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France, e-mail: {martin.soyer,sorin.olaru}@ centralesupelec.fr

Abstract - This paper deals with control design of high performance driving simulator Motion Cueing Algorithms
(MCA). The highly constraint environment used by manufacturers to simulate driving experience implies a smart
exploitation of the workspace and actuators in order to improve the acceleration feelings rendering to the driver.
Since the two past decades, optimization-based motion cueing algorithms have been developed in this purpose,
particularly, the Model Predictive Control (MPC) framework provides the handling of constraints applied to the
system to find an optimal control action. However, the design of MPC-based MCA is a difficult task due to the
theoretical and practical requirements such as stability and recursive feasibility guarantees. This contribution is a
preliminary study of the application of a novel optimization-based control technique for MCA called Interpolation-
Based Control (IBC). Recently developed, IBC showed similar performance as MPC for regulation problems by
decreasing the computation time. In this paper, an extension of IBC to the tracking problem is studied for motion
cueing.
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1. Introduction
During the past decades, the need of an improved
management of the workspace for dynamical simula-
tors led to a more specific interest to control tech-
nique based on optimal control theory. The con-
trolled structure that provides a strategy for displace-
ments of simulator’s cabin according to rails tra-
jectories and hexapod tilt angles is called Motion
Cueing Algorithm (MCA) and its operating princi-
ple is given in Figure 1. Constrained optimization
provides a framework that overcome problems in-
duced by filter-based algorithms such as the under-
exploitation of the workspace or the backlash effect
[Fan12, Fan14, Ven16]. Specifically, the Model Pre-
dictive Control (MPC) framework, firstly used for MCA
in [Dag04], is actually the most studied in the high-
performance driving simulation field, it minimizes a
tracking acceleration error on a prediction horizon
by handling constraints on workspace and actuators
limitations in real-time online process. Optimization-
based techniques under constraints are designed in
order to consider optimization problems as feasible
and the technique as stable [Fan16, Ren19]. The pa-
rameters tuning problem remains one of the topics
under investigation with optimization-based motion
cueing algorithms [Fan14]. The computation time to
solve optimization problems became a main subject
of attention due to real-time delay induced and some
work such as [Mun17] studied the complexity of op-
timization problems in order to reduce it to accel-
erate explicit algorithms. Many papers take into ac-
count the vestibular system to enhance the acceler-
ation rendering at the risk of increasing the complex-

ity. A degree of freedom to reduce computation time
is the solver of the QP problem of MPC ([Fan17]). In
the following, an adaptation of a less complex opti-
mization technique in a computation point of view is
presented.

This paper is a preliminary study about enhance-
ment of MCAs in order to improve the performance of
acceleration rendering during the trajectory tracking
in optimization-based MCA. Classical optimization-
based algorithms generate delays due to compu-
tational complexity, particularly when an anticipa-
tion is hard to provide for high frequencies refer-
ence signals. The aim of this work is to address
this issue by decreasing computational complexity
by preserving good performance for acceleration
tracking. A solution is to consider the optimization-
based control technique called Interpolation-Based
Control (IBC) developed recently for regulation
([Ngu11, Ngu13, Ngu14]). This technique handles
low complexity optimization problems by guarantee-
ing recursive feasibility and stability. The aim of this
paper is to present an adaptation of Interpolation-
Based Control for tracking trajectory (IBT) under con-
straints and then applying it as a basis of a Motion
Cueing Algorithm.

This technique needs less parameters to tune and a
significative part of operations are done offline such
as construction of the maximal controllable set which
is essential ingredient to guarantee recursive feasibil-
ity of optimization problems and to exploit additional
degrees of freedom as possible. The main concep-
tual step forward is that MCA handles real-time infor-
mation during the simulation to perform the acceler-
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ation tracking by avoiding constraints manipulations
on a long prediction horizon.
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Figure 1: Block diagram of MCA scheme,only bold elements
are considered in this paper

2. Problem Formulation
2.1. Models and Performance

Criteria
In this preliminary study the classical integrator state-
space model will be considerered due to its theoreti-
cal significance for the control of rails:

x(k + 1) =
[1 Ts

0 1

]
x(k) +

[ 1
2T

2
s

Ts

]
u(k)

x(k) ∈ X ∀k
u(k) ∈ U ∀k

(1)

where Ts denotes the sampling time. At each sam-
pling time k, x(k) = [p(k) v(k)]ᵀ denotes the vector
of position p(k) and speed v(k) while u(k) = a(k)
denotes the acceleration of the system according to
a direction.X (resp U) denotes the set of state (resp
control) constraints. In the literature, the acceleration
is practically considered as a state or an output to be
tracked. In this model the acceleration is considered
as a control input in order to decrease the dimension
of the system and as a main component of the criteria
to be optimized. Consider an acceleration reference
uref , then a classical formulation for model predictive
controller for MCA with respect to model (1) would
be:

min
u(k),...,

u(k+Nh−1)

Nh∑
k=0
‖uref (k)− u(k)‖2

R + ‖x(k)‖2
Qx

+ ‖x(Nh)‖2
P

s.t. x(k) ∈ X, ∀k ∈ {1, . . . , Nh}
u(k) ∈ U, ∀k ∈ {0, . . . , Nh − 1}
x(Nh) ∈ Ω

(2)

Where R (resp Qx) is a weighting matrix on control
action (resp on states) , P is the solution of the dis-
crete algebraic Riccati equation relative to the corre-
sponding LQR problem and Ω is the largest positively
invariant with respect to the linear feedback :

u(k) = −(R+BᵀPB)−1BᵀPA)x(k) = −Kx(k) (3)

The constraint on the last predicted state within Ω
guarantees the recursive feasibility of closed loop.

However, in the driving simulation the reference ac-
celeration profile can be a priori unknown and the
performance of the MPC controller increases with the
prediction horizon Nh, consequently the controller is
not practically adapted to small prediction horizons.
Moreover the trade-off between prediction length and
complexity of the optimization problems implies per-
forming MPC controllers have to handle many con-
straints and thus impact the optimization solving rou-
tine.

Recently, the Interpolation-Based Control (IBC) tech-
nique has been developed in [Ngu11, Ngu13] in or-
der to overcome those drawbacks in the regulation
framework.

2.2. Interpolation-Based Control
Consider two convex positively invariant sets Ωo and
Ωv containing the origin and Ωo ⊂ Ωv ⊂ X. At each
step k, the measured state x(k) can be decomposed
as a convex combination of two states of inner and
outer sets xo(k) ∈ Ωo and xv(k) ∈ Ωv as it is shown
in Figure 2:

x(k) = c(k)xv(k) + (1− c(k))xo(k) (4)

where c(k) ∈ [0, 1]. The convex factor c(k) and the
two components can be computed thanks to the lin-
ear programming problem :

minimize
(xv(k),xo(k),

c(k))

c(k)

subject to xv(k) ∈ Ωv

xo(k) ∈ Ωo

x(k) = c(k)xv(k) + (1− c(k))xo(k)
c(k) ∈ [0, 1].

(5)

At optimality, the two components xo(k) and xv(k)
are located on the frontier of their set as shown on
Figure 2 . Thus the control action can be computed
as the convex combination :

u(k) = c(k)uv(k) + (1− c(k))uo(k) (6)

where uv(k) (resp uo(k)) is the control action of xv(k)
(resp xo(k))

xo(k)
x

xv(k)
x

x(k)
x
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Figure 2: IBC geometric principle

The principle of IBC is summarized in the block dia-
gram of Figure 3.
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Figure 3: IBC block diagram

Practically, the inner set Ωo is chosen as the same
terminal maximal admissible invariant set Ω of MPC
where the control law is an aggressive linear feed-
back law and the outer set is the maximal controllable
set i.e the largest set where it exists a contol action
leading any state to the origin.

The main contribution of this paper is to propose a
preliminary study of an adaptation of IBC to the refer-
ence tracking under constraints to be applied to mo-
tion cueing framework.

3. Interpolation Based Tracking
for MCA

The Interpolation-Based technique has been ex-
tended to the tracking problem in [Soy20] and the
principle can be described as follow :

1. At step k, the optimization problem (7) finds a
scaling factor α(k) and a virtual action ũ(k) that
moves a virtual state x̃(k|k) in a neighborhood of
the measured state x(k) in Ωv to minimize the cost
function. This step is illustrated in Figure 4.

minimize
(ũ(k), α(k))

‖x̃(k + 1|k)‖2
Qx

+ ‖uref (k)− ũ(k)‖2
R

subject to x̃(k + 1|k) = Ax̃(k|k) +Bũ(k)
x(k) ∈ {x̃(k|k)} ⊕ αkΩv

{x̃(k|k)} ⊕ αkΩv ⊂ Ωv

ũ(k) ∈ (1− α(k))U
{x̃(k + 1|k)} ⊕ α(k)Ωv ⊂ Ωv

(7)
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+
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Figure 4: IBT principle
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Figure 5: IBT block diagram

2. Then the state tracking error εk = xk − x̃k is lo-
cated in the scaled set α(k)Ωv and the IBC pro-
cedure of the previous section is applied in the
scaled state space and control space.

3. The control action applied to the whole system
can be computed as :

u(k) = ũ(k) + ν(k) (8)
where ν(k) is the result of the IBC procedure on
the scaled state space

The Interpolation-Based Tracking principle is sum-
marized in Figure 5. In this procedure, only quadratic
and linear programming algortihms are involved, con-
sequently, implementation of IBT is close to a MPC
one as it can be found in [Beg12], the main differ-
ence is the choice of outer and inner sets which are
practically computed offline as convex polyhedrons.

4. Results and Discussion
In this section, we consider the lateral acceleration
rendering during a slalom phase with respect to two
motion cueing algorithms :
1. MPC-MCA with a prediction horizon of 3.2 sec-

onds.
2. IBT-MCA with a convex polyhedral outer set Ωv

chosen as a controlled invariant set computed
thanks to procedure in [Ngu11] and less complex
as the largest controlled invariant set.

The considered driving simulator is Renault’s ULTI-
MATE whose parameters are given in table 1.

Table 1: Parameters of ULTIMATE

Parameter Notation Limit
Position pk 2.6 m
Speed vk 3 m/s

Acceleration ak 5 m/s2

Sampling Time Ts 8ms

Figure 6 (resp Figure 7) depicts the state space tra-
jectory of the system with respect to the IBT-MCA
(resp MPC-MCA), The largest controlled invariant set
CN is represented in blue and the outer set Ωv in red.
The better exploitation of the state space of the IBT-
MCA can be noticed
The comparison of acceleration renderings is de-
picted on Figure 8, during the slalom. The accelera-
tion rendering of IBT appears to reproduce better the
shape of the reference particularly during the period
of variation change (from 4.5 to 5s).
The IBT-MCA has the advantage of not handling pre-
dictive states while better managing the exploitation
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Figure 6: State-space trajectory for IBT

Figure 7: State-space trajectory for MPC

of the state space by keeping the performance of long
prediction horizon MPC-MCA. One can add the com-
putation times for optimization solving are similar but
need to be improved in further works by decreasing
the complexity of .

Conclusion
MPC offers good renderings for position tracking
when the trajectory is known but in the driving simu-
lation framework, acceleration cannott be anticipated
without strong hypothesis on future acceleration ref-
erence on a given prediction horizon. The presented
method uses a short horizon and a better manage-
ment of state feedback from a computational point of
view and can overcome some limitations of real-time
MPC such as the complexity induced by prediction
and the multiplication of parameters to tune.
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