixed-
logical dynamical) system (Bemporad & Morari, 1999).
The resulting optimization problem is a MILP which can
be readily solved using one of the state-of-the-art solvers
(e.g., ILOG CPLEX).

Multi-robot systems can be modeled as hybrid (MLD)
systems using MIP techniques.

Also, in Earl & D’Andrea (2005a) iterative MILP algo-
rithms are presented, algorithms which address the issue of
the MILP coping with large-scale models. The considered
problem is trajectory-generation with obstacle-avoidance

requirements and minimum-time trajectory-generation prob-

lems. These problems involve vehicles that are described
by mixed logical dynamical Bemporad & Morari (1999)
equations, a form of hybrid system. The algorithms use
fewer binary variables than standard MILP methods, and
require less computational effort. The iterative methods
presented in that paper apply to MLD systems, which are
governed by a mixture of logical rules (or state machines)
and linear dynamical equations and are validated using a
vehicle in an obstacle field, a particular MLD system.

In Earl & D’Andrea (2005b) the results in Earl &
D’Andrea (2002), and Earl & D’Andrea (2005a) are gath-
ered and extended. Hence, the multi-vehicle control prob-
lems is tackled using MILP and MLD systems Bemporad
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& Morari (1999). As in Earl & D’Andrea (2002), the meth-
ods are motivated on problems derived from an adversarial
game between two teams of robots. The strategy for one
team is fixed and modeled by state machines, while for the
other the behavior is controlled using the iterative MILP
method. On a side note, the approach therein was de-
veloped independently from a similar one introduced in
Richards & How (2002). One of the interesting aspects
regarding this paper is that the considered environment
involves an adversarial component whose intelligent be-
havior is modeled using finite state machines and, implic-
itly, MLD systems.

As well, the trajectory planning topic is treated in
Cetin et al. (2007). Therein, the addressed problem is the
generation of collision-free trajectories for the reconfigu-
ration of spacecraft formations, aiming also for an opti-
mal fuel consumption. In order to model the spacecraft
representation and their corresponding safety regions un-
rotated cubes (a particular polytopic representation) are
used. Moreover, the trajectories to be followed are dis-
cretized in time using cubic splines and, thus, the generic
problem is translated to an optimization problem. The
resolution of this problem led to a trajectory parameter-
ized by the spacecraft positions and velocities at a set of
waypoints. To this end, the “big-M” technique is used to
write the parametrized optimization as a MILP whose so-
lution can be obtained either using standard MILP solvers
(see Section 6) or using the concept of a sequential linear
program. These two alternatives are compared therein,
being applied on two standard validation tests whose aim
is to swap the position within a spacecraft with minimum
fuel consumption. The comparison leads to an ample dis-
cussion on the feasibility of MILP and on the methods
necessary to shorten the resolution time.

Also, in Richards & How (2003) MILP has been used
for open-loop vehicle trajectory design, enabling the inclu-
sion of non-convex constraints such as plume impingement
avoidance.

Trajectory planning in autonomous vehicles tasks

Classical applications in trajectory planning involve in
most of the cases either merging junctions problem (e.g.,
Bali & Richards (2018); Huang & Peng (2017)) or au-
tonomous overtaking (e.g., Ballesteros-Tolosana et al. (2017);
Molinari et al. (2017)).

Recent advances in the field of autonomous vehicles
bring to light the issues like vehicle lane change and over-
taking on highways in the assisted driving framework. In
order to perform such maneuvers, it is fundamental to
compute suitable and comfortable trajectories that take
into account the vehicle limitations as well as safety re-
strictions.

Safety restriction and vehicle limitations require effi-
cient MIP formulations.

For instance, in Molinari et al. (2017) an efficient MIP
formulation for the autonomous overtaking problem is in-




troduced. The considered vehicles have a simple dynamic
model, the non-convex feasible region being represented
using hyperplanes arrangement similar with Prodan et al.
(2015)(as in Section 2). A complete formulation for tra-
jectory generation with collision avoidance guarantees is
presented for the case of an agent surrounded by a num-
ber of agents. The MPC criterion contains a desired refer-
ence state, which ensures that the overtaking takes place.
They also considered two methods for reducing the num-
bers of binary variables: logarithmic formulation and cell
merging (Stoican et al., 2013). The illustrative example
therein and a comparative analysis between the two reduc-
tion methods from complexity point of view, are validated
in IPG CarMaker (an accurate vehicle simulator).

In Ballesteros-Tolosana et al. (2017), the lane change
and overtaking maneuvers aim to generate trajectories able
to ensure the comfort of passengers. Mathematically, the
problem is formulated as an Optimal Control Problem
(OCP) due to its handling kinematic and collision avoid-
ance constraints (the last ones in terms of hyperplane ar-
rangements as in Section 2). In order to mitigate the
drawback of the substantial computational effort associ-
ated with that kind of representation, a pre-analysis step
is presented therein, a step consisting in the enumeration
of the all possible overtaking configurations and of their
resulting compact MIP formulation. The so-obtained non-
linear constrained optimal control problem is solved using
a multiple-shooting approach which leads to improvements
in the computational burden when compared to the pre-
analysis step.

The presence of MIP in merging junctions problem can
be found in a plethora of works. For instance, Fayazi et al.
(2017) deal with the optimal scheduling of autonomous ve-
hicle arrivals at intersection, eliminating the need of traf-
fic signals. The idea is to design an intersection controller
able to coordinate the flow of vehicles through intersection,
scheduling the intersection access in safe conditions and
receiving information from all subscribing vehicles. More-
over, each vehicle informs the controller about its move-
ment and desired schedule. Therefore, the optimization-
based controller should find the optimal sequence of vehi-
cles crossing the intersection and their corresponding time
of intersection access, minimizing the difference between
the current time and the expected arrival time of the last
vehicle passing the intersection and, also, the gap between
assigned and desired access time of each vehicle. The re-
sulting optimization problem has to take into account some
physical constraints (speed limit and maximum accelera-
tion) and a safety “window” between two consecutive ve-
hicles accessing the intersection. These constraints lead
to disjunctions and, respectively if-then statements, which
are modeled through MIP (big-M formulation). In addi-
tion to this, the total optimization cost is composed of a
min-max objective and a non-linear cost (an absolute value

sign).
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MIP may be employed to eliminate the non-linearity
(Smith & Taskin, 2008).

Likewise, Huang & Peng (2017) tackled the problem of
speed trajectory planning at signalized intersection. The
idea is to optimize the vehicle speed trajectory over multi-
ple intersections in order to minimize the fuel consumption
and the travel time. In order to obtain a mathematical
formulation of the problem , the authors assume that the
signal traffic state is known and the influence of a lead
vehicle is ignored. The main advantage of this formula-
tion (with respect to, e.g., Fayazi et al. (2017)) is that
they have considered the turnings at intersections (includ-
ing a turning speed constraint). After a comprehensive
description of the fuel consumption model, effect of turn-
ing and acceleration model, a MIP formulation is stated.
The presence of integer variables models the crossing of
the intersection without violating red light, indicating the
active green phase window.

Also, Zhang et al. (2017b) presents a control strategy
for a heterogeneous traffic network. Heterogeneity comes
from the presence of both signalized and non-signalized'®
intersections. After the validation of the proposed model
of the heterogeneous traffic network, a control strategy
is stated using a MIP formulation. Finally, some com-
parisons between homogeneous and heterogeneous systems
are provided in order to leave the door open for developing
a systematic planning approach on deciding what traffic
junctions require signal control to ensure a good traffic
control performance. Moreover, Zhang et al. (2017a) pro-
poses a traffic signal scheduling strategy which takes into
account both vehicles and pedestrians presence. After de-
veloping a mathematical model for the pedestrians flow
and for the vehicle traffic network (more than one inter-
section/junction), the problem of scheduling is stated as a
MIQP (mixed-integer quadratic program).

8.4. Obstacle and collision avoidance

Obstacle and collision avoidance is the problem of
finding input control signals which minimize a perfor-
mance criterion as in (18a) while simultaneously avoid-
ing collisions through a closed-loop strategy.

An adequate collision and obstacle avoidance strategy
has became critical in order to ensure the safety and the
integrality of both the system and the environment. In
the last years, the control community has put the effort
towards the obtaining of collision-free control strategies,
which permit real-time operations. It is generally accepted
that the collision avoidance problem is a challenging task
due to the presence of the non-convex feasible domain.
Describing this non-convex domain has computational and
structural implications, generally leading to a trade-off be-
tween computational efficiency and control performance.

15 A non-signalized intersection follows the first-come-first-serve
(FCFC) principle.



Since MIP is able to explicitly model the non-convexity as
in Section 2, it has become over time a proper approach
for expressing collision avoidance problem.

The MIP approaches in the field of obstacle and colli-
sion avoidance problems can be distinguished in two main
categories. The first class of MIP approaches is more often
used, being a wide-spread approach in non-MIP (robot)
motion planning literature. It consists in choosing a par-
titioning method which does not depend on the particu-
larities of the environment (e.g the obstacles’ form). A
standard partitioning is the one formed by equally-sized
square cells (Haghighi et al., 2016; Wang et al., 2015b).
Using this approach, the collision-avoidance problem be-
comes, in most of the cases, a resource allocation problem,
as presented in the Section 3.1. The second MIP approach
or the geometric approach relies on set theory and on the
capability of mixed-integer techniques to efficiently encode
the description of non-convex sets (see Section 2). Even
though different, both approaches share a common charac-
teristic: the workspace is decomposed in a certain kind of
cells and in some manner the MIP is employed in modeling
disjunctive constraints.

Remark 12. In the literature there are works which make
a distinction between obstacle and collision avoidance. More
precisely, the collision avoidance refers only to the mutual
collision avoidance within multi-agent systems, and obsta-
cle avoidance may refer to the collision avoidance either
with stationary obstacles or with moving obstacles which
have an a priori known trajectory, in most of the cases a
periodic one. As well, some others references consider that
obstacle avoidance refers to the static environment, while
collision avoidance covers any kind of moving obstacles. ¢

Static obstacles

The work of Culligan (2006) presents a path planner us-
ing MILP to solve a receding horizon optimization problem
for unmanned aerial vehicles (UAVs). The MILP formula-
tion has two important components: the hard constraints
for obstacle and multi-vehicle avoidance and an approxi-
mation of vehicle dynamics. The 3D case is, as well, con-
sidered and comprehensively presented. Moreover, some
enhancements of the MILP framework are discussed in or-
der to provide decreased resolution time and also increase
the capability of the path planner. These improvements
consist of various techniques like a variable time step size,
linear interpolation points, and horizon minimization. A
noteworthy aspect, the concept of variable time steps is ex-
tended to the receding horizon, non-iterative MILP formu-
lation. Variable time step sizing allows the simulation hori-
zon time to be lengthened without increasing resolution
time dramatically. Horizon minimization decreases reso-
lution time by removing unnecessary obstacle constraints
from the the problem (similar with Janecek et al. (2017a)).

In Schouwenaars (2006) the author presents a frame-
work for safe online trajectory planning of unmanned ve-
hicles through partially unknown environments. A MPC
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framework is employed, MILP playing an instrumental role
in order to incorporate the collision avoidance constraints
(similar with the techniques in Section 2). An interesting
aspect is that the agents can be controlled either through a
standard (velocity) control system, or by using a maneuver
scheduler that allows the implementation of a maneuver
from a discrete set of possible ones. This hybrid control
architecture is applied and enhance for a particular type
of dynamics, corresponding to a small-scale helicopter. As
well, the problem of the feasibility of the proposed control
strategy has been extensively treated. Therefore, a bene-
ficial concept was considered: terminal feasible invariant
set, a set in which an agent can remain for an indefinite
period of time with anti-collision guarantees. Effectively,
these sets are computed online, being represented as affine
constraints on the last state of the horizon. Via these
sets, it is provided an a priori known backup plan that
is dynamically feasible and obstacle-free and, thus, the
feasibility and safety can be guaranteed. The proposed
strategy was tested on an unmanned Boeing aircraft us-
ing scalable loiter circles as feasible invariant sets. From
the multi-agent perspective, the control strategy is a dis-
tributed one, each agent only computing its own trajec-
tory while accounting for the latest planned behaviour of
the agents from its proximity. The potential conflicts are
solved in real-time such as to preserve the feasibility guar-
antees. In order to illustrate the benefits of the considered
strategy, the algorithm was run over a scenario involving a
fleet of small-scale helicopters which aimed at maintaining
wireless connectivity in a cluttered environment.

Obstacle and collision avoidance constraints are usu-
ally imposed at the sampling time without regards to the
intra-sample behavior of the agent. Hence, it is possible
for an agent to “cut the corner” of an obstacle while appar-
ently respecting the constraints. The idea employed in the
literature is to consider additional constraints which en-
sure that the segment between two consecutive positions
does not cut the obstacle Maia & Galvao (2009); Richards
& Turnbull (2013). Stoican et al. (2018) provides a treat-
ment of the multi-obstacle case within a hyperplane ar-
rangement setting with exact and over-approximated rep-
resentations.

Mobile obstacles

The mobile obstacles in the MIP framework are not so
common as the static environments due to the associated
computational burden. In most of the references treat-
ing the time-varying environments, the interdicted mobile
regions are modeled as rectangular/cubical exclusion re-
gions Richards & How (2005, 2002). In fact, this represen-
tation is a particular case of the polytopic representation
(see Section 2), but with a limited number of correspond-
ing mixed-integer linear constraints. Thus, the exclusion
region constraints in a MIP formulation for two moving
obstacles within a 2D environment (x-y coordinates) are
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where d is the safety distance (length of the edge of square
exclusion region), «gy; are binary variables, while (25¢)
ensures that at least one of the above constraints is ac-
tive. It is worth to mention that the rectangular exclusion
zone can be used in order to model other non-convex con-
straints, e.g. Culligan (2006); Richards & How (2005)

Like trajectory planning, the collision avoidance prob-
lem can be found /applied in tasks regarding the autonomous
vehicles. For instance, in Mukai et al. (2017) the problem
of merging for vehicles on a motor way is tackled using
MIP along with a receding horizon strategy (MPC). Thus,
interdicted regions are described using logical statements
(AND/OR), which are further modeled as mixed -integer
constraints, using the “big-M” method.

Furthermore, Molinari et al. (2017) treat the autonomous
overtaking problem using MPC in an efficient MIP formu-
lation. The considered vehicles have a simple dynamic
model, the non-convex feasible region being represented
as in Section 2. The MPC criterion contains a desired ref-
erence state, which ensures that the overtaking take place.

As well, Bali & Richards (2018) propose a method for
vehicle merging scenarios in junctions with relative cost
prioritization. The method is based on MPC, employing
MIQP optimization. The scheme provides optimal con-
trol properties while maintaining safety and recursive fea-
sibility. The latter properties are ensured through positive
control invariance of simple time headway constraints. For
examples with two vehicles, tunable prioritization and gap
acceptance are verified and presented on a decision graph.
Priorities are then demonstrated to be respected in an ex-
ample with four vehicles.

Equivalent MLD formulation for obstacle avoidance

The mixed logical dynamical (MLD) systems were in-
troduced for the first time in Bemporad & Morari (1999)
and represent a relevant framework for modeling and con-
trolling systems which incorporates linear dynamic equa-
tions, logic rules, and operating constraints. These are
described by linear dynamic equations subject to linear
inequalities involving real and integer variables as in (26).

Tht1 = Axy, + Buy + By, + Bszy, (26&)
yr = Cxp+ Dup + Doy + D3z (26b)
Esz+F36, < Eiug + Egxy + Es (26¢)
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where g, yi, ur denote state,output and, respectively, in-
put vectors of the system. The & € {0,1}"™* and 2z, € R™=
are auxiliary logic and continuous variables, respectively.

Let us consider a system described by a single agent
which has to move in a non-convex domain. The agent is
described by the dynamics'®:

Axy, + Buy,
Cxyp + Duy,

(27a)
(27b)

Te4+1 =
Y =

We examine a basic example, the agent has to stay outside
a polytope P = {z : Sx < R}:

Th41 ¢ P.

We aim to describe the considered system via a MLD for-
malism, more precisely, to rewrite the above condition in
the form of (26¢).

Firstly, it is straightforward that (27a) and (26a) are
equivalent if we consider the matrices By and Bz null.
Next, writing the imposed condition (241 ¢ P) in a simi-
lar manner as in (7a) and replacing xj11 according to the
dynamic, we compactly!” write:

—MIy A 3 o
{ 7 A\} ay < {‘50 } T+ {50 } U + {'f?l} , (28)

where M is a sufficiently large constant (according to
the “big-M” formulation), N is the number of linear con-
straints describing the polytope P = {z € R? | Sz <
R,S € RV*4 R € RN}, and Iy € RV*YN is the identity
matrix. By adding constraints on input (S,ur < R,,), the
MLD formulation of the considered system is:

Tpy1 = Axyp + Bug (29a)
~MIy SA SB -R

1" | <| 0 |ap+| O |upg+ |[N—1] (29b)
0 0 —Su R,

Remark 13. The MLD system (29) is well posed accord-
ing to Definition 1 from Bemporad & Morari (1999). &

In Ritter et al. (2014) the equivalent MLD formulation
is further extended. A multi-vehicle cooperating system
is modelled and controlled such that the system reaches
some target locations in a reasonable time avoiding any
possible collision among the agents. Thus, MLD-system
represents a valid compact formulation for modeling multi-
vehicle system, because all existing constraints (dynamics,
collision avoidance, measurement etc.) are embedded in a
complete configuration, which allows to use existing meth-
ods to solve the control problem.

16For the clarity of the presentation, in what follows we will ne-
glect the equations (26b) and (27b) but the reasoning can be readily
adapted.

17«Q” stands for the null matrix of dimensions appropriate to the
place into which it is inserted



MIP reformulation for drift counteraction optimal control

Another form in which MIP is employed in motion
planning is within DCOC (drift counteraction optimal con-
trol) or optimal exit-time control Zidek et al. (2017a). The
main objective in such problem is to satisfy prescribed con-
straints for as long as possible Zidek et al. (2017b). In
other words, DCOC is a particular optimal control prob-
lem, aiming to determine a sequence of control inputs that
maximizes the first exit-time from a given set. There ex-
ist various applications in motion planning where DCOC
represents an useful tool, handling well the systems with
finite resources (fuel or energy). In Zidek et al. (2017b) the
MILP formulation of DCOC with application in spacecraft
attitude control is fully addressed and for its resolution a
LP-based iterative procedure is introduced.

As well, in a similar approach, Maia & Galvao (2009)
present an implementation of the shifting prediction hori-
zon for an MPC controller, tackling the obstacle avoidance
problem, using binary variables and implicitly MIP. More-
over, Richards & How (2003) MILP optimization is used
to effect a variable horizon length, leading to guaranteed
finite-time completion.

4. MIP in multi-agent systems. Connectivity main-
tenance and formation control

In today’s complex and various environments, the vast
majority of the activities is too difficult and time-consuming
to be handled by only one agent/robot/entity. Thus, in
order to perform these activities with increased accuracy,
redundancy and in a reduced time, cooperative teams of
robots/agents may be employed. In this manner, the key
elements of risk for the safety and integrity of systems are
mitigated at the expense of an extensive augmentation of
the systems to be supervised and controlled. Factors like
the large scale, geographical distribution, high failure rates
and heterogeneity of network systems are becoming deci-
sive in consideration of the suitable control architecture.

An important issue in the control of multi-agent sys-
tems is the coordination of a cooperative team of agents
(robots) in order to accomplish a given “mission” in an
efficient manner. In several cases, these teams of agents
are required to converge (and maintain) a specific spatial
configuration. Therefore, formation control is often a pre-
requisite for other applications in motion planning.

Connectivity maintenance refers to providing con-
straints which guarantee a connected communication
graph among the agents at all times.

More precisely, connectivity maintenance for a forma-
tion of agents refers, generally, to the ensemble of feed-
back laws, path/trajectory planning, collision avoidance
and task assignment which guarantee that agents can com-
municate between themselves (to ensure data flows for,
e.g., control decisions, data gathering, distributed estima-
tion, etc.).
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Remark 14. FEven though connectivity maintenance and
formation control are not different labels for the same phe-
nomenon, the underlying idea is similar, the difference be-
ing the global objective. A key difference between the two
notions is the relevance of relative distance between agents:
for connectivity maintenance the unobstructed communi-
cation is the key aspect, while the inter-distance or relative
velocity are relevant only in their effect on the “line of
sight” between agents (e.g., distance less than a communi-
cation range threshold). ¢

Formation control aims to provide constraints guar-
anteeing desired relative distances and velocities among
a group of agents.

There are two main approaches in the literature which
tackle the formation control problems Qu (2009): the leader-
follower design and leaderless approach. The former con-
sists in designating one of the agents as a leader moving
in a certain way with the remaining agents tracking the
leader in order to maintain formation around it. The later

involves the coordination of the agents through a global
consensus for attaining the global objective. Choosing be-
tween these two approaches depends on the particularities
of the team/group of agents, i.e., their capability of com-
munication and sensing. Moreover, these aspects affect
further the control architecture, as will be detailed in Sec-
tion 5.

Corner cutting avoidance conditions

The corner cutting avoidance problem is an important
but often overlooked part in motion planning. Obstacle
and collision avoidance constraints are usually imposed at
the sampling time without regards to the intra-sample be-
havior of the agent(s). Hence, it is possible for an agent to
“cut the corner” of an obstacle while apparently respecting
the constraints.

Corner cutting aims to provide constraints guaran-
teeing intra-sample collision avoidance.

The idea is conceptually simple: an agent avoids cor-
ner cutting iff its next position lies in its visibility region
(the union of all rays spanned from the current position
not intersecting any of the obstacles). Note that the dual
notion (the under-shadow region — the region hidden from
the viewpoint of an agent) may be used to enforce full
coverage of the feasible space, e.g., the gallery problem.

Since describing exactly such regions is impractical,
mixed-integer formulations (in either exact or over-appro-
ximated form) are used. Within the hyperplane arrange-
ment framework presented earlier, these constraints em-
ploy (either implicitly or explicitly) three sign tuples: the
current and future positions of the agent, 0,0 € & X\P>
and the coordinates of the obstacle(s), o® € Xp.

We are aware of results from Afonso et al. (2016);
Maia & Galvao (2009); Richards & Turnbull (2015) which

discuss over-approximated corner cutting constraints and



Table 2
MIP for multi-agent systems.

Connectivity maintenance

Formation control ot al. (2014)

Corner cutting avoidance Stoican et al. (2018)

provide constructive details: Maia & Galvao (2009) pro-
vides the initial construction; Richards & Turnbull (2015)
and Afonso et al. (2016) improve it by reducing the num-
ber of necessary constraints and by reducing the num-
ber of necessary binary variables, respectively. Stoican
et al. (2018) goes further by providing exact and over-
approximated descriptions of the under-shadow (and of
its complement, the visible) region generated by multiple
agents within a multi-obstacle environment.
Specifically, in Maia & Galvao (2009), to avoid cutting
a single obstacle, there has to exist at least one half-space
containing the obstacle which does not contain the current
and successor positions of the agent:
Ji s.t. o(i) = ot (i) = 0. (30)
Since such conditions often appear in MPC problems where
both current and successor sign tuples are decision vari-
ables, (30) is rewritten such as to avoid nonlinearities:

S - o%(@)ot (i) < N+ Z [1-20°()]o(i), (31)

%

for all possible values 0° € {0,1}"V. The idea is that from
all constraints (31) at least one reduces to'® (30), i.e., the
one for which 0° = o™,

Richards & Turnbull (2015) improves on Maia & Gal-
vao (2009) by reducing the number of constraints (31) from
2N to a more manageable N. This is done by forcing
two consecutive positions x,z" to respect the same con-
straint, with our notation: —h/z < —k; + Mo™T (i) and
—h) 2t < —k; + Mot (i) for all i = 1...N. This implies
that there exists at least one index i s.t. both z and z™ lie
on the same side of the hyperplane (and thus on the op-
posite side from the obstacle), similar with (30). Afonso
et al. (2016) proposes a logarithmic scheme to reduce the
number of binary variables involved in the selection of the
active hyperplanes.

18Both (30) and (31) assume a single obstacle (Xp = {o*'1}) where,
by convention, ¢®1(i) = 1,Vi. This implies that Y o(i) < N — 1,
i

Yot() <N 1.
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Afonso et al. (2020); Earl & D’Andrea (2005b); Richards & Turnbull (2013);
Schouwenaars et al. (2001a); Sun & Cassandras (2015)

Bellingham et al. (2002b); Papen et al. (2017); Prodan et al. (2012); Ritter

Afonso et al. (2016); Maia & Galvao (2009); Richards & Turnbull (2015);

The common shortcoming of these approaches is that
they do not easily handle the multi-agent multi-obstacle
case. Stoican et al. (2018) generalizes (30) with:

> lo*3 () o (@) 0% (1) ~ 0" ()] > 0, ¥o* € Be. (32)

As stated earlier, when both o, are variables, (32) be-
comes nonlinear due the bi-linear term appearing in it.
Hence, a relaxation such as in (31) may be used:

Y107 (@)= (i) o7 (i) =0 (i) > —~|0° 0], Vo* T € Tp,

(33)

+

forall 0° € X x\p, i.e., (33) reduces to (32) when ¢° = o.

Connectivity maintenance conditions

The optimal dynamic formation control is a popular
topic in the multi-agent systems field, and MIP-based meth-
ods provide a suitable tool for the modeling of the corre-
sponding constraints. In what follows, we briefly present
the topics where the connectivity is induced by the internal
factors (as, e.g., communication).

The mixed-integer constraints enforce that each agent
is within the communication range of at least one other
agent. Moreover, pairs isolation need to be avoided, i.e.,
if an agent is enforced to stay in a communication range
of another, the latter cannot be constrained to stay in the
range of the former, but in the range of a third one. In
order to formulate the corresponding mixed-integer con-
straints we proceed as in Afonso et al. (2020). Hence, we
consider a binary variable &; ; , € {0,1} which is 1, if the i-
th agent is inside of the communication range of j-th agent
at the timestep k, and 0 otherwise. Next, we can write the
following constraint, ensuring the communication connec-
tivity among the IV agents:

N—-1 N
DD gk =N-1, 0<k<T, (34a)
i=1 j=1
S Gk <#S-1, 0<k<T, VSCV, (34b)
g =0, 1<i<N, 1<j<i, 0Sk<T. (34c)



The constraint (34b) prevents the possible pairs isola-
tion, imposing for each sub-graph S of the original commu-
nication graph V that at least one node has to be able to
communicate with a node outside the graph. Moreover,
alongside with (34a) it guarantees that only connected
communication graph can be obtained (for a detailed dis-
cussion, see Theorem 2 from Afonso et al. (2020)), i.e. the
connectivity is maintained.

Furthermore, Sun & Cassandras (2015) is focusing on
the coverage control problem. The agent team works in
a 2D mission space, maximizing coverage in this space.
The formation control is approached from a leader-follower
setting perspective, the leader moves on a given trajec-
tory while the remaining agents must maintain the forma-
tion. Thus, the formation becomes dynamic as soon as
the leader starts moving along the given trajectory, and it
must adapt to any environmental change (a new mission, a
new composition of the team or some obstacles detected).
Firstly, it is presented a brief formulation for a general
optimal formation problem as an optimization problem,
whose objective function depends on the agent spatial po-
sitions. The constraints of the optimization problem are
given by a feasible space for positions (included in the 2D
mission space) and by the condition that an undirected
graph must be connected. This graph is modeling the
desirable links among agents. The feasible space can be
either convex (without obstacles) or non-convex (with ob-
stacles). This aspect complicates the way in which the
graph constraint should be treated. Hence, these two cases
must be tackled separately. For a convex feasible space,
the optimal dynamic formation problem is rewritten as a
MINLP, by introducing a set of flow variables over the
undirected graph (associating to every link between two
agents an integer flow amount). The problematic con-
straint is transformed into a set of mixed-integer inequal-
ities. Also, the computationally demanding re-solving of
the MILP for all time instants is avoided, providing a suf-
ficient condition for maintaining optimal formation in a
certain time interval. For a non-convex feasible space, the
problem is solved in a different approach. At each moment,
when the connectivity is lost, a new undirected connected
graph is constructed such that the effort to maintain the
initial formation is minimal. An algorithm is developed
to construct the new graph, and this is used as an input
for CPA (Connectivity Preservation Algorithm). An il-
lustrative example of this second situation is considered
therein, where the initial formation is computed using the
MILP from the convex feasible space case, obstacles being
considered afterwards.

Connectivity induced by external constraints

This subsection introduces the types of objectives/ goals
encountered in the formation control, goals enforced by the
external'® factors.
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One of the classical examples where connectivity main-
tenance is externally induced is the problem of efficient
coverage of a specific area by mobile sensors. For instance,
Ritter et al. (2014) tackled this problem for a mobile sen-
sors platform composed of a number of sensor-equipped
autonomous vehicles. An adaptive observation strategy
for on-line estimation of the state of a dispersion process is
proposed, based on the model of the process and the multi-
agent collaborative systems. The multi-vehicle cooperat-
ing system is modelled using MLD systems (Bemporad &
Morari, 1999); and controlled such that the target location
is reached in a reasonable time while simultaneously avoid-
ing any possible collision among the agents. The target
positions of the agents are received from the PDE?’-based
state estimation, more precisely the optimal measurement
locations. Thus, the MLD-systems represent a good al-
ternative for modeling multi-vehicle systems, because all
existing constraints (dynamics, collision avoidance, mea-
surement etc.) are embedded in a complete configuration,
which allows to use standard methods to solve the control
problem.

As well, a standard problem is given by the rendezvous
maneuver, a group of agents (usually, a fleet of spacecraft)
has to achieve a specific formation in a minimum time.
Papen et al. (2017) treat this problem for a fixed-wing-
UAV fleet in an environment containing both static and
dynamic obstacles. The control strategy is implemented
through a distributed architecture (specifically, MPC ap-
plied for each agent), an agent knowing only its own tra-
jectory (defined by its current position and velocity). By
introducing binary variables to model the obstacles and to
eliminate some nonlinear constraints (like velocity and ac-
celeration constraints), the MPC optimization problem is
transformed into a MILP. Noteworthy, the wake vortex of
turbulent air formed behind every UAV is modeled as a dy-
namic obstacle because within these regions it is arduous
to maintain control over the UAVs. To solve the resulting
MILP is necessary a considerable time, but with some re-
laxation of the constraints and fine-tuning the complexity
is limited.

5. Control architectures

There are three well-established classes of control archi-
tectures, and they have been extensively studied in various
application domains: centralized, distributed and decen-
tralized. The last two methods require the local controllers
to optimize over only their local inputs having similar com-
putational burden. The difference between these two is
given by the impact of communication, decentralized con-
trol requires no communication among the agents.

To identify /discuss the control architectures weaknesses
and strengths with respect to the motion planning field is
not the scope of this paper, thus, we only focus on how
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Table 3
Classification of MIP approaches in motion planning

Agent(s) Centralized Decentralized Distributed References(e.g.)
N =3/ N > 3,partially v X X Chen et al. (2016a)
Earl & D’Andrea (2005b); Haghighi et al.
LN v x . (2016); Janeéek et al. (2017a),
Ritter et al. (2014); Sun & Cassandras (2015)
1...N v v X Wang et al. (2015b)
1...N X X v Papen et al. (2017)
N1 Y « y Molinari et al. (2017); Ragi & Mittelmann

(2017)

Note: (v) treated, (x) not treated, (1...N) any number of agents

they are employed along with MIP. In Table 3, we delin-
eate a classification of MIP-based motion planning refer-
ences w.r.t. the control architectures and number of agents
involved in the formulations.

It is worth mentioning that the control strategies em-
ployed in other architectures than the centralized way are
optimization-based, with predilection MPC. Thus, in this
section an emphasis is put on the specific MPC implemen-
tations. Nevertheless, we have not neglected the references
where MIP is used specifically in distributed /decentralized
non-MPC strategies due to its capability to formulate task
allocation problems. These are extensively treated in Sec-
tion 3.1.

The control architectures involving MIP naturally
evolve from centralized to decentralized and distributed
strategies.

5.1. Centralized

Due to its theoretical simplicity, the centralized ap-
proach is the most used way of controlling a multi-agent
system. In this architecture, the multi-agent system is
treated as a whole, equating an extended single-agent sys-
tem. The physical restrictions (e.g. communication lim-
itations) are completely ignored, each agent having com-
plete knowledge on the behavior/actions of the others, all
information being available in the single global controller
Rawlings & Mayne (2009). However, this methodology is
limited, not only because of the undeniable physical con-
straints, but also due to numerical difficulties, induced by
the substantial complexity of the extended system.

As stated in Section 3, in the literature, MIP may ap-
pear at different levels of control. For instance, in Chen
et al. (2016a) the problem of collision avoidance is treated
for a multi-agent system (minimum N = 3 agents). They
consider N agents, each having a similar dynamic and
N —1, so-called, danger zones: Z;;. Every agent makes use
of two controllers: a “liveness controller” helps to complete
the agent own objective (e.g. reach a target) and a “safety
controller” has to keep away the agent from the danger
zones of the other ones. The architecture of the “safety
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controller” is centralized and it guarantees, for N = 3, that
every agent avoids entering into any other danger zones.
Therein, MIP is used to provide the higher level control
logic to synthesize the cooperative “safety controller”. The
objective is to group the agents in a pair such that the cor-
responding avoidance maneuvers may not lead to a dan-
gerous configuration for the other agents.

For the generic obstacle and collision avoidance prob-
lem (in MI-MPC framework Section 3.4), in the corre-
sponding OCP for the global system the dynamic behav-
ior of the individual agent is coupled by means of the cost
function and the constraints. Also, perfect knowledge of
each agent dynamics (described by equations) is available
to all the other agents. Consequently, the global model
will be used in a predictive control context which permits
the use of non-convex constraints for collision avoidance
behavior.

A non-MPC example, Wang et al. (2015b) the problem
studied in this paper is the collision avoidance in a multi-
robot system. The approach is quasi-similar with one of
previously-mentioned papers (Haghighi et al., 2016). The
workspace is decomposed in equally-shaped cells and each
cell cannot be visited by two robots at the same time. Each
robot has to complete its own task by choosing from a set
of possible trajectories. These trajectories are described
by a sequence of adjacent cells and by the crossing time
(in which an agent passes through respective cell). In this
formulation the collision-avoidance problem becomes a re-
source allocation problem (the cells can be considered a
shared resource). Assuming that the control of the agents
is independent (i.e. they cannot pause their movement
in order to give or to receive priority), the idea presented
in this paper is to compute an initial delay time for each
agent such that no collision to appear. In the centralized
control strategy the trajectory is chosen by a central unit.
Hence, the control algorithm has to return, besides the
initial time delay, an “optimal” trajectory, the objective
remaining unchanged. The associated optimization prob-
lem is MIP, binary variables modeling the disjunction, re-
sulted from the corresponding resource allocation problem.
Noteworthy, the objective is a min max one because it is



assumed that the robots work in parallel and the shortest
(min) time for finishing the movement is the time of the
slowest (max) robot. The objective can be reformulated
as a standard minimization through the tools from, e.g.,
Smith & Taskin (2008).

While the complexity of MIP formulations increase in
worst case situations exponentially w.r.t the number of
binary variables, the reliability of MIP for real-time im-
plementation decreases in the case of higher dimensions of
the global systems. The same drawback is valid for the
increase of the number of agents regardless of the formu-
lation’s efficiency.

5.2. Distributed

The underlying idea of distributed control approaches
Maestre et al. (2014) is to divide the global control problem
into a certain number of sub-problems, each involving a
specific collection of local controllers or agents. Hence,
each agent does not have access at the global information,
but can be partially informed on the behavior of the other
components of the local subsystem.

In large-scale multi-agent systems, where the agents are
dispersed within a given workspace, it is more convenient
to handle a set of smaller and/or simpler problems than
treating the complex global system. The overall control
strategy is given by the behavior of the local controllers,
which may have a cooperative interaction. There are sev-
eral advantages compared to centralized architecture: e.g.,
decrease of complexity and scalability. However, a loss of
performance and of global stability may become appar-
ent, being hard to be ensured compared to the centralized
approach. Decoupling into independent nodes, design of
robust control strategies, consensus seeking, all of these
try to solve the problem, but still, with limited success
Cao et al. (2012).

Within the MIP framework, most of the distributed
control approaches using MPC strategy have been pro-
posed. The features of MPC allow to handle explicitly
the interactions between the different subsystems/agents.
For example, in Schouwenaars (2006), a distributed MPC
strategy is employed for navigation of a fleet of vehicles
through a partially unknown cluttered environment.

Due to the inherent problem of complexity, and im-
plicitly the lack of scalability, MIP was not a popular
method for distributed architectures. However, the con-
trol community has given a particular attention to the
distributed MIP resolution algorithms. For instance, Testa
et al. (2017) propose an algorithm for resolution of a MILP
where the constraints are distributed among the agents.
Likewise, Vujanic et al. (2016) provides a decomposition
method particularly useful for large scale MILPs, based
on Lagrangian duality. Moreover, there are some works,
which formulate the problem using MIP techniques, and
for its resolution an heuristic method is employed, e.g.,
Van Parys & Pipeleers (2016) use Alternating Direction
Method of Multipliers (ADMM).
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5.3. Decentralized

During the last decades, decentralized control of multi-
agent systems has gained a significant amount of atten-
tion due to the great variety of its applications, including
multi-robot systems, transportation, multi-point surveil-
lance and biological systems. An important topic of re-
search is multi-agent navigation in both the robotics and
the control communities, due to the need for autonomous
control of multiple robotic agents in the same workspace.
Important applications of multi-agent navigation arise also
in the fields of air-traffic management and in autonomous
driving by guaranteeing collision avoidance with other ve-
hicles and obstacles.

As seen in the previous subsection, a main motivation
for the modification of the control architecture is the com-
putational burden of the centralized problem. A first al-
teration was to decompose (“distribute”) the problem and
solve the resulting sub-problems in expectation of achiev-
ing a consensus. Proceeding further and eliminating the
aim of reaching consensus leads to a decentralized strategy
(“everybody for itself”). Under this strategy, each agent
owns a controller, which acts without taking into account
any information about the behaviour of the other agents.
Moreover, the exchange of information is limited (in most
of the cases, reduced at a minimum).

A basic illustration for the decentralized approach is
the merging junctions®! problem Bali & Richards (2018).
In a centralized (or in a well constructed distributed) ap-
proach, whenever two (or more) agents arrive at an inter-
section, there is a prioritization w.r.t a well defined crite-
rion. For the decentralized approach, with limited com-
munication and with no guarantee of optimality, in the
most probable scenario the system reaches a deadlock. In
other words, the decentralized approach cannot provide,
usually, the theoretical guarantees characterizing the cen-
tralized and distributed approaches. However, in practice,
the decentralized methods may lead to efficient strategies,
avoiding the computational demand of the others methods;
but an understanding of the sensitive aspects is absolutely
necessary.

For instance, recalling the previously-mentioned (Sub-
section 5.1) example from Wang et al. (2015b) — the prob-
lem of collision avoidance in a multi-robot system. Using
a decentralized control strategy, they assume that each
agent chooses its trajectory independently (from an a pri-
ori known set), without informing the rest of the systems.
In this case the collision avoidance strategy should con-
sider all possible trajectories combinations and has to re-
turn the initial time delays such that the movement to be
finished in the shortest time without collisions. The re-
sulting optimization problem is MIP, as in the centralized
case.

21Unsignalized intersections.



6. Control applications using MIP

While previous sections deal with modeling and control
issues, this section covers some critical details for both the
computer simulations and the hardware implementation of
the solutions and MIP approaches presented throughout
this manuscript.

It is worth mentioning that there does not exist some
clear and uncontested guidelines capable of generating the
most efficient MIP formulation for a given problem. The
performance?? of a formulation is customarily strongly de-
pendent on the specific software tools or hardware plat-
form. In the sequel, these aspects are briefly documented,
the emphasis being placed on differences between the ex-
isting alternative implementations and their influence over
the practical performance in motion planning.

6.1. Software for MIP

As was stated above, MIP is a powerful tool for plan-
ning and control problems due to its modeling capability
and, additionally, the availability of specialized solvers. In
the last decade, a consistent effort was put on developing
MIP-specialized solvers in order to mitigate the numerical
issues generated by the presence of integer/binary vari-
ables.

The optimization modeling languages are toolboxes
which convert the mathematical formulation in a solv-
able form for the solvers.

Prior to proceeding further, we should emphasize the
difference between optimization modeling languages and
solvers. The former designates a toolbox/package/library
which interacts with the latter: the mathematical model
of the constrained optimization problem is put into an in-
ternal form which is then solved, and whose subsequent
result is retrieved and displayed. Note that most modern
tools do pre-processing steps (which may reduce the num-
ber of binary variables) or may even, automatically, put
the problem in a MI form (e.g., in YALMIP when specify-
ing a complementarity condition or a bilevel program).

Diverse programming languages and online resources
facilitate the specification and resolution of MIP problems.
In addition to classical Matlab, recently the attention of
the optimization-based control community is moving to-
wards other advanced programming languages as Python
or Julia, which have become more accessible to the broader
scientific and engineering community. In Table 4 we sum-
marize these programming languages, the modeling lan-
guages and the solvers which may be joined in order to
solve MIP.

Without being exhaustive, there are some popular opti-
mization modeling tools: YALMIP (Lofberg, 2004), MPT
(Herceg et al., 2013), AMPL (Fourer et al., 1987), CVXPY
(Diamond & Boyd, 2016), PYOMO (Hart et al., 2017) or

22Computational time, feasibility etc.
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JuMP (Dunning et al., 2017). All?3 of them are open-
source modeling languages which allows users to express
a wide range of optimization problems (not exclusively,
MIP) in a high-level (almost algebraic or pseudo-code)
syntax. As depicted in Table 4, each modeling language
is developed taking into account the specific features of
a programming language. Note that an hierarchy among
these modeling tools is strongly dependent on the experi-
ence of the user/researcher, the preference for one of them
has a negligible impact regarding the resolution perfor-
mances (e.g., computational burden). These performances
are influenced rather by the choice of the solver w.r.t. the
formulation.

Regarding the solvers, there exists a broad variety of
options, we mention here that the most used in the field
of MIP-based motion planning are CPLEX (2009), Inc.
(2014) or Mosek (2015). For instance, Huang & Peng
(2017); Zhang et al. (2017b) or Mukai et al. (2017), use
GUROBI, while Richards & How (2002); Schouwenaars
et al. (2001b) or Earl & D’Andrea (2005a) utilize CPLEX.

Remark 15. The majority of the solvers (mentioned in
Table 4) is able to deal with quadratic objectives and/or
constraints, elements which are influential in many control
strategies and/or applications, see, e.g., (18). ¢

While a review of how the resolution techniques em-
ployed by the solvers is well beyond the scope of this pa-
per, we mention only the core techniques: branch-and-
bound and cutting-plane algorithms. There exists a multi-
tude of variations, each with its strengths and weaknesses.
For instance, branch-and-cut method (Stubbs & Mehro-
tra, 1999) gathers the advantages of branch-and-bound
and cutting-plane algorithms, decreasing the number of
nodes to be explored in the search tree by iteratively in-
troducing constraints to cut the feasible region.

In general, the solvers may be classified using different
criteria, e.g. convex/non-convex, heuristic/deterministic.
There are in the literature more detailed surveys, e.g. Be-
lotti et al. (2013), treating this topic, but what is relevant
from the current paper’s perspective is the following as-
pect. Some of the currently available and reliable solvers
may employ heuristics in order to accelerate the standard
algorithms. This is a necessary requirement especially for
complex (large) problem formulations and real-time reso-
lution. As a word of caution, the performances (partic-
ularly, computational times) may vary considerably from
a solver to another due to the use of heuristics. Hence,
the concept of “the best MIP solver” is pointless, in our
opinion. On a more positive note, we have observed that
for any given problem there can be found a solver, capable
of handling it.

Besides these powerful commercial solvers, there ex-
ists a variety of non-commercial/open-source solvers able
to provide reasonable performances, in some cases better
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Table 4
Software for MIP implementation-examples

Software

References(e.g.)

Programming Language MATLAB Bemporad & Mignone (2000); Culligan (2006); Janecek
et al. (2017a)
Python Welder et al. (2018)
Julia Lubin et al. (2018)
Modelling Language Yalmip Mukai et al. (2017); Zhang et al. (2017b)
GAMS Lee & Grossmann (2000)
CVX/CVXPY Dueri et al. (2017)
Pyomo Legg et al. (2012)
JuMP Welder et al. (2018)
AMPL Richards & How (2005, 2002)
Solvers CPLEX Janecek et al. (2017a); Stoican et al. (2013)
GUROBI Janecek et al. (2017a)
SCIP Berthold et al. (2012)

than commercial ones. An important characteristic of this
kind of solvers is that their adjustment and adaptation to
the challenges encountered in the real-world applications
and to the real-time control requirements can be done in a
faster and more straightforward manner than commercial
ones which, in addition, have to take into account commer-
cial considerations, balance between free/payed function-
alities, etc.. For instance, SCIP (https://scip.zib.de)
(Achterberg, 2009) was at the beginning a MILP solver
which implemented the branch-and-bound algorithm with
various heuristics, while the later versions were able to

solve MINLPs with quadratic objective, non-convex MINLPs

or MISDPs (mixed integer semidefinite programs).

Moreover, a part of the control community has con-
centrated its attention on techniques to adapt the stan-
dard MIP resolution algorithms. For instance, Bemporad
et al. (1999) propose an efficient branch-and-bound algo-
rithm, enhancing the tree exploring strategy. The appli-
cation therein involves the control and state-estimation
for a MLD-system (Bemporad & Morari, 1999). Simi-
larly, Bemporad (2015) provides an algorithm which com-
bines the classical branch-and-bound with nonnegative-
least-squares (NNLS) methods, in order to solve MIQP
problems generated by the hybrid MPC applications. The
idea is further developed in Naik & Bemporad (2017) where
the NNLS is replaced by accelerated-dual-gradient projec-
tion algorithm.

There are also some other works which exploit the par-
ticularities of the problem structure within branch-and-
bound algorithm. For example, Feng et al. (2017) propose
a variation of the branch-and-bound algorithm, branch-
and-lift algorithm, which has better performances in reso-
lution of a classical obstacle avoidance problem. As well,

Hespanhol et al. (2019) provide an iterative variation branch-

and-bound algorithm which exploits the block-sparse op-
timal control structure of the problem and also the infor-
mation at previous time steps.

As a side remark, besides the standard MIP resolu-

tion algorithms, there exist in the literature some heuristic
techniques. Without being exhaustive, we mention only
two?* of these:

i) ADMM (alternating direction method for multipliers)-
based methods Kanno & Kitayama (2018); Takapoui
et al. (2020). Although an algorithm for solving
convex optimization problems, ADMM turns out to
be an effective method to approximately solve some
nonconvex problems as well. The idea behind the
heuristic method is to use multiple restarts of ADMM
with random initial points, in most of cases this
provides an acceptable solution with small compu-
tational cost. This technique is frequently used in
optimal (power) flow problems, e.g. traffic signal
control Timotheou et al. (2014) or network Abboud
et al. (2015); Scott & Thiébaux (2014). However,
Van Parys & Pipeleers (2016) employ ADMM in mo-
tion planning for a multi-vehicle systems. As well,
for this technique there exist a multitude of varia-
tions and adaptations. For instance, Stellato et al.
(2018) develop a novel branch-and-bound algorithm,
tailored for a ADMM-based solver.

ii) FP (Feasibility Pump) Fischetti et al. (2005). A
heuristic method for finding a feasible solution of
a given MIP, FP aims to minimize the difference
between the solution of the LP-relaxation and the
one of the original MIP. For instance, Miertoiu &
Dumitrescu (2019) use and adapt the algorithm for
sparse representation.

Remark 16. Apart of solvers and modeling languages,
there exist in the literature works as Janecek et al. (2017a)
which provide a toolbox for MPC-based control for obstacle
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Table 5
Alternative and heuristic techniques for MIP resolution

Alternative References

Bemporad (2015); Bemporad & Mignone (2000); Bemporad

Branch-and-bound variation

ADMM

FP

avoidance problem. The toolbozx is developed in an object-
oriented manner, allowing to readily set up the associated
MPC problem and, afterwards, providing an efficient for-
mulation of the underlying optimization problem for any
inexperienced user. In other words, the OPTIPLAN tool-
boz encapsulates all aspects related to formulation and res-
olution of the MIP problem. ¢

6.2. Hardware platforms

Before detailing, it is worth mentioning that some of
the existing works takes into account the particularities
of the hardware platforms developing specific methods,
whereas most of the remaining presents generic methods
able (or not) to adapt to the constructive constraints.

There exists a broad variety of robotic platforms which
are used in academic and/or commercial applications: aerial,
surface or underwater vehicles. Frequently, these robots
are involved in activities which are unsafe or troublesome
for humans. Even though different levels of autonomy are
possible, we can easily remark that the control commu-
nity has considered with predilection the unmanned ve-
hicles. The main justification comes from the elimina-
tion/mitigation of human risk. This aspect has benefi-
cial consequences on cost effectiveness and, in most of the
cases, on accuracy of the operations.

In Table 6, we depicted the classes of unmanned ve-
hicles which have been used as hardware platforms for
MIP-based motion planning problems: UAV (unmanned
aerial vehicle), USV (unmanned surface vehicle) or UGV
(unmanned ground vehicle), UUV (unmanned underwa-
ter vehicle). The specific characteristics of each class (or,
sometimes, sub-class) of vehicles lead to various challenges
in the design of the motion planning strategy. For in-
stance, the USVs/UGVs are moving in a bidimensional
workspace, whereas the UAVs and UUV in a 3D workspace
thus leading to a higher complexity of the control prob-
lem. Another classification is given by the ability to stop
and/or go backwards, for example, fixed-wing UAV need
to maintain a minimum velocity (to avoid stalling), but the
quadcopters/helicopters (rotary wing UAVs), having more
degrees of freedom, can maintain an arbitrary velocity (up
to being stationary in midair, i.e. hovering).
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et al. (1999); Feng et al. (2017); Hespanhol et al. (2019); Naik &
Bemporad (2017)

Abboud et al. (2015); Kanno & Kitayama (2018); Scott &
Thiébaux (2014); Takapoui et al. (2020); Timotheou et al. (2014)

Fischetti et al. (2005); Fischetti & Salvagnin (2009); Miertoiu &
Dumitrescu (2019)

For instance, in Culligan (2006) an experimental val-
idation of the MILP framework is done: test flights on
an indoor quadrotor testbed demonstrate the reliability of
the approach for the optimal path planner. For example,
using the MILP path planner to create a plan ten sec-
onds into the future, the quadrotor can navigate through
an obstacle-rich field with MILP solve times under one
second. Simple plans in obstacle-spare environments are
solved in less than 50ms. A multi-vehicle test is also used
to show non-communicating deconfliction trajectory plan-
ning using MILP.

Many applications in precision agriculture, disaster man-
agement and target tracking assume a collaboration be-
tween an UAV and ground-based sensors. The UAV serves
as a mobile sink: it prolongs the sensors’ lifetime (by can-
celing their need to communicate with a base station Xu
et al. (2018)) and reduces operational costs (by canceling
the need of direct human supervision Jawad et al. (2017)).
Such applications impose energy-based limitations in the
motion planning procedure, either induced by path length
Khan & Kumar (2016) or by communication requirements
Xu et al. (2018). Furthermore, many works simplify the
motion planning by assuming predefined path primitives
(e.g., the UAV is constrained to move in straight, parallel
lines Wang et al. (2015a) or in spirals Yue & Jiang (2018)).
Not in the least, when the environment is cluttered or un-
even, the communication links may be weakened or lost as
a result of signal attenuation Jawad et al. (2017). Thus,
bounds on the communication time at a waypoint have
to be considered, which are difficult to handle by fixed-
wing UAVs. As stated elsewhere, the result is a nonlinear
(in cost and constraints) constrained optimization prob-
lem which is often impractical to solve. Even a relatively
simple requirement as ensuring hovering at the waypoint
leads to a MINLP formulation (Mathur et al., 2016).

7. Alternatives to MIP

This section briefly presents the existing alternatives to
MIP which are extensively used in motion planning prob-
lems. We delineate in Table 7 the state-of-the-art refer-
ences for each of these alternatives.



Table 6
Classification of the hardware platform

Experimental platform  References

Chen et al. (2016a),Bellingham et al. (2002a,b); Culligan (2006);

UAVs

Papen et al. (2017); Ragi & Mittelmann (2017); Rey & Hijazi

(2017); Richards & How (2002); Schouwenaars (2006)

UGVs

7.1. Alternative formulations

Alternative formulations for MIP range from graph-
based approaches, potential field formulations to the
corresponding optimization problems relaxations.

Graph-based approaches

In contrast to the MIP approaches where the discrete
decisions are encoded in a mathematical formalism and are
solved as such, the graph-based approaches reduce these
discrete decision to the search of the shortest path between
nodes in a graph. Although these techniques can be ap-
plied for any MIP-based motion planning problems (see
Section 3), in this subsection we concentrate on collision-
free path/trajectory planning.

Remark 17. For finding of the shortest path in a graph

there exists in the literature various algorithms (e.g., Latombe

(2012); LaValle (2006) ). The most influential ones are
Dijkstra’s , greedy or A* search algorithms. ¢

The graph-based approaches in path planning are classi-
fied by graph construction. A first category builds the
graph based on the cell decomposition methods, consider-
ing an explicit representation of the (multi-obstacle) en-
vironment. Thus, the similarity with the MIP approach
is undeniable, polytopic sets being a popular decomposi-
tion primitive. For instance, polytopic sets were already
used in Lozano-Pérez & Wesley (1979). More precisely,
the graph nodes are defined by the vertices of the poly-
topic obstacles, and by the initial and the final point of
the path. This graph is named the visibility graph because
the link between the nodes is given by a straight line which
does not intersect any obstacles. In other words two linked
nodes can “see” each other. Thus, the collision-free path
is the shortest path through this graph between the initial
and final position of the agent. This approach performs
well from a theoretical perspective if the considered agent
is a point. For the general case when the dimensions are
not negligible, the above method is extended by consid-
ering an artificial “growing” of the obstacles (commonly,
via Minkowski sum). The main drawback of the above
presented method is the computational burden, specifi-
cally in a complex environment (large number of obstacles
with complicated forms) where the number of vertices is
exhaustive.
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Bali & Richards (2018); Ballesteros-Tolosana et al. (2017);
Fayazi et al. (2017); Molinari et al. (2017)

The second category tries to mitigate this issue avoid-
ing an explicit representation of the environment. This
type of approach is also referred in the literature as sampled-
based algorithms (see LaValle (2006)) for a complete liter-
ature review on this topic). Hence, the explicit represen-
tation is eliminated and the focus is put on a collision
checking module. This module checks the feasibility of
the trajectories connecting random sampled points from
the obstacle-free space. The graph is constructed such as
the link between two nodes represents a feasible path in
the (multi-obstacle) environment.

Remark 18. An interesting notion for sampled-based al-
gorithms is the probabilistic completness (Barraquand et al.,
1997; Ladd & Kavraki, 2004). That is, the probability that
the algorithm returns a feasible solution tends to one if the
number of sample points is sufficiently large (— oo). This
is empirically demonstrated in Hsu et al. (2007). ¢

In the literature, there are two important sampled-
based algorithms: PRM (Probabilistic RoadMaps) (Hsu
et al., 2007) and RRT (Rapidly-exploring Random Tree)
(Weiss et al., 2017). The difference between them is given
by the method of constructing the graph. The former
(PRM) is a multiple-query method in the sense that af-
ter the construction of the roadmap (a rich set of feasible
paths) it answers queries by computing an optimal path
through the graph. Henceforth, the PRM is an useful
method if an awareness map of the environment is avail-
able (Karaman & Frazzoli, 2011). There are a plethora
of variants for the PRM, each representing a valuable im-
provement Karaman & Frazzoli (2011); Ladd & Kavraki
(2004).

For the case when the environment is not a priori known,
the RRT method is more suitable. In this approach the
construction of the graph is incremental, the algorithm
stops when a large enough set of collision-free paths is at-
tained. Thus, a collision-free sample is added as a node
in the graph and is linked with the surrounding nodes.
The obtained graph is actually a tree. As PRM, RRT
has a variety of versions. Some take into account the
equations of motion and generate attainable paths LaValle
& Kuffner (2001), others generate only geometric paths
which became reference trajectories for a lower level con-
troller. Moreover, some versions are tailored for complex



and/or unstable dynamics Leonard et al. (2008) or for un-
certain dynamics Weiss et al. (2017).

Besides the classical graph-based approach, there ex-
ists in the literature a multitude of methods which com-
bine the standard graph algorithms with advanced control
strategies. For instance, Berntorp et al. (2018) presents
a method for real-time integrated motion planning which
uses feedback control, positive invariant sets, and equi-
librium trajectories of the closed-loop system. In order
to generate the collision-free trajectories the method em-
ploys, in an offline manner, a graph search over reference
paths, each being associated with a constraint admissible
positive invariant set. Next, they use pre-designed uncon-
strained linear quadratic controllers to track the reference
paths.

As well, Altché & Fortelle (2017) addresses the prob-
lem of trajectory planning using an approach which con-
sists in partitioning the feasible (“collision-free”) region,
while allowing to decompose the NP-hard problem as a
path-finding problem in a well-designed graph followed by
a (simple) optimization phase (“in MPC fashion”) for a
quadratic convex cost function. Also, Franze & Lucia
(2015) deals with the problem of obstacle avoidance in
an unknown environment (considered agents are UGVs
- autonomous ground vehicles). The proposed approach
consists of two parts: an offline part which computes the
ellipsoidal approximation of the one-step controllable sets
for all possible scenarios (these approximations guarantee
the existence of a feasible path through multi-obstacles en-
vironment) and a online part which involves the develop-
ment of a MPC-based strategy in order to keep the agent
in that sequence of ellipsoidal sets.

Potential field formulation

While MIP-based methods take explicitly into account
the constraints and lead to a constrained optimization
problem, the potential field-based formulations Chen et al.
(2016b) relax the constraints by adding penalty terms in
the cost. Essentially, the potential field approach relies
on construction of a scalar function (so-called, the po-
tential). This function takes high values when the agent
stays within the interdicted zones. In the collision-free
workspace the function is decreasing towards the goal con-
figuration (i.e., the potential associated to the destination
point is minimal). Thus, the agent may attain the final
point moving in the direction of the negative gradient of
the potential. Rimon & Koditschek (1992) provides an
historical (and more detailed) review on the potential field
formulation and how this approach is involved in motion
planning. An interesting characteristics is that the poten-
tial field formulation is frequently used in decentralized or
distributed control strategies Filotheou et al. (2018).

7.2. Optimization problem relaxation

As was stated above, one of the most significant ca-
pabilities of MIP is to handle non-convex constraints in
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non-convex optimal control problems. A natural way to
tackle this type of problems is by extending the methods
and techniques used for the convex optimal control. Often,
the MI formulations are solved heuristically (e.g., Quar-
itsch et al. (2010) applies genetic algorithms) or relaxed by
iterative solving (the optimization problem is broken into
“reasonable” sub-problems which are solved iteratively).
As an example, Xu et al. (2018) employs binary variables
to model the link between an UAV and a ground sensor but
relaxes the formulation through time allocation tactics and
channel communication pre-scheduling. Thus, in the liter-
ature, a considerable effort was put in finding a technique
which allows the translation/relaxation from non-convex
to convex formulations without any major gap. This is re-
ferred as convex relaxation or convexification of the non-
convex optimization problem. In the literature there are
various works providing methods for convexification under
several labels: e.g., convex relaxation, succesive convexifi-
cation or time-varying constraints.

As its name suggests, the basic idea of successive con-
vexification is to solve a non-convex optimal control prob-
lem via a sequence of convex sub-problems. The non-
convexity comes either from having non-linear dynamics
(Mao et al., 2016) and/or from non-convex state (and/or
control) constraints (Mao et al., 2017). In both cases the
same technique is applied: linearization, commonly, using
a first order Taylor approximation (in a successive man-
ner). Therefore, a preliminary condition on the functions
which generate the non-convexity is necessary: they have
to be differentiable. In an iterative manner, the lineariza-
tion is done about the solution obtained at the previous
step.

Although the linearization procedure leads to convex
formulations, it also introduces two new issues, namely
artificial infeasibility 2° and approxzimation error. These
two drawbacks are addressed in the literature, a variety
of algorithms was developed and, recently, a convergence
analysis was elaborated Liu & Lu (2014).

For instance, Dueri et al. (2017) deals with the problem
of the trajectory optimization for autonomous vehicles in
an environment containing cylindrical and ellipsoidal ob-
stacles. The approach employs the Successive Convexifi-
cation technique which is used to solve the non-convex op-
timal control problem via a convergent sequence of convex
optimization problems. It considers a discrete-time, finite
horizon constrained optimization problem with a number
of non-convex state constraints. Several assumptions are
necessary in order to employ the technique at hand. The
first assumption can be readily satisfied and involves that
the obstacles boundaries should not be in contact with
the ones of any other constraint. A second problematical
assumption builds on a dynamic with a finite number of
stationary points. Having the general formulation for the

25 A solution of the original non-convex problem can become in-
feasible for the sequence of the convex sub-problems.



non-convex problem, the successive convexification tech-
nique is applied in order to obtain the sequence of convex
sub-problems, each being linearized in an iterative proce-
dure. This linearization results in a convex problem but,
at the same time, introduces two drawbacks: approxima-
tion error and artificial infeasibility. To mitigate these two
issues of the convexification, the authors introduce trust
regions and penalty functions, respectively. The draw-
backs of the convexification procedure and the ways to
alleviate them are treated in-depth in the references such
as Harris & Agikmege (2014).

An interesting alternative for handling the non-convexity
of the collision avoidance problem is based on time-varying
constraints. The idea is mentioned in Frasch et al. (2013)
and is used in, e.g., Janecek et al. (2017a) and Yu et al.
(2014). In few words, the non-convex domain is decom-
posed in a sequence of convex regions and switching in-
stants are introduced. At each moment the agent should
stay in one of the convex regions. For instance, in Janecek
et al. (2017a) the switching instants are steps of the pre-
diction horizon in the MPC controller. Moreover, this ap-
proach is coupled with a heuristic black box which estab-
lishes the get-around direction and the sequence of convex
sub-domains. This method can be seen as a particular-
ization of the successive convexification. The difference
comes from the way of obtaining the sequence of con-
vex sub-problems/sub-domains. Time-varying constraints
approaches consider an a priori known number of sub-
domains, since the successive convexification is an iterative
method, the sequence is growing until a feasible solution
is obtained.

In Rey & Hijazi (2017) a different approach for convex
relaxation is presented. For instance, therein the authors
treat the aircraft conflict problem?®. Basically, the pro-
vided formulation is based on complex numbers represen-
tation and it results in a tight convex relaxation for the
inherently non-convex optimization problem. It is worth
mentioning that the above reference includes a compre-
hensive literature review on the formulation of the air con-
flict problem as an optimal control problem using mixed-
integer techniques (as MILP or as MINLP)?". Coming to
the application, the aircraft separation condition is stated:
the relative position of two aircraft should be greater than
a certain threshold. As it was expected, this condition
leads to a non-convex feasible domain which is modeled
using a binary variable (actually, the feasible region is
composed of two convex ones and the solution should be
in one of these two convex subsets). The control actions
(speed variation rate and heading deviation angle) admit a
natural representation in the complex number form. Even
so, the non-convexity is not eliminated (the disjunction

26 According to the air traffic rules, the aircraft have to be sepa-
rated by at least 5 nautical miles horizontally and 1000 ft vertically,
otherwise they are in conflict.

27 A more detailed review on the air conflict detection and resolu-
tion can be found in Kuchar & Yang (2000).
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constraint is maintained) but the considered formulation
is useful towards the convex relaxation approach. This
approach is extensively treated in Coffrin et al. (2017),
where the non-convex constraint is tackled by deriving the
corresponding convex hull, the problem being transformed
in a MIQCP (mixed-integer quadratically constrained pro-
gram). A further relaxation is possible by entirely omit-
ting the non-convexity. An algorithm which included the
relaxation is presented and tested (with excellent results)
on two classical benchmark problems for conflict resolu-
tion.

As well, Huang & Peng (2017) solve the MI optimiza-
tion problem using sequential convex optimization method
(i.e., search the local optimum by forming convex sub-
problems), avoiding the eventual curse of dimensionality.
Likewise, Papen et al. (2017) solve a MILP by using a re-
laxation of the constraints and fine-tuning the complexity
in order to limit the computation time w.r.t. a classical
MILP resolution.

8. Conclusions and future challanges

In the preceding material we provided our evaluation
on the state-of-the-art for MIP-based motion planning and
also we aim to identify active topics and open problems in
this field. It is important to mention that the valuable
insights in the description of a non-convex feasible region
represent an useful modeling tool not only for the motion
planning but also for broader control fields.

As mentioned before, although the history of MIP starts
almost 60 years ago, the interest of the control and robotic
community on this topic is relatively recent and the re-
search in this area is quite active. It is obvious that there
exists a substantial progress in all of the topics mentioned
in Section 3 and Section 4. However, there are many points
that can be further enhanced since the developing of new
and performing methods to provide exact solution for MIP
is exponentially growing.

As open and active problems regarding mainly obstacle
and collision avoidance topic we can mention the trade off
between conservativeness and complexity in non-convex
region modeling and representation. Even though there
exist several valuable improvements on classical MIP for-
mulations, the complexity remains an arduous issue impos-
ing restrictions: only a small size problem can be solved
in a real-time manner. The improvements may be accom-
plished by exploiting the underlying combinatorial struc-
ture of the MIP formulation. Nevertheless, whenever the
problems are inherently non-convex and/or they involve
alternative choices, then mixed-integer representations pro-
vide an useful and powerful tool, but we have to proceed
with caution evaluating the structural properties that may
lead to compact formulations. As well, important progress
may be expected in the direction of the MIP resolution al-
gorithms, which can be adapted and improved in order
to attenuate the inherent complexity of the mixed-integer
approaches by capitalizing on the different particularities



Table 7
Classification of the alternatives of MIP in motion planning

Method/Technique References

Hsu et al. (2007); Karaman & Frazzoli (2011); Ladd & Kavraki

Graph-based algorithms
et al. (2017)

Potential field formulation

(2004); LaValle (2006); Lozano-Pérez & Wesley (1979); Weiss

Chen & Wang (2005); Filotheou et al. (2018); Rimon &

Koditschek (1992); Vlantis et al. (2018); Vrohidis et al. (2018)

Convex relaxation

Mao et al. (2017, 2016), Liu & Lu (2014)

Harris & Agikmesge (2014), Rey & Hijazi (2017)
Frasch et al. (2013); Janecek et al. (2017a); Yu et al. (2014)

of the problems to be solved. Additionally, another as-
pect that can be viewed as an open issue and, in some
sense, is generated by the previous ones is that there are
not so many works in the field of MIP-based motion plan-
ning which validate the theoretical results over, at least,
experimental platforms, even though there are many ap-
plications able to benefit from their use, e.g., search and
rescue, environmental measurements tasks, area coverage
and the like.

This article has reviewed some recent research and de-
velopment in MIP-based motion planning. In addition to
the results reviewed above, there are many other publica-
tions treating MIP formulations in feedback decision mak-
ing that could not find a direct link with the scope of the
motion planning in spite of our best effort. Covering all
the variety of application and often inhomogenous problem
formulations involving MIP is a task that can be challeng-
ing even for a review.
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